A note on homotopy spheres

By Yoshifumi ANDO

§0. Introduction

All manifolds will mean compact oriented smooth manifolds without any further notices. In [5] J. Milnor and M. Kervaire has determined bP_m , the group of homotopy spheres which bound parallelizable manifolds. If m = $4k \ (k \neq 1)$, then bP_{4k} is the cyclic group of order $\sigma_k/8$. In this paper we will consider the group of homotopy spheres which bound manifolds of dim m, whose Spivk normal fiber spaces are trivial. We denote it by bF_m . We show that there exists an analogy of the above fact for bF_m . We define bF_m^0 to be the group of homotopy spheres which bound manifolds of dim m whose Spivak normal fiber spaces are trivial and whose indexes are zero. Then bF_m^0 is a subgroup of bF_m . Let f_k be $1/8 \min \{n \in \mathbb{Z} \mid n \text{ is the index}$ of a closed manifold of dim 4k whose Spivak normal fiber space is trivial. n > 0}. Then we have

THEOREM 0. 1 i) If $m \ge 6$, then $bF_m = bP_m$. ii) If m = 4k, then the group bF_m/bF_m^0 is isomorphic to a cyclic group of order f_k .

THEOREM 0. 2 Let d_{2n} be the greatest common divisor of $2^{4n-2}(2^{4n-1}-1)$ numerator $(B_m/4m)$ and $2\left\{2^{2n-1}\cdot(2^{2n-1}-1)\cdot a_n\cdot numerator\left(\frac{B_n}{4n}\right)\right\}^2$. Then $f_{2n} \leq d_{2n}$. Especially if k=1, then $f_2=4$ which is equivalent to $bF_8^0 \cong \mathbb{Z}_7$.

\$1 is devoted to preliminaries. Theorem 0.1 will be proved in \$2. In \$3 we will give some computations and a proof of Theorem 0.2.

§1. Preliminaries

We quote some results due to D. Sullivan [8]. Let F/0 be the fiber of the map, $BSO \rightarrow BSF$. Let W be a simply connected manifold with a boundary $\partial W \neq \phi$. Let hS(W) denote the concordance classes of h-smoothings $h: (W', \partial W') \rightarrow (W, \partial W)$ of W.

(1.1) If dim $W \ge 6$, then there is a bijection η , $hS(W) \rightarrow [W, F/0]$. Moreover if a *h*-smoothing, $h: (W', \partial W') \rightarrow (W, \partial W)$ corresponds to $f: W \rightarrow F/0$ by η , then the stable tangent bundle $\tau_{w'}$ of W' is equivalent to $h^*\tau_w \oplus h^*f^*(r)$, where r is a universal F/0-bundle [8, 9].

If ∂W is a homotopy sphere of dim $\partial W = m-1$, let a map \vec{d} ; $hS(W) \rightarrow \theta_{m-1}$ be defined as follows. θ_{m-1} denotes the group of homotopy spheres of

dim = m-1. Let h be as above and α the class of h. Then we put $\overline{d}(\alpha) = \{\partial W - \partial W'\}$. Let $W = W \bigcup_{\substack{\partial W \\ \partial W}} C(\partial W)$, where C is cone and $\overline{d} \circ \eta^{-1} = d$. D. Sullivan has defined a surgery obstruction $\mathscr{S}: [\widehat{W}, F/0] \rightarrow \mathbb{Z}$ if m = 4k. Let $\gamma: [W, F/0] \rightarrow [W, F/0]$ be a restriction. Then we have the following commutative diagram which is implicit in [8].

. . 0

We call a manifold W *F-parallelizable* if its Spivak normal fiber space is trivial. As an immediate consequence of (1, 1) we have the following

COROLLARY 1.2. Let W be a simply connected F-paralleable manifold with $\partial W \neq \phi$ and dim $W \ge 6$. Then there exists a h-smoothing, $h: (W', \partial W') \rightarrow (W, \partial W)$ os that W' is a parallelizable manifold.

(PROOF) Since W is F-parallelizable, we can choose a spherical trivialization t of the stable normal bundle ν_w of W. Then (ν_w, t) is an F/0-bundle [8, 9] and there is a map $f: W \rightarrow F/0$ so that $f^*(\tau) = \nu_w$. Then $h: (W', \partial W') \rightarrow (W, \partial W)$ corresponding to f is what we want.

We use (1. 2) in §3.

§2. bF_m and bF_m^0

It follows from [6, Lemma 1] that an almost parallelizable closed manifold is *F*-parallelizable. Let *W* be an *F*-parallelizable manifold with ∂W a homotopy sphere. $\hat{W} = W \bigcup_{\partial W} C(\partial W)$ is a *p. l.* manifold. Then we have

LEMMA 2.1 \hat{W} is an F-parallelizable p. l. manifold.

(PROOF) The proof is the same as that of [6, Lemma 1] by considering in piecewise linear category.

By Lemma 2. 1 we need not consider an almost F-parallelizable manifold.

PROOF OF THEOREM 0.1 i) Let Σ bound an *F*-parallelizable manifold W. We embed W in D^{N+1} (N is sufficiently large) so that $\Sigma \subset S^N$. If we choose a spherical trivialization t of the normal disk bundle of W, then it follows from Lemma 2.1 that $t|\Sigma$ is reduced to a framing. If we consider the construction of the homomorphism, $\theta_{m-1}/bP_m \to \Pi_{m-1}^S/\text{Im } J$ [5, Theorem 4.1], then it is easy to see $bF_m/bP_m \to \Pi_{m-1}^S/\text{Im } J$ is a zero map, which completes the proof.

LEMMA 2.2 If W^{4k} is an F-parallelizable closed manifold, then the index of $W (\equiv I(W))$ is divisible by 8.

(PROOOF) Let ν_w be a stable normal bundle of W, E its associated disk bundle and $t: E \to D^N$, a spherical trivialization of E so that t is transverse regular on zero of unit N-disk D^N . If we put $W' = t^{-1}(0)$, and π the projection: $W' \to W$, then $\tau_{w'} \oplus \varepsilon^N = \pi^* \tau_w \oplus \pi^* \nu_w$. Since $-(\tau_w + \varepsilon^N) \to -\pi^* (\tau_w \oplus \nu_w)$ ψ

is a normal map, I(W) - I(W') is divisible by 8. I(W') = 0, since W' is parallelizable, so I(W) is divisible by 8.

LEMMA 2.3 Let Σ_i bound F-parallelizable manifold W_i of dim 4k (i=0, 1). Then $\Sigma_0 - \Sigma_1 \in bF_{4k}^0$ if and only if $I(W_0) \equiv I(W_1) \pmod{8 \cdot f_k}$

(PROOF) The proof is just the same as that of [5, Theorem 7.5].

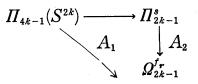
PROOF OF THEOREM 0. 1 ii) We can define an injective homomorphism; $bF_{4k}/bF_{4k}^0 \rightarrow \mathbb{Z}_{f_k}$ by mapping Σ_0 into $1/8 I(W_0) \pmod{f_k}$. It follows from Theorem 0. 1, i) that this is surjective.

§3. On the number f_k and computations

Let (W, Σ) be an *F*-parallelizable manifold of dim 4k. Then the image d ([W, F/0]) is contained in bF_{4k}^0 . In facts, if h; $(W', \partial W') \rightarrow (W, \partial W)$ is a h-smoothing, then W' becomes an *F*-parallelizable manifold [2, Theorem 3. 6] and I(W # - W') = I(W) - I(W') = 0. Moreover we will show Lemma 3. 3. So we can give some elements of bF_{4k}^0 by using (1. 2) if we choose a convenient manifold W. In the sequel let W^{4k} satisfy the following conditions (C); 1) ∂W is a homotopy sphere, 2) W is parallelizable, 3) W is (2k-1) connected, 4) $H_{2k}(W; \mathbb{Z})$ is of rank l. Then $H_{2k}(W)$ becomes a free module of rank l. Then W has the homotopy type of $\bigvee_{k=1}^{l} S_{k}^{2k}$. Let α be the composition map;

Then W has the homotopy type of $\bigvee_{i=1}^{i} S_{i}^{2k}$. Let α be the composition map; $S_{4k-1} \rightarrow \partial W \subseteq W \rightarrow \bigvee_{i=1}^{k} S_{i}^{2k} \rightarrow S^{2k}$, where $S_{4k-1} \rightarrow \partial W$ is a map of degree 1, h a homotopy equivalence, β any map.

LEMMA 3.1 Let W and α be as above, then the suspension of α is zero. (PROOF) Let $V = W \cup -(W - \operatorname{Int} D^{4k})$. There is an extension \overline{R} over V of α . In fact, since ∂W is a retraction of $(W - \operatorname{Int} D^{4k})$, we have a retract R; $(W - \operatorname{Int} D^{4k}) \rightarrow \Sigma$. It is clear that $R | S^{4k-1}; S^{4k-1} \rightarrow \Sigma$ is of degree 1. Consider the following diagram,



, where both A_1 and A_2 are the homomorphism constructed by the usual transversal arguments. We fix an framing of $\tau_{\overline{r}}$ which is induced from that of $W \bigcup_{\Sigma} (-W)$. Let \overline{R} be transversal regular on the base point of S^{2k} and $\overline{R}^{-1}(pt) = N$. Then $A_1(\alpha) = [\partial N$ with an induced framing] = 0. Q.E.D.

PROPOSITION 3. 2 If (C) without (2) holds for W, k=2n, and $\xi \in K\bar{0}(\hat{W})$, then $\langle ph(\xi), [\hat{W}] \rangle \equiv 0 \pmod{1}$.

(PROOF) Let k be the inverse map of h. Since $\widetilde{K0}(\bigvee_{i=1}^{l} S_{i}^{4n}) \cong \bigoplus_{i=1}^{l} \widetilde{K0}(S_{i}^{4n})$ $\cong \mathbb{Z} \bigoplus \cdots \oplus \mathbb{Z}$, we write an element $k^{*}(i_{w})^{*}(\xi)$ by $(b_{1}, b_{2}, \cdots, b_{l})$. Let $\beta : \bigvee_{i=1}^{l} S_{i}^{4n} \rightarrow S^{4n}$ be a map represented by degree $(b_{1}, b_{2}, \cdots, b_{l})$. Then $\beta^{*}(1) = (b_{1}, \cdots, b_{l})$. We define α as in Lemma 3.1 by using β . α induces a map $\hat{\alpha}$; $\widehat{W} \rightarrow S^{4n} \cup e^{8n}$.

Consider the following two exact sequences,

Let x be an element of $\widetilde{K0}(S^{4n} \bigcup e^{8n})$ so that $(i_{S^{4n}})^*x=1$. Then $(i_w)^*(\xi-(\hat{a})^*x)=0$, so there exsits an element $y \in \widetilde{K0}(S^{8n})$ so that $\xi-(\hat{a})^*y=p^*y$. $\langle ph(\xi), [\hat{W}] \rangle = \langle ph \ (\hat{a}^*x), \ [\hat{W}] \rangle + \langle ph(p^*y), \ [\hat{W}] \rangle = \langle phx, \ (\hat{a})_*[\hat{W}] \rangle + \langle phy, \ [S^{8n}] \rangle \equiv a_n \ (e \text{ invariant of } \alpha) \ (\text{mod 1})$. It follows from Lemma 3.1 that $e \text{ invariant of } \alpha = 0(1)$. Q. E. D.

LEMMA 3.3 If W is a simply connected F-parallelizable manifold whose boundary is a homotopy sphere Σ , and dim $W \ge 6$, then r; $[\hat{W}, F/0] \rightarrow [W, F/0]$ is onto.

(PROOF) Consider the exact sequence; $[\hat{W}, F/0] \rightarrow [W, F/0] \rightarrow [\Sigma, F/0]$. The image d ([W, F/0]) is contained in bF_m , that is, in bP_m . The commutativity of the following diagram shows that the map $[W, F/0] \rightarrow [\Sigma, F/0]$ is a zero map

$$bP_m \longrightarrow hs(\Sigma) = \theta_{m-1} \longrightarrow [\Sigma, F/0] . \qquad Q. E. D.$$

For the rest of this section we will prove the following

THEOREM 3. 4 Let (C) hold for W and $l \neq 0$. If k=2n, then the image

Y. Ando

 $d ([\hat{W}, F/0]) \text{ consists of all } \left\{ 2^{2n-1}(2^{2n-1}-1) \cdot a_n \text{ numerator } \left(\frac{B_n}{4n}\right) \right\}^2 \cdot \varphi(b_1, \cdots, b_i) \pmod{\sigma_k/8}, \text{ where } \varphi \text{ is a quadratic from associated with the pairing } H_{2k}(\hat{W}) \otimes H_{2k}\hat{W}() \rightarrow H_{4k}(\hat{W}) \text{ and } b_i \text{ are integers. If } k; \text{ odd, then the image } d ([\hat{W}, F/0]) = 0.$

(PROOF) According to [1, Theorem 3.7], the image of i_* ; $\pi_{4n}(F/0) \rightarrow \pi_{4n}(BSO) \cong \mathbb{Z}$ is generated by m(2n). In the diagram

, we can choose elements v_i (i=1, 2, ..., l) so that $i_*r_*(v_i) = m(2n)$ since r_* is onto [Lemma 3. 3]. For any element x of $[\hat{W}, F/0]$ there exists elements y of $\pi_{8n}(F/0)$, z of $[\hat{W}, F/0]$ and integers b_i (i=1, 2, ..., l) so that $i_*x = P_*y$ $+i_*(\sum b_i v_i) + i_*z$ and $i_*r_*z=0$. Then $\mathscr{S}(x) = 1/8\langle L(\hat{W}) (1-L(i_*x), [\hat{W}\rangle = -1/8\langle L_{2n}(i_*x), [\hat{W}] \rangle = -1/8\langle \sum_{i=1}^{l} L_{2n}(b_i v_i) + L_{2n}(P_*y) + L_{2n}(i_*z) + \sum_{i < j} b_i b_j L_n(v_i) L_n(v_j),$ $[\hat{W}] \rangle \equiv -1/8\langle \sum_{i=1}^{l} \frac{1}{2} S_n^2 b_i^2 p_n^2(v_i) + \sum_{i < j} b_i b_j S_n^2 p_n(v_i) p_n(v_j), [\hat{W}] \rangle = -\langle \{\frac{1}{4} S_n \cdot m(2n) \cdot a_n \cdot (2n-1)! \langle \sum_{i=1}^{l} b_i u_i \rangle \}^2$, $[\hat{W}] \rangle = -\langle \frac{1}{4} S_n \cdot m(2n) \cdot a_n(2n-1)! \rangle^2 \varphi(b_1, ..., b_l) = -\langle 2^{2n-1}(2^{2n-1}-1) a_n \cdot numevator(\frac{B_n}{4n}) \rangle^2 \varphi(b_1, ..., b_l)$. Here we used the following facts and Lemma 3. 5.

(1) $L_{2n} = s_{2n}p_{2n} + 1/2(s_n^2 - s_{2n})p_n^2 + \text{other terms, where } s_n = \frac{2^{2n}(2^{2n-1}-1)}{(2n)!}B_n$ ($n \ge 1$). [4]

(2) Let v_i and u_i be the generators of $\widetilde{K0}(S^{4n})$ and $H^{4n}(S^{4n})$ respectively. Then $p_n(v_i) = a_n \cdot (2n-1)! u_i$. If k is odd, then i_* ; $\pi_{2k}(F/0) \rightarrow \pi_{2k}(BSO)$ is zero. And the similar argument show the assertion. Q. E. D.

LEMMA 3.5 For an element ξ of $[\hat{W}, F/0]$, $1/8 \langle L_{2n}(i_*\xi), [\hat{W}] \rangle \equiv 1/8 \langle 1/2 s_n^2 p_n^2(\xi), [W] \rangle \pmod{\sigma_{2n}/8}$, where W is in Proposition 3.2.

 It follows from [1, p. 139] and Proposition 3. 2. Q. E. D.

PROOF OF THEOREM 0. 2 The first part of Theorem 0. 2 follows from Theorem 3. 4. since there exists (a_1, \dots, a_l) so that φ $(a_1, \dots, a_l)=2$. It is sufficient to prove the latter part to show that any homotopy sphere of bF_8^0 is represented in the image d. Let a homotopy sphere Σ bound an Fparallelizable manifold with I(W)=0. Then we may consider W 3-connected, In fact, we can make W 3-connected by framed surgery, since a spherical trivialization over 3-skelton reduces to a framing. Now we have a hsmoothing h; $(W', \partial W') \rightarrow (W \partial W)$ so that W' is parallelizable, 3-connected and I(W)=0. So $\Sigma = \partial W \# (-\partial W')$ since I(W')=0. Q. E. D.

Department of Mathematics Hokkaido University

References

- [1] J. F. ADAMS: On the group J(x)-II, Topology Vol. 3 1965, p.p 137-171.
- [2] ATIYAH: Thom complexes. Proc. L. M. S. 11 (1961).
- [3] W. BROWDER: Surgery and the theory of differentiable transformation groups, Proceedings of the Tulane Symposium or Transformation Groups, 1967, Springer.
- [4] F. HIRZEBRUCH: New topological method in algebraic geometry, 3rd Edition, Springer, New York 1966.
- [5] M. KERVAIRE and J. MILNOR: Groups of homotopy spheres I, Annals of Math. 77 (1963), 504-537.
- [6] M. KERVAIRE and J. MILNOR: Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proc. Int. Congress of Math. Edinborough, 1958.
- [7] D. QUILLEN: The Adams conjecture, Topology Vol. 10 p.p 67-80, 1971.
- [8] D. SULLIVAN: Triangulating homotopy equivalences, Thesis, Princeton University, 1965.
- [9] D. SULLIVAN: Triangulating homotopy equivalences, Notes, Warwick University, 1966.

(Received August 29, 1972)

1