Integral formulas for closed submanifolds
in a Riemannian manifold

By Takao MURAMORI

Introduction.

In the previous paper [9]"” we have given certain generalization of integral
formulas of Minkowski type and obtained some properties of a closed ori-
entable hypersurface in a Riemannian manifold. For a submanifold in a
Riemannian manifold Y. Katsurada, T. Nagai and H. Kéjyo [7], obtained
the following

THEOREM A (Y. Katsurada and T. Nagai) Let R* be a Riemannian
manifold which admits a vector field & generating a continuous one-para-
meter group G of homothetic transformations in R* and V™ a closed ori-
entable submanifold in R™ such that

(i) its first mean curvature H,=const.,

(ii) the inner product ;zz-éz has fixed sign on V™,

(iii) the generating vector & is contained in the vector space spanned
by m independent tangent vectors and Euler-Schouten unit vector

n® at each point on V™,
E

(iv) Ryun'n"g*BiBi=0 at each point on V™.
E E

Then every point of V™ is umbilic with respect to the vector n'.”
B

TueoreM B (Y. Katsurada and H. Kéjyé) Let R* be a space of con-
stant curvature which admits a vector field & generating a continuous one-
parameter group G of conformal transformations in R* and V™ a closed
orientable submanifold in R* such that

(i) its first mean curvature H,=const.,

(ii) the inner product ;}z"E‘i has fixed sign on V™,

(iii) the generating vector & is contained in the vector space spanned
by m indepent tangent vectors and n’ at each point on V™.
E

Then every point of V™ is umbilic with respect to the vector n’.
p

TuroreM C (Y. Katsurada and H. Kéjyd) Let R™ be a space of con-

1) Numbers in brackets refer to the references at the end of the paper.
2) With respect to Rejnk, n%, g*fand Bj refer to §1 of the present paper.
E
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stant curvature satisfying the condition of Theorem B. Suppose that V™ is
a closed orientable submanifold in R™ such that

(i) principal curvatures ki, ky, -+, k,, of V™ for the normal vector n*
are positive on V™ a]jzd };he vjh mean curvature EHp (1<v=Em—1)
of V™ for the vector n' equals constant for any v,

(ii) the inner product ;ziéiEhas fixed sign on V™,

(iii) the generating wvector & is contained in the vector space spanned
by m independent tangent vectors and n® at each point on V™.

B
Then every point of V™ is umbilic with respect to Euler-Schouten unit
vector n'.
E

The same problem for a submanifold in a Riemannian manifold has
been researched by B. Y. Chen [I], [18], M. Okumura [11], [12], [19], K.
Yano [15], [16], [17], [18], and others. It is the aim of the present

author to give certain generalization of integral formula of Minkowski type
and to obtain some properties of a closed orientable submanifold in a Rie-
mannian manifold.

Notations and general formulas on a submanifold are given in §1. In
§ 2, we derive generalized integral formulas of Minkowski type. As a special
case of §2, the later section §3 and §4 are devoted to establish several
integral formulas. In §5, we give some properties of a closed orientable
submanifold in a Riemannian manifold.

The present author wishes to express his sincere thanks to Professor
Dr. Yoshie Katsurada for her constant guidance and also to Dr. Tamao

Nagai for his kind help.

§ 1. Notations and general formulas on a submanifold.

Let R” be an n-dimensional orientable Riemannian manifold of class C”
(r=3), and 2%, gy, “;i7, R%, Riy=R"; and R be local coordinates, the
metric tensor, the operator of covariant differentiation with respect to the

Christoffel symbols {Z} formed with the metric tensor g¢,;, the curvature

tensor, the Ricci tensor, and the curvature scalar of R™ respectively.
We now consider a closed orientable submanifold V™ of class C® im-
bedded in a Riemannian manifold R* whose local parametric expression is

2 =),

where u* are local coordinates in V™. Throughout this paper we will agree
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on the following ranges of indices unless otherwise stated:
1=h,4,j4, - <n,
1€, B, 7, <
04 py,---<m
m+1<P,Q,R,---=n.

We use the convention that repeated indices imply summation.
If we put

Bi= axi

ous’

then B, B:,---, B, are m linearly independent vectors tangent to V™. The
first fundamental tensor g,; of V™ is given by

(1. 1) : Gos = 95;B.B}

and ¢* is defined by ¢**g, =0z, where 6 means the Kronecker deltas. We
assume that m vectors B!, Bi,---, B}, give the positive orientation on V™ and
we denote by #’ unit normal vectors of V™ such that B!, B, -.--, B.,, n*,

P m+1
---,n* give the positive orientation in R”. Denoting by “;a” the operation
of D-symbol due to van der Waerden-Bortolotti ([13], p. 254), we have
(1.2) B, =H., |

where H,# means the Euler-Schouten curvature tensor ([13], p. 256). Then
putting H,'n,=b,, we have
P P

n

(1. 3) Haﬁi = Z baﬁni ,
P=m+1 P P
(1. 4) n',, = —bLB;},
P P

where b = ¢7b,,.
P P
Let n* be Euler-Schouten unit normal vector, that is, the unit vector of
E

the same direction to the vector ¢**H.,J,

n’i — gaﬂ Haﬂi
E lg” Hl

7} p. 93, [8] p. 81)

We also have the equations of Gauss and Codazzi:

(1. 5) RMMB.'IB,?Bf B;c = Ram'— Z (basjbpa - fﬁ;ﬁad) ’

P=m+1 P
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(1. 6) Ry nhBiBng = (baﬁ;r_bar;ﬁ)
P P P
= —ZEatﬁ; s (18], p. 266)

where R,s;=0..R', is the curvature tensor of the submanifold V™, and the
symbol [ ] means alternating in 2 ([13], p. 14).
If we denote by %, k;, -, k, the principal curvatures of V™ for the
P P P

normal vector 7, that is the roots of the characteristic equation
P .
(1' 7) Ibaﬁ_kgaﬂl =0 ’
P P

then the v-th mean curvature H, is given by
P

1.8 (2)H= = kk,= T bt
V/ P  a<o<a,p' P’ apma,p | P’
and H,=1. From equation (1.7) and (1.8) it follows immediately
b
(1'9) mleb;, Hm="P_,‘7
P P P g

where b and ¢’ are determinants of &, and g,; respectively. Moreover we
P P

have

1.10)  HH—-H,=>'m=v=D! sy b (k. —k. )
P P P P P

P mm ! @< <a,,, P

(cf. [3], p- 292).

We note here that

1 1

) 2 _ a8 4+ LapB\ __ - k—kazzo
L11)  BR—Th= e e - bt = oy B2
and consequently, if
HI_IIZ O’
P P
then
b=k b=k,
P P P
that is

baﬁ == kgaﬁ .
P P

A point of a submanifold V” at which all principal curvatures 4, &, -+, ;e,,,,
P P
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are equal, is called an umcilical point for the normal vector '
P

For any v, if we put

1 .

1. 12 Hiﬂ = — 8: v eﬂﬁl B 1 b“x...b“p
( ) P( ) (m«—-l)! 1 yﬁy-}.] ﬂm_1 P’sl Pﬁy b
(1 13> H — ___1_ % 1Tyt T g bﬂz b!qa. . ‘b'B"‘H

* . P (8 — m ! ﬂﬁz"'ﬁy+17‘”+2"'rmPal;azp a, Pau+1

= ____1___ b[ﬁo;llal bgg .o .bz:] ,
m\ » P P
(v + 1)
then we have the following relations
(1. 14) 0 HeE =mH,, b HE=mH.,,
P P P P

and
(1 15) 'EI(L;SB;H = —vmy(v)a ga“9 >

where ¢, .., denotes the e-symbol of V™ and the symbol [ ] means alter-
nating in v+1. In particular we have

(1. 16) H(%/; = gm9 ’ H(O)u = 0 ’

(1.17) A b -
P m) »
(%)
§ 2. Generalized Minkowski formulas for a closed submanifold.

We suppose that R” admits a one-parameter continuous group G of
transformations generated by an infinitesimal transformation

2. 1) & =2t 4 &5,

where & are the components of a contravariant vector and ér is an infini-
tesimal. In R”, we consider a domain U. If the domain U is simply covered
by the orbits of transformations generated by &, and & is everywhere of
class C*® and %0 in U, then we call U a regular domain with respect to
the vector field (cf. [4], p. 448). If & is a Killing vector, a homothetic
Killing vector, a conformal Killing vector, then the group G is called iso-
metric, homothetic and conformal respectvely.

The vector field & is said to be conformal, homothetic, or Killing when
it satisfies
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(2- 2) {Q‘U =&u;+E5= 2¢(x)gz‘j s "ngM = 2¢0,;, »Egzj =0

respectively, where Lg,; denotes the Lie derivative of g;; with respect to
§

the infinitesimal transformation (2.1), ¢(x) is a scalar function, ¢ is a con-
stant and &=g,;£ (cf. [I4]. When the generating vector £ is a conformal
Killing vector, it satisfies

h
(2. 3) L{ .o } - Eh;i;j‘i‘Rh?;jkEk
¢ (1]
= 0;0;+050,— 6045,

where ¢,=¢,;, ¢"=¢.g".

Now, we shall consider n° as one of the unit normal vectors of V™,

v
that is n* = »’ and assume that at each point on V™ the generating vector
m+1 B
& is contained in the vector space 7 (Bt, B, ---, B, n‘) spanned by m+1
i
independent vectors B!, B, ---, B, and n’. This assumption is always satisfies
po

for the case m=n—1, that is, V™ is a hypersurface in R” ([7], p. 94, [8],
p.83). Then we may put

(2. 4 & =Bl pr',
Vi

where p= niéi

Hereafter we denote by V™ an m- d1menS1onal closed orientable sub-
manifold of class C® imbedded in a regular domain U with respect to the
vector &. We assume that at any point P on V™, the vector & is not on
its tangent space.

Let us consider a differential form of (m—1)-degree at a point P of V™,
defined by

(n,m,---,m, fE, on, - 5n dx dx))
E m+2 n V4
\.—,—f

m—v—l
Y
(2‘ 5) ='\/—g_(n9 n ,'“,n,f‘f, ana“'san’ dx"“’dx) |
E m+2 n E B
— ox ox
='\/ g n, n, 72 fga ;aly ,aya s "0y du"l/\du"Z/\
E m 2 E’ ouv+1 ousm—1

.. /\du"m—-l R

where the symbol ( ) means a determinant of order » whose columns are
the components of respective vectors or vector-valued differential forms, A
denotes the exterior multiplication, and dz® be a displacement along V™,
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i.e., dr*=Bidu", g the determinant of the metric tensor g,; of R* and f a
differentiable scalae function on V™.
Differentiating exteriorly, we have
d(n, n,---,n, f& 5;1, ---,5;1, dx, -+, dx))

E m+2

(2. 6) =(on, n,-,n, f§ on, -, 0n, dx, -, dx))+
2 n r P

E m+

n

(n, n,---,0n,:,n, fE on,-,on, dzx, -+, dx))+
Q=m+2 E m+2 Q n E - B
(n, n,--,m, df§, on,--,on, dz, ---,dx)) +
E m+2 n E E
(n, n,---,n, fO§, on,---,on, dx, ---,dx))+
n E E

E m+2

v((n, n,-,n, f€ 6(0n), on,---,on, dx, ---,dx)).
n E E pos

E m+2

On substituting (1.4) into the first term of the right-hand member of (2.6),
we obtain

(2.7) (0n, n, -+, n, f&, on, ---,5;1, dzx, -+, dx))

E m+2

=m ! (— 1)(n_1)(n_m)_pH”+1PdA ’
E

where H,,, denotes the (v+1)-th mean curvature of V™ for the normal di-
x
rection 7n° and dA means the volume element of V™.
E
By virtue of (1.4) we can see that the vectors

NX N XXX XXX XnXdrX - Xdx
o

m+2 Q n ® E N e/
v m—y—1
y
(Q=m+2,---,n)
have the same direction to the covariant vector z. Then we obtain

Q
((n, n, --~,5n,-",7l,f$, Bn) dx, “"dx))zo‘
Q n B

E m+2
Q=m+2,:--,n)

Since the vector

NX N X XuXONX XnxdrX - xXdx
E m+2 n o o N, et
——

m—y—1
)

is orthogonal to the vectors 7, n, -+, n and n and én’= —b’Bidu®, we have
E m+2 n-1 n B o
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(2. 8) (n, n,-,n, df§, on,---,0n, dz, -+, dx))
m+2 n E E
=(m—1)!(=1)Dn=m)—» e f,dA,
E(v)
(2.9) (n, n,--,n, fo¢, on,-, on, dz, ---,dx))
m+2 n o E
(m—1)!

(— 1) D= L BIBILg,;dA ,
2 E(») ¢

where f,= aif— &,=B,.

o
Since we have

(2. 10) 5(on) = (br Bi+bl 3 b,ﬂn)du«/\duﬂ,
E E P=m+1lP P

the last term of the-right hand member of (2.6) becomes

(2 11) ((E7'1, ’ ,7’1, fE) ( ) "',571, dx: I dx))
m+2

=m|( 1)(n D(n-m)—v— leaH dA

F(v)a

Accordingly by means of (2.7), (2.8), (2.9) and (2.11) it follows that

L‘d((n, n,-,n, f& on,-,on, dzx, -, dx))

m . E m+ n E E

@12) = (—1><"-1><n~m>~~{(1£+1p+ o HUBBi Lo H. ) f
B 2m E ¢ E

1 (u)Ea ﬁ} dA .

Integrating both members of (2.12) over the whole submanifold V™ and
applying Stokes’ theorem, we have ‘

LS ((n, n,,n, f$3 5”,"',671, dx,...,dx))

77],Y ay™ E m+2

(2. 13) =<—1><"~1><n—m>—vg {( ,+1pdA+—2—m)BiB-"£gmdA

Vm

_ vf“H(,),,dA> fr __H(g ) ﬁdA} ,
r

where V™ means the boundary of V™. Since the submanifold V™ is closed,
it follows that
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(1) S pr+1pdA+31—S fHasBng,cgﬁdA—»S feH,, dA
m & P & v E

VmE

+ LS Hege fdA=0.
m VmE

This formula is nothing but the generalization of the formula established
by Y. Katsurada and H. Kojyd p. 96.

§ 3. Minkowski formulas concerning a conformal transformation.

In this section we shall discuss the formula (I) for a conformal Killing
vector &°.

Let G be a group of conformal transformations, then from equations
(1.1), (1. 14) and (2.2) we obtain

H¥B:B{Lg;,=2m¢H, .
yI) § B
Therefore (I) is rewritten in the following form:

3. 1) S {(Hy+1p+H»¢—vE“H<y>a>f+ 1 Fese, ,q} dA=0.
ym |\ 2 E E m E

On substituting f=const. into the formula (3.1), we obtain

(1), | (Hop+Hp—seH,)aA=0.
V" E E E
For v=0, we have
(1), | Hp+paa—o.
VR

Formula (II), is due to Y. Katsurada, H. Koéjy6é and T. Nagai ([7], p. 94 and
[8], p. 82).

If our manifold R” is a space of constant Riemann curvature, that is,
(3.2) Rosse = £(9n596x— 912945 »
we obtain gl(v),,=0 from (1.6), (1.13) and (3.2), and consequently from (I),
we obtain
3.3) | (Hop+HpaA=0.

Ve B E

This formula is due to Y. Katsurada H. Kojy6 ([7], p. 96).
Now, let us consider a differential form of (m—1)-degree at a point of
the submanifold V™, defined by



Tutegral formulas for closed submanifolds in a Riemannian manifold 121

((7’1, n,--,n, E;iniy dx; ,dx»:N/g (n9 n,:..,mn, E;ini’ dx: ’dx>
E m+2 n E N, st E
m—1

Differentiating exteriorly, and applying the Stokes’ theorem, we have

1 S (n, n,-,n, &;n*dzx, -, dz))
n E

(m—1)! )y B m+2
= (=1 | (R, n*BE g™+ ma)dA

by virtue of (2.3), where g=ng".
B

On making use of that the submonifold V™ is colsed, we have
3.4) [ (R n*BizBigs +mg)dA=0.

Let G be the group of homothetic transformations, that is, ¢=const., then
we have

(3. 5) j Ry B/ BigdA = 0.
Py

Vm

Using the Green’s theorem, K. Yano derived above formulas (3.4) rnd (3.5)

([16], pp. 382, 383).
§4. Integral formulas in R” admitting a scalar field such that
Ci5=h(P)g,;.

In this section we assume that the Riemannian manifold admits a non-
constant scalar field @ such that

(4. 1) p;z;jzh(p)gnsj, o,=0p,,

where h(P) is a differentiable function of 0, and assume that @‘=¢*p, lies
in the vector space ¥ (B, -, Bi, n%) spanned by the vectors B, ---, B, and
¥

n® at each point of V. Then we may put

p

(4. 2) Pt = ¢’ Bt + an'
B

on the submanifold V™.
We consider a differential form of (m—1)-degree at a point P of the

submanifold V™ defined by

((n, n,:-,n, f@: 5”9"'75"9 dx,’dx))
E m+1 7 E R S
“"y"—' m—y—1

def —
=‘Jg (71, n,--n, an 5”7 "',5717 dx, ”':dx),
n r pI

E m+2
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where Q)sz%' Differentiating exteriorly and making use of calculations

x
analogous to those of §2, we have the following integral formula:

43 [ |Eeer HAw oI eff 44 =0,
yr B E H m E
where a=n%0,,, P.=0,;B.. On substituting f=const. into the formula (4.3),
E
we obtain |
(1) S (H,a+ Hh—v0H,,)dA =0,
y* B E E
in particular for y=0 we have
(IT') S (Hia+h)dA=0.
v B

§5. Some properties of a closed orientable submanifold.

In this section we shall show the following seven theorems for a closed
orientable submanifold V™ in a Riemannian manifold R”.

TueporeM 5.1. Let R* be a Riemannian manifold which admits a
continuous one-parameter group G of conformal transformations and V™ a
closed orientable submanifold sucd that ‘

(1) IE-Ip=const. and 5“{;1(”)‘1:0 for any v (1

(i) B0, k>0, ) kn>0 for and v (2=v
o E E
(lll) &iey (Bi’ Bg""’Bim’ ;ﬁ),

(iv) the inner product n,& does not change the sign on V™.
o

A
IA

v<=m—1),

A

m—1),

Then every point of V™ is umbilic with respect to Euler-Schouten vector n.
B

ProOF. On substituting the assumption &°H,,,=0 into the formula (I).
B

in §3, we obtain

(1), [, (Hp+Hpaa=o0.
WJV" E E

From (II), and (II), in §3, we obtain

J o (Hp+ Hda =0,

S (HH,p+Hg)dA =0
vV E E E
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because of H,=constant. Therefore we have
o

5.1) | (mH-H.)paa=0.

Due to (1.10) and the assumption (ii) (iii) and (iv), the integrand on the left
side of equation (5.1) keeps a constant sign; the relation is possible, only
when the integrand vanishes identically, which in turn implies

I_LH»—H:H =0,
E E B

that is,
kh=k=--=k,
E

E E

at all points of the submanifold V™. Accordingly every point of V™ is
umbilic with respect to Euler-Schouten vector 7.

"

Theorem 5. 1] has been obtained by T. Nagai ([10], p. 153) for v=1. In
the case where R™ admits a group G of proper homothetic transformations,
Theorem 5.1 has been obtained by Y. Katsurada and T. Nagai for v=1
i.e., Theorem A stated in the introduction. In the case where R” is a space
of constant curvature, [Theorem 5.1 becomes Theorem B and Theorem C
stated in the introduction.

THEOREM 5. 2. Let R* be a Riemannian manifold which admits a non-
constant scalar field @ such that 0,,;=h(P)g;; and V™ a closed orientable
submanifold such that

(1) H,=const. and P°H,,,,=0  for any v (1
E o

(i) A, >0, £,>0,:-+,£,>0 for any v (2
pi i o

(111) 10%67 (Bf, Bg; ""B;;n: n?;) )

®

(

iv) the inner product a=n’0, does not change the sign on V,,.
Vi

IA
<
IA
S
-

IA
<
IA
S
-

Then every point of V™ is umbilic with respect to Euler-Schouten vector n.
E

ProOOF. On substituting the assumption (i) into the formula (I') in §4,
we have

(1) : s (H, oo+ HR)dA=0.
r

™ B

From and (II') in §4, we obtain
j (H, o+ HR)dA =0,
440 ] B
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S (H,Ha+HhR)dA = 0
V* E E E

because of H,=constant. Therefore we have
H
5. 2) g (HH—H,,)adA=0,
V*'E E b3}

which holds if and only if H,H,—H,,;=0. Thus we can see the conclusion.
E E r

For v=1, this theorem reduces to a result due to K. Yano ([15], p. 505).

THEOREM 5.3. Let R* be a Riemannian manifold which admits a con-
tinuous one-parameter group G of conformal transformations and V™ a closed
orientable submanifold such that

(i) II]'LP+¢§0 (or=0) and S”gf(v)a=0 Jor any v 1Zv<m—1),

(ii) A,>0, £>0,--+,k,>0 for any v 2Zv=m—1),
rI r B
(i) &e? (B, Bi,---, B, n')),
A

(iv) the inner product p=n,& does not change the sign on V™.
E

A

Then every point of V™ is umbilic with respect to Euler-Schouten vector n.
)

Proor. From our assumption (i) and (II), in §3 we have the relation
(5.3) Hp=—9¢.
B
Substituting (5. 3) into the formula (III),, we obtain

j (H,H,—H,,)pdA =0,
K

V" B E

which hold if and only if
HH—-H, 6 =0.
FE FE B

Then we obtain the conclusion.

THEOREM 5.4. Let R* be a Riemannian manifold which admits a
continuous one-parameter group G of conformal transformations and V™ a
closed orientable submanifold such that

(1) §,+1P+I-I,¢§O (or =0) and E"‘I;I(y)a=0 for anyy 1=v<m-—1),

(ii k1>0, k2>0,"‘,km>0,
E E i
(i) &'e” (B, B;, -, By, n),
B
(

iv) the inner product p=n,& does not change the sign on V™.
. E
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Then every point of V™ is umbilic with respect to the vector n.
i

ProOF. From our assumption (i) and (III); we have the relation

(5. 4) H, = —Hg.
E Vi

Substituting (5.4) into the formula (II), in §3, we obtain
5. 5) S L mH-H,)pdA=0,
v H 2 & E

which holds if and only if HLH,—H, ,=0. Thus we can see the con-
E E x :

clusion.

THEOREM 5.5. Let R™ be a Riemannian manifold which admits a con-

tinuous one-parameter group G of conformal transformations and V™ a
closed orientable submanifold such that

(i) — Z =p (or <p) and &€H,,,,=0 for any v (1=<v=m—1),

1
B
(ii) A&>0, ;<0,, £,>0 for any v 2Sv<m—1) and H,>0 (or <0)
E roy P E
for v=1,
(111) EieV (E; Bf} "'stnA ni)y
, B
(iv) the inner product p=n, & does not change the sign on V™.
E

Then every point of V™ is umbilic with respect to Euler-Schouten vector n.
E

Proor. By virtue of our assumptions and (II), in §3, we obtain the
following relation

(5. 6) p=— .

Substituting (5.6) into (III),, we obtain
| (mB-B.paa=0,
V™ E E =

which holds if and only if H,H,—H,,;=0. Then we obtain the conclusion.
E FE 4

In the case that R™ is a space of constant curvature, [Theorem 5.3 ond

I'heorem 5.5 have been obtained by Y. Katsurada and H. Kbjy6 ([7]).

THEOREM 5.6. Let R™ be a Riemannian manifold which admits a
continuous one-parameter group O of conformal transformations and V™ a
closed orientable submanifold such that
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. H
i
( ) Hv+1
(ll) k1>0’ k2>0"”akm>0’
E E r
(111> E‘be% (Bf, Bg,"'3Bfn’ nd)’
B
(iv) the inner product p=n,&* does not change the sign on V™.
B

é=p (or < p) and & I-I(,),, 0 for any v 1Sv<m—1),

Then every point of V™ is umbilic with respect to Euler-Schouten vector n.
E

Proor. The formula (III), is rewritten as follows

H,
Symljm(ﬁ Ij ¢)dA=0-

v+1
K

By virtue of our assumptions, we have the following relation

H,

5. h= — _E )
( 7)( ? = ¢

Substituting (5.7) into (II), in §3, we obtain

[ - EH~H.)pdA=0,
™ v

which holds if and only if HH,—H,,,=0. Then we obtain the conclusion.
E FE B

THEOREM 5.7. Let R* be a Riemannian manifold which admits a
continuous one-parameter group G of conformal transformations and V™ a
closed orientable submanifold such that

(i) Hp=—¢ foranyv 2<v=m—1),
(ii) ]}JI>O H>0 .-, H,>0,
i) &e7 (B, By Ba ),
(iv) the inner product p=fz7;$i does not change the sign on V™.
Then every point of V™ is umbjzlic with respect to Euler-Schouten vector n.

B
Proor. The following lemma is well-known.

Lemma. If H,, H,, -, H, (2<v<m—1) are positive, then we have
E o E

©fe

IIV
IIV
IIV

1 4

.8) H,>H}
E o

B
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where the equality implies that V™ is umbilic with respect to the vector n,
B
i.e, h=k=---=k,. (cf. [2] p.52)
E E E

On substituting the assumption (i) into the formula (II),, we obtain
1
(5.9) ' j (H—H)pdA=0.
v* B B

Due to the inequality (5.8) the integrand in the left side of equation (5.9)
keeps a constant sign, and therefore

1
IJI_H: = O’
B

B

which implies that V™ is umbilic with respect to the vector .
E
REMARK. If R" admits a special concircular scalar field © such that
P45 =10c0g;, ¢ = const.,

then we can prove that V™ in the preceding theorems is isometric to a

sphere. (cf. [6], [10]).

Department of Mathematics,
Hokkaido University
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