A note on homotopy spheres

By Yoshifumi Ando

§ 0. Introduction

All manifolds will mean compact oriented smooth manifolds without any further notices. In [5] J. Milnor and M. Kervaire has determined $b P_{m}$, the group of homotopy spheres which bound parallelizable manifolds. If $m=$ $4 k(k \neq 1)$, then $b P_{4 k}$ is the cyclic group of order $\sigma_{k} / 8$. In this paper we will consider the group of homotopy spheres which bound manifolds of dim m, whose Spivk normal fiber spaces are trivial. We denote it by $b F_{m}$. We show that there exists an analogy of the above fact for $b F_{m}$. We define $b F_{m}^{0}$ to be the group of homotopy spheres which bound manifolds of dim m whose Spivak normal fiber spaces are trivial and whose indexes are zero. Then $b F_{m}^{0}$ is a subgroup of $b F_{n c}$. Let f_{k} be $1 / 8 \mathrm{~min}\{n \in \boldsymbol{Z} \mid n$ is the index of a closed manifold of dim $4 k$ whose Spivak normal fiber space is trivial. $n>0\}$. Then we have

Theorem 0. 1 i) If $m \geq 6$, then $b F_{m}=b P_{m}$. ii) If $m=4 k$, then the group $b F_{m} / b F_{m}^{0}$ is isomorphic to a cyclic group of order f_{k}.

Theorem 0. 2 Let $d_{2 n}$ be the greatest common divisor of $2^{4 n-2}\left(2^{4 n-1}-1\right)$ numerator $\left(B_{m} / 4 m\right)$ and $2\left\{2^{2 n-1} \cdot\left(2^{2 n-1}-1\right) \cdot a_{n} \cdot \text { numerator }\left(\frac{B_{n}}{4 n}\right)\right\}^{2}$. Then $f_{2 n}$ $\leqq d_{2 n}$. Especially if $k=1$, then $f_{2}=4$ which is equivalent to $b F_{8}^{0} \cong \boldsymbol{Z}_{7}$.
$\S 1$ is devoted to preliminaries. Theorem 0.1 will be proved in $\S 2$. In $\S 3$ we will give some computations and a proof of Theorem 0.2.

§ 1. Preliminaries

We quote some results due to D . Sullivan [8]. Let $F / 0$ be the fiber of the map, $B S O \rightarrow B S F$. Let W be a simply connected manifold with a boundary $\partial W^{\top} \neq \phi$. Let $h S(W)$ denote the concordance classes of h-smoothings h : $\left(W^{\prime}, \partial W^{\prime}\right) \rightarrow(W, \partial W)$ of W.
(1.1) If $\operatorname{dim} W \geqq 6$, then there is a bijection $\eta, h S(W) \rightarrow[W, F / 0]$. Moreover if a h-smoothing, $h:\left(W^{\prime}, \partial W^{\prime}\right) \rightarrow(W, \partial W)$ corresponds to $f: W \rightarrow$ $F / 0$ by η, then the stable tangent bundle $\tau_{w^{\prime}}$ of W^{\prime} is equivalent to $h^{*} \tau_{w} \oplus$ $h^{*} f^{*}(\gamma)$, where γ is a universal $F / 0$-bundle [8, 9].

If ∂W is a homotopy sphere of $\operatorname{dim} \partial W=m-1$, let a map $\bar{d} ; h S(W) \rightarrow$ θ_{m-1} be defined as follows. θ_{m-1} denotes the group of homotopy spheres of
$\operatorname{dim}=m-1$. Let h be as above and α the class of h. Then we put $\bar{d}(\alpha)=$ $\left\{\partial W-\partial W^{\prime}\right\}$. Let $W^{\prime}=W \cup \begin{array}{r}\partial W\end{array}(\partial W)$, where C is cone and $\bar{d} \circ \eta^{-1}=d$. D. Sullivan has defined a surgery obstruction $\mathcal{I}:[\hat{W}, F / 0] \rightarrow \boldsymbol{Z}$ if $m=4 k$. Let $\gamma:[W$, $F / 0] \rightarrow[W, F / 0]$ be a restriction. Then we have the following commutative diagram which is implicit in [8].

We call a manifold W F-parallelizable if its Spivak normal fiber space is trivial. As an immediate consequence of (1.1) we have the following

Corollary 1.2. Let W be a simply connected F-paralleable manifold with $\partial W \neq \phi$ and $\operatorname{dim} W \geqq 6$. Then there exists a h-smoothing, $h:\left(W^{\prime}, \partial W^{\prime}\right)$ $\rightarrow(W, \partial W)$ os that W^{\prime} is a parallelizable manifold.
(Proof) Since W is F-parallelizable, we can choose a spherical trivialization t of the stable normal bundle ν_{w} of W. Then $\left(\nu_{w}, t\right)$ is an $F / 0$-bundle $[8,9]$ and there is a map $f: W \rightarrow F / 0$ so that $f^{*}(r)=\nu_{w}$. Then $h:\left(W^{\prime}, \partial W^{\prime}\right)$ $\rightarrow(W, \partial W)$ corresponding to f is what we want.

We use (1.2) in §3.

§ 2. $\boldsymbol{b} \boldsymbol{F}_{\boldsymbol{m}}$ and $\boldsymbol{b} \boldsymbol{F}_{\boldsymbol{m}}^{10}$

It follows from [6, Lemma 1] that an almost parallelizable closed manifold is F-parallelizable. Let W be an F-parallelizable manifold with ∂W a homotopy sphere. $\hat{W}=W \underset{\partial W}{\cup} C(a W)$ is a $p . l$. manifold. Then we have

Lemma 2. $1 \hat{W}$ is an F-parallelizable p.l. manifold.
(Proof) The proof is the same as that of [6, Lemma 1] by considering in piecewise linear category.

By Lemma 2, 1 we need not consider an almost F-parallelizable manifold.
Proof of Theorem 0.1 i) Let Σ bound an F-parallelizable manifold W. We embed W in D^{N+1} (N is sufficiently large) so that $\Sigma \subset S^{N}$. If we choose a spherical trivialization t of the normal disk bundle of W, then it follows from Lemma 2. 1 that $t \mid \Sigma$ is reduced to a framing. If we consider the construction of the homomorphism, $\theta_{m-1} / b P_{m} \rightarrow I_{m-1}^{S} / \operatorname{Im} J$ [5, Theorem 4. 1], then it is easy to see $b F_{m} / b P_{m} \rightarrow \Pi_{m-1}^{S} / \operatorname{Im} J$ is a zero map, which completes the proof.

Lemma 2.2 If $W^{4 k}$ is an F-parallelizable closed manifold, then the index of $W(\equiv I(W))$ is divisible by 8 .
(Prooof) Let ν_{w} be a stable normal bundle of W, E its associated disk bundle and $t: E \rightarrow D^{N}$, a spherical trivialization of E so that t is transverse regular on zero of unit N-disk D^{N}. If we put $W^{\prime}=t^{-1}(0)$, and π the projection: $W^{\prime} \rightarrow W$, then $\tau_{w^{\prime}} \oplus \varepsilon^{N}=\pi^{*} \tau_{w} \oplus \pi^{*} \nu_{w}$. Since $\underset{W^{\prime}}{-\left(\tau_{w}+\varepsilon^{N}\right) \rightarrow-\pi^{*}\left(\tau_{w} \oplus \nu_{w}\right)} \downarrow$
is a normal map, $I(W)-I\left(W^{\prime}\right)$ is divisible by 8. $I\left(W^{\prime}\right)=0$, since W^{\prime} is parallelizable, so $I(W)$ is divisible by 8 .

Lemma 2.3 Let Σ_{i} bound F-parallelizable manifold W_{i} of $\operatorname{dim} 4 k$ $(i=0,1)$. Then $\Sigma_{0}-\Sigma_{1} \in b F_{4 k}^{0}$ if and only if $I\left(W_{0}\right) \equiv I\left(W_{1}\right)\left(\bmod 8 \cdot f_{k}\right)$
(Proof) The proof is just the same as that of [5, Theorem 7.5].
Proof of Theorem 0.1 ii) We can define an injective homomorphism; $b F_{4 k} l b F_{4 k}^{0} \rightarrow \boldsymbol{Z}_{f_{k}}$ by mapping Σ_{0} into $1 / 8 I\left(W_{0}\right)\left(\bmod f_{k}\right)$. It follows from Theorem 0, 1, i) that this is surjective.

§3. On the number f_{k} and computations

Let (W, Σ) be an F-parallelizable manifold of dim $4 k$. Then the image $d([W, F / 0])$ is contained in $b F_{4 k}^{0}$. In facts, if $h ;\left(W^{\prime}, \partial W^{\prime}\right) \rightarrow\left(W^{\prime}, \partial W\right)$ is a h-smoothing, then W^{\prime} becomes an F-parallelizable manifold [2, Theorem 3. 6] and $I\left(W \#-W^{\prime}\right)=I(W)-I\left(W^{\prime}\right)=0$. Moreover we will show Lemma 3. 3. So we can give some elements of $b F_{4 k}^{0}$ by using (1.2) if we choose a convenient manifold W. In the sequel let $W^{4 t}$ satisfy the following conditions $\left.(C) ; 1\right)$ ∂W is a homotopy sphere, 2) W is parallelizable, 3) W is ($2 k-1$) connected, 4) $H_{2 k}(W ; \mathbb{Z})$ is of rank l. Then $H_{2 k}(W)$ becomes a free module of rank l. Then W has the homotopy type of $\bigvee_{i=1}^{i} S_{i}^{2 k}$. Let α be the composition map; $S_{4 k-1} \rightarrow \partial W \hookrightarrow W \xrightarrow{h} \bigvee_{i=1}^{\tau} S_{i}^{2 k} \xrightarrow[\rightarrow]{\beta} S^{2 k}$, where $S_{4 k-1} \rightarrow \partial W$ is a map of degree $1, h$ a homotopy equivalence, β any map.

Lemma 3. 1 Let W and α be as above, then the suspension of α is zero.
(Proof) Let $V=W \cup-\left(W-\operatorname{Int} D^{4}\right)$. There is an extension \bar{R} over V
of α. In fact, since ∂W is a retraction of $\left(W-\operatorname{Int} D^{4 k}\right)$, we have a retract R; $\left(W-\operatorname{Int} D^{4 k}\right) \rightarrow \Sigma$. It is clear that $R \mid S^{4 k-1} ; S^{4 k-1} \rightarrow \Sigma$ is of degree 1. Consider the following diagram,

, where both A_{1} and A_{2} are the homomorphism constructed by the usual transversal arguments. We fix an framing of τ_{∇} which is induced from that of $W \bigcup_{\Sigma}(-W)$. Let \bar{R} be transversal regular on the base point of $S^{2 k}$ and $\bar{R}^{-1}(p t)=N$. Then $A_{1}(\alpha)=[\partial N$ with an induced framing $]=0$. Q.E.D.

Proposition 3. 2 If (C) without (2) holds for $W, k=2 n$, and $\xi \in \widetilde{K 0}(\hat{W})$, then $\left\langle p h(\xi),\left[\hat{W}^{\prime}\right]\right\rangle \equiv 0(\bmod 1)$.
(PROOF) Let k be the inverse map of h. Since $\widetilde{K 0}\left(\bigvee_{i=1}^{i} S_{i}^{4 n}\right) \cong \underset{i=1}{\oplus} \widetilde{K 0}\left(S_{i}^{4 n}\right)$ $\cong \boldsymbol{Z} \oplus \cdots \oplus \boldsymbol{Z}$, we write an element $k^{*}\left(i_{w}\right) *(\xi)$ by $\left(b_{1}, b_{2}, \cdots, b_{l}\right)$. Let $\beta:{\underset{i=1}{2}}_{i}^{i}$ $S_{i}^{4 n} \rightarrow S^{4 n}$ be a map represented by degree $\left(b_{1}, b_{2}, \cdots, b_{l}\right)$. Then $\beta^{*}(1)=\left(b_{1}\right.$, \cdots, b_{l}). We define α as in Lemma 3. 1 by using β. α induces a map $\hat{\alpha}$; $\hat{W} \rightarrow S^{4 n}{\underset{\alpha}{ }} e^{8 n}$.

Consider the following two exact sequences,

$$
\begin{aligned}
& 0 \longrightarrow \widetilde{K 0}\left(S^{8 n}\right) \xrightarrow{p_{*}} \widetilde{K 0}\left(S^{4 n} \cup e^{8 n}\right) \xrightarrow{\left(i_{S^{4 n}}\right)^{*}} \widetilde{K 0}\left(S^{4 n}\right) \longrightarrow 0 \\
& 0 \longrightarrow \widetilde{K 0}\left(S^{8 n}\right) \xrightarrow{p_{*}} \widetilde{(\hat{\alpha} 0}(\hat{W}) \xrightarrow{\left(i_{v o}\right)^{*}} \widetilde{\longrightarrow} \widetilde{W_{0}}\left({ }_{i=1}^{v} S^{*} S^{4 n}\right) \longrightarrow 0 .
\end{aligned}
$$

Let x be an element of $\widetilde{K} 0\left(S^{4 n} \bigcup_{\alpha} \bigcup^{8 n}\right)$ so that $\left(i_{s^{n t}}\right)^{*} x=1$. Then $\left(i_{w}\right)^{*}\left(\xi-(\hat{\kappa})^{*} x\right)$ $=0$, so there exsits an element $y \in \widetilde{K 0}\left(S^{8 n}\right)$ so that $\xi-(\hat{\alpha})^{*} y=p^{*} y$. $\langle p h(\xi)$, $\left.\left[\hat{W}^{\prime}\right]\right\rangle=\left\langle p h\left(\hat{a}^{*} x\right),[\hat{W}]\right\rangle+\left\langle p h\left(p^{*} y\right), \quad[\hat{W}]\right\rangle=\langle p h x,(\hat{\alpha}) *[\hat{W}]\rangle+\left\langle p h y,\left[S^{8 n}\right]\right\rangle$ $\equiv a_{n}(e$ invariant of $\alpha)(\bmod 1)$. It follows from Lemma 3. 1 that e invariant of $\alpha=0(1)$. Q.E.D.

Lemma 3.3 If W is a simply connected F-parallelizable manifold whose boundary is a homotopy sphere Σ, and $\operatorname{dim} W \geqq 6$, then $r ;[\hat{W}$, $F / 0] \rightarrow[W, F / 0]$ is onto.
(Proof) Consider the exact sequence; $[\hat{W}, F / 0] \rightarrow[W, F / 0] \rightarrow[\Sigma, F / 0]$. The image $d([W, F / 0])$ is contained in $b F_{m}$, that is, in $b P_{m}$. The commutativity of the following diagram shows that the map $[W, F / 0] \rightarrow[\Sigma, F / 0]$ is a zero map

$$
\begin{array}{rlr}
h s(W) & \longrightarrow[W, F / 0] \\
\downarrow & \\
b P_{m} \longrightarrow h s(\Sigma)=\theta_{m-1} \longrightarrow[\Sigma, F / 0] . & \text { Q.E.D. }
\end{array}
$$

For the rest of this section we will prove the following
Theorem 3.4 Let (C) hold for W and $l \neq 0$. If $k=2 n$, then the image
$d\left(\left[\hat{W}^{F}, F / 0\right]\right)$ consists of all $\left\{2^{2 n-1}\left(2^{2 n-1}-1\right) \cdot a_{n} \text { numerator }\left(\frac{B_{n}}{4 n}\right)\right\}^{2} . \varphi\left(b_{1}, \cdots\right.$, $\left.b_{l}\right)\left(\bmod \sigma_{k} / 8\right)$, where φ is a quadratic from associated with the pairing $H_{2 k}(\hat{W}) \otimes H_{2 k} \hat{W}() \rightarrow H_{4 k}(\hat{W})$ and b_{i} are integers. If k; odd, then the image d $([\hat{W}, F / 0])=0$.
(Proof) According to [1, Theorem 3. 7], the image of $i_{*} ; \pi_{4 n}(F / 0) \rightarrow$ $\pi_{4 n}(B S O) \cong \boldsymbol{Z}$ is generated by $m(2 n)$. In the diagram
, we can choose elements $v_{i}(i=1,2, \cdots, l)$ so that $i_{*} r_{*}\left(v_{i}\right)=m(2 n)$ since r_{*} is onto [Lemma 3. 3]. For any element x of [$\hat{W}, F / 0$] there exists elements y of $\pi_{8 n}(F / 0), z$ of $[\hat{W}, F / 0]$ and integers $b_{l}(i=1,2, \cdots, l)$ so that $i_{*} x=P_{*} y$ $+i_{*}\left(\sum b_{i} v_{i}\right)+i_{*} z$ and $i_{*} r_{*} z=0$. Then $\mathscr{J}^{\prime}(x)=1 / 8\left\langle L(\hat{W})\left(1-L\left(i_{*} x\right),[\hat{W}\rangle=-\right.\right.$ $1 / 8\left\langle L_{2 n}\left(i_{*} x\right),[\hat{W}]\right\rangle=-1 / 8\left\langle\sum_{i=1}^{i} L_{2 n}\left(b_{i} v_{i}\right)+L_{2 n}\left(P_{*} y\right)+L_{2 n}\left(i_{*} z\right)+\sum_{i<j} b_{i} b_{j} L_{n}\left(v_{i}\right) L_{n}\left(v_{j}\right)\right.$, $[\hat{W}]\rangle \equiv-1 / 8\left\langle\sum_{i=1}^{l} \frac{1}{2} S_{n}^{2} b_{i}^{2} p_{n}^{2}\left(v_{i}\right)+\sum_{i<j} b_{i} b_{j} S_{n}^{2} p_{n}\left(v_{i}\right) p_{n}\left(v_{j}\right),[\hat{W}]\right\rangle=-\left\langle\left\{\frac{1}{4} S_{n} \cdot m(2 n)\right.\right.$ $\left.\left.\cdot a_{n} \cdot(2 n-1)!\left(\sum_{i=1}^{i} b_{i} u_{i}\right)\right\}^{2},[\hat{W}]\right\rangle=-\left\{\frac{1}{4} S_{n} \cdot m(2 n) \cdot a_{n}(2 n-1)!\right\}^{2} \varphi\left(b_{1}, \cdots, b_{i}\right)=-$ $\left\{2^{2 n-1}\left(2^{2 n-1}-1\right) a_{n} \cdot \text { numevator }\left(\frac{B_{n}}{4 n}\right)\right\}^{2} \varphi\left(b_{1}, \cdots, b_{l}\right)$. Here we used the following facts and Lemma 3. 5.
(1) $L_{2 n}=s_{2 n} p_{2 n}+1 / 2\left(s_{n}^{2}-s_{2 n}\right) p_{n}^{2}+$ other terms, where $s_{n}=\frac{2^{2 n}\left(2^{2 n-1}-1\right)}{(2 n)!} B_{n}$ ($n \geqq 1$). [4]
(2) Let v_{i} and u_{i} be the generators of $\widetilde{K_{0}}\left(S^{4 n}\right)$ and $H^{4 n}\left(S^{4 n}\right)$ respectively.

Then $p_{n}\left(v_{i}\right)=a_{n} \cdot(2 n-1)!u_{i}$. If k is odd, then $i_{*} ; \pi_{2 k}(F / 0) \rightarrow \pi_{2 k}(B S O)$ is zero. And the similar argument show the assertion. Q.E.D.

Lemma 3.5 For an element ξ of $[\hat{W}, F / 0], 1 / 8\left\langle L_{2 n}\left(i_{*} \xi\right),[\hat{W}]\right\rangle \equiv 1 / 8$ $\left\langle 1 / 2 s_{n}^{2} \rho_{n}^{2}(\xi),[W]\right\rangle\left(\bmod \sigma_{2 n} / 8\right)$, where W is in Proposition 3. 2.
(Proof) It follows from (1) that we need to prove $1 / 8\left\langle s_{2 n}\left(p_{2 n}(\xi)-\right.\right.$ $\left.\left.1 / 2 p_{n}^{2}(\xi)\right),[\hat{W}]\right\rangle \equiv 0\left(\bmod \sigma_{2 n} / 8\right)$. By [7], we may write $i_{*} \xi=\sum_{i} k_{i}^{e i}\left(\psi_{R}^{k_{i}^{i}}-1\right)\left(\xi_{i}\right)$ for some integers k_{i}, e_{i} and $\xi_{i} \in \widetilde{K} 0(\hat{W})$. $1 / 8\left\langle s_{2 n}\left(p_{2 n}(\xi)-1 / 2 p_{n}^{2}(\xi)\right),[\hat{W}]\right\rangle=$ $\left\langle 2^{4 n-2}\left(2^{4 n-1}-1\right) \frac{B_{2 n}}{8 n} \cdot p h(\xi),[\hat{W}]\right\rangle=2^{4 n-2}\left(2^{4 n-1}-1\right) \frac{B_{2 n}}{8 n} \sum_{i} k_{i}^{e i}\left(k_{i}^{4 n}-1\right)\left\langle p h\left(\xi_{i}\right),[\hat{W}]\right\rangle$.

It follows from [1, p. 139] and Proposition 3. 2. Q.E.D.
Proof of Theorem 0.2 The first part of Theorem 0, 2 follows from Theorem 3. 4. since there exists $\left(a_{1}, \cdots, a_{l}\right)$ so that $\varphi\left(a_{1}, \cdots, a_{l}\right)=2$. It is sufficient to prove the latter part to show that any homotopy sphere of $b F_{8}^{0}$ is represented in the image d. Let a homotopy sphere Σ bound an F parallelizable manifold with $I(W)=0$. Then we may consider $W 3$-connected, In fact, we can make W 3-connected by framed surgery, since a spherical trivialization over 3 -skelton reduces to a framing. Now we have a h smoothing $h ;\left(W^{\prime}, \partial W^{\prime}\right) \rightarrow(W \partial W)$ so that W^{\prime} is parallelizable, 3-connected and $I(W)=0$. So $\sum=\partial W \#\left(-\partial W^{\prime}\right)$ since $I\left(W^{\prime}\right)=0$. Q.E.D.

Department of Mathematics Hokkaido University

References

[1] J. F. Adams: On the group $J(\times)-\mathrm{II}$, Topology Vol. 3 1965, p.p 137-171.
[2] Atiyah: Thom complexes. Proc. L. M. S. 11 (1961).
[3] W. BROWDER: Surgery and the theory of differentiable transformation groups, Proceedings of the Tulane Symposium or Transformation Groups, 1967, Springer.
[4] F. Hirzebruch: New topological method in algebraic geometry, 3rd Edition, Springer, New York 1966.
[5] M. Kervaire and J. Milnor: Groups of homotopy spheres I, Annals of Math. 77 (1963), 504-537.
[6] M. Kervaire and J. Milnor: Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proc. Int. Congress of Math. Edinborough, 1958.
[7] D. Quillen: The Adams conjecture, Topology Vol. 10 p.p 67-80, 1971.
[8] D. Sullivan: Triangulating homotopy equivalences, Thesis, Princeton University, 1965.
[9] D. Sullivan: Triangulating homotopy equivalences, Notes, Warwick University, 1966.

