
A note on homotopy spheres

By Yoshifumi ANDO

\S 0. Introduction

All manifolds will mean compact oriented smooth manifolds without any
further notices. In [5] J. Milnor and M. Kervaire has determined bP_{m} , the
group of homotopy spheres which bound parallelizable manifolds. If m=
4k(k\neq 1) , then bP_{4k} is the cyclic group of order \sigma_{k}/8 . In this paper we
will consider the group of homotopy spheres which bound manifolds of dim
m, whose Spivk normal fiber spaces are trivial. We denote it by bF_{7l}, . We
show that there exists an analogy of the above fact for bF_{m} . We define
bF_{m}^{0} to be the group of homotopy spheres which bound manifolds of dim
m whose Spivak normal fiber spaces are trivial and whose indexes are zero.
Then bF_{m}^{0} is a subgroup of bF_{n\iota} . Let f_{k} be 1/8 min {n\in\prime J_{4}|n is the index
of a closed manifold of dim 4k whose Spivak normal fiber space is trivial.
n>0\} . Then we have

THEOREM 0. 1 i) If m\geq 6 , then bF_{m}=bP_{m} . ii) If m=4k, thm the
group bF_{m}/bF_{m}^{0} is isomorphic to a cyclic group of order f_{k} .

THEOREM 0. 2 Let d_{2n} be the greatest common divisor of 2^{4n-2}(2^{4n-1}-1)

numerator (B_{m}/4m) and 2 \{2^{2n-1}\cdot(2^{2n-1}-1)\cdot a_{n}
. numerator ( \frac{B_{n}}{4n})\}^{2} Then f_{2n}

\leqq d_{2n} . Especially if k=1, then f_{2}=4 which is equivalmt to bF_{8}^{0}\cong Z_{7} .
\S 1 is devoted to preliminaries. Theorem 0. 1 will be proved in \S 2.

In \S 3 we will give some computations and a proof of Theorem 0. 2.

\S 1. Preliminaries
We quote some results due to D. Sullivan [8]. Let F/O be the fiber of

the map, BSOarrow BSF. Let W be a simply connected manifold with a bound-
ary \partial I7^{f’}\neq\phi . Let hS(m. denote the concordance classes of h-smoothings h :
(W’, \partial W’)arrow(W, \partial W) of W.

(1. 1) If dim W\geqq 6 , then there is a bijection \eta, hS(W)arrow[W, F/O] .
Moreover if a h-smoothing, h:(W’, \partial W’)-(W, \partial W) corresponds to f:Warrow
F/O by \eta, then the stable tangent bundle \tau_{w’} of W is equivalent to h^{*}\tau_{w}\oplus

h^{*}f^{*}(\gamma), where \gamma is a universal F/O-bundle [8, 9] .
If \partial W is a homotopy sphere of dim \partial T\eta_{=}^{\gamma}.m-1 , let a map \delta ; hS(W)arrow

\theta_{m-1} be defined as follows. \theta_{m-1} denotes the group of homotopy spheres of
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\dim=m-1 . Let h be as above and \alpha the class of h. Then we put \overline{d^{-}}(\alpha)=

\{\partial W-\partial W’\} . Let IV=W\cup C(\partial W), where C is cone and \overline{d}\circ\eta^{-1}=d. D. Sullivan
\partial W

has defined a surgery obstruction \mathscr{S}:[\hat{W}. F/O]arrow Z if m=4k. Let r:[W,
F/O]arrow[W, F/O] be a restriction. Then we have the following commutative
diagram which is implicit in [8].

\mathscr{S}

(1. 2)
[W^{\gamma},F/0]\downarrowarrow Zarrow Z\sigma_{k}/8

[W, F/0]arrow\theta_{4k-1}arrow bP_{4k}\downarrow

We call a manifold WF-parallelizable if its Spivak normal fiber space
is trivial. As an immediate consequence of (1. 1) we have the following

COROLLARY 1. 2. Let W be a simply connected F-paralleable manifold
with \partial W\neq\phi and dim W\geqq 6 . Then there exists a h-smoothing, h:(W’, \partial W’)

arrow(W, \partial 7i^{r}’)os that W’ is a parallelizable manifold.
(PROOF) Since W is F-parallelizable, we can choose a spherical trivial-

ization t of the stable normal bundle \nu_{w} of W. Then (\nu_{w}, t) is an F/0-bundle
[8, 9] and there is a map f:W->F/0 so that f^{*}(\gamma)=\nu_{w} . Then h:(W’, \partial W’)

arrow(W, \partial W) corresponding to f is what we want.
We use (1. 2) in \S 3.

\S 2. bF_{m} and bF_{m}^{0}

It follows from [6, Lemma 1] that an almost parallelizable closed mani-
fold is F-parallelizable. Let W be an F-parallelizable manifold with \partial W a
homotopy sphere. t\dot{\grave{\eta}}^{\gamma},=W\bigcup_{\partial W}C(^{\eta}cW) is a p. l. manifold. Then we have

LEMMA 2. 1 T\hat{l^{\gamma},} is an F-parallelizable p. l. manifold.
(PROOF) The proof is the same as that of [6, Lemma 1] by considering

in piecewise linear category.
By Lemma 2. 1 we need not consider an almost F-parallelizable manifold.
PROOF OF THEOREM 0. 1 i) Let \Sigma bound an F-parallelizable manifold

W. We embed W in D^{N+1} (N is sufficiently large) so that \Sigma\subset S^{N}. If we
choose a spherical trivialization t of the normal disk bundle of W, then it
follows from Lemma 2. 1 that t|\Sigma is reduced to a framing. If we consider
the construction of the homomorphism, \theta_{m-1}/bP_{m}arrow\Pi_{m-1}^{S}/{\rm Im} J[5,

Th\overline{e}orem
4. 1], then it is easy to see bF_{m}/bP_{n\iota}arrow\Pi_{m-1}^{S}/{\rm Im} J is a zero map, which com-
pletes the proof.

LEMMA 2. 2 If W^{4k} is an F-parallelizable closed manifold, then the
index of W(\equiv I(W)) is divisible by 8.
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(PROOOF) Let \nu_{w} be a stable normal bundle of W, E its associated
disk bundle and t:Earrow D^{N}, a spherical trivialization of E so that t is trans-
verse regular on zero of unit N-disk D^{N}. If we put W’=t^{-1}(0), and \pi the pr0-

jection: W’arrow W, then \tau_{w’}\oplus\epsilon^{N}=\pi^{*}\tau_{w}\oplus\pi^{*}\nu_{w} . Since
-(\tau_{w}+\epsilon,\arrow-\pi^{*}(\tau_{w}\oplus\nu_{w})Warrow W\downarrow\downarrow

is a normal map, I(W)-I(W’) is divisible by 8. I(W)=0, since W’ is
parallelizable, so I(W) is divisible by 8.

LEMMA 2. 3 Let \Sigma_{i} bound F-parallelizable manifold W_{i} of dim 4k
\langlei=0,1). Then \Sigma_{0}-\Sigma_{1}\in bF_{4k}^{0} if and only if I(W_{0})\equiv I(W_{1}) (mod 8 \cdot f_{k})

(PROOF) The proof is just the same as that of [5, Theorem 7. 5].

PROOF OF THEOREM 0. 1 ii) We can define an injective homomor-
phism; bF_{4k}/bF_{4k}^{0}arrow Z_{f_{k}} by mapping \Sigma_{0} into 1/8 I(W_{0}) (mod f_{k}). It follows
from Theorem 0. 1, i) that this is surjective.

\S 3. On the number f_{k} and computations

Let (W, \Sigma) be an F-parallelizable manifold of dim 4k. Then the image
d([W, F/O]) is contained in bF_{4k}^{0} . In facts, if h;(W’, \partial W’)arrow(W, \partial W) is a
h-smoothing, then W’ becomes an F-parallelizable manifold [2, Theorem 3. 6]

and I(W\#-W’)=I(W)-I(W’)=0 . Moreover we will show Lemma 3. 3. So
we can give some elements of bF_{4k}^{0} by using (1. 2) if we choose a convenient
manifold W. In the sequel let W^{4k} satisfy the following conditions (C); 1)
\partial W is a homotopy sphere, 2) W is parallelizable, 3) W is (2k-1) connected,
4) H_{2k}(W;Z) is of rank l. Then H_{2k}(W) becomes a free module of rank l.
Then W has the homotopy type of i=1\vee S_{i}^{2k}l . Let \alpha be the composition map;

S_{4k-1}arrow\partial W5Warrow hv^{l}S_{i}^{2k}arrow S^{2k}\beta

, where S_{4k-1}arrow\partial W is a map of degree 1, h a
i=1

homotopy equivalence, \beta any map.

LEMMA 3. 1 Let W and \alpha be as above, then the suspension of \alpha is zero.
(PROOF) Let V=W\cup- (W-Int D^{4k}). There is an extension \overline{\overline{R}} over V

\partial W

of \alpha. In fact, since \partial W is a retraction of (W-Int D^{4k}), we have a retract
R ;(W-Int D^{4k}) arrow\Sigma. It is clear that R|S^{4k-1} ; S^{4k-1}->\Sigma is of degree 1. Con-
sider the following diagram,

\Pi_{4k-1}(S^{2k})-\Pi_{2k-1}^{s}\backslash A_{1}\downarrow A_{2}\searrow\Omega_{2k-1}^{f_{f}}
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where both A_{1} and A_{2} are the homomorphism constructed by the usual
transversal arguments. We fix an framing of \tau_{V} which is induced from that
of W \bigcup_{\Sigma}

( –W). Let \overline{\overline{R}} be transversal regular on the base point of S^{2k} and
\overline{R}^{-1}(pt)=N. Then A_{1}(\alpha)= [ \partial N with an induced framing] =0. Q. E. D.

PROPOSITION 3. 2 If (C) without (2) holds for W, k=2n, and \xi\in\overline{K}\dot{0}(\hat{W}),
then \langle ph(\xi), [\hat{W}]\rangle\equiv 0 (mod 1).

(PROOF) Let k be the inverse map of h. Since \overline{K0}(\vee S_{i}^{4n})\cong\bigoplus_{ii=1=1}\overline{K0}(S_{i}^{4n})l

\cong Z\oplus\cdots\oplus Z , we write an element k^{*}(i_{w})^{*}(\xi) by (b_{1}, b_{2}, \cdots, b_{l}) . Let \beta:\vee l

i=1
S_{i}^{4n}->S^{4n} be a map represented by degree (b_{1}, b_{2}, \cdots, b_{l}) . Then \beta^{*}(1)=(b_{1} ,
\ldots , b_{l}) . We define \alpha as in Lemma 3. 1 by using \beta . \alpha induces a map \hat{\alpha} ;
\hat{W}arrow S^{4n}\cup e^{8n} .

\alpha

Consider the following two exact sequences,

0arrow\overline{K}0(S^{8n})arrow\overline{K0}(S^{4n}F*\cup e^{8n})\overline{K0}(S^{4n})\underline{(i_{s^{4n}})^{*}}-0

||

p_{*}

\downarrow(\hat{\alpha})^{*}a

(i_{l\theta})^{*}
\sim’\downarrow_{l}h^{*}\circ\beta^{*}

0-arrow\overline{K}0(S^{8n})arrow\overline{K0}(\hat{W})-arrow K0(\vee S^{4n})i=1arrow 00

Let x be an element of \overline{K}0(S^{4n}\bigcup_{a}e^{8n}) so that (i_{s^{4n}})^{*}x=1 . Then (i_{w})^{*}(\xi-(\hat{\alpha})^{*}x)

=0, so there exsits an element y\in\overline{K0}(S^{8n}) so that \xi-(\hat{\alpha})^{*}y=p^{*}y . \langle ph(\xi),
[\hat{W}]\rangle=\langle ph(\hat{\alpha}^{*}x), [\hat{W}]\rangle+\langle ph(p^{*}y), [\acute{W}]\rangle=\langle phx, (\hat{\alpha})_{*}[\hat{W}]\rangle+\langle phy, [S^{8n}]\rangle

\equiv a_{n} (e invariant of \alpha) (mod 1). It follows from Lemma 3. 1 that e invariant
of \alpha=0(1) . Q. E. D.

LEMMA 3. 3 If W is a simply connected F-parallelizable manifold
whose boundary is a homotopy sphere \Sigma , and dim W\geqq 6 , then r;[\hat{W}

,\cdot

F/O]arrow[W, F/O] is onto.
(PROOF) Consider the exact sequence; [\hat{W}, F/O] - [W, F/O] - [\Sigma, F/O] .

The image d([W,\cdot F/O]) is contained in bF_{m} , that is, in bP_{m} . The commuta-
tivity of the following diagram shows that the map [W, F/O]arrow[\Sigma, F/O] is a
zero map

hs(W)-[W, F/0]
\downarrow \downarrow

bP_{m}arrow hs(\Sigma)=\theta_{m-1}– [\Sigma, F/O] Q. E. D.

For the rest of this section we will prove the following

THEOREM 3. 4 Let (C) hold for W and l\neq 0 . If k=2n, then the image
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d([\hat{W}^{\gamma},, F/O]) consists of all \{2^{2n-1}(2^{2n-1}-1)\cdot a_{n} numerator ( \frac{B_{n}}{4n})\}^{2} \varphi(b_{1}, \cdots ,

b_{l}) (mod \sigma_{k}/8), where \varphi is a quadratic from associated with the pairing
H_{2k}(\hat{W})\otimes H_{2k}\hat{W}()arrow H_{4k}(\hat{W}) and b_{i} are integers. If k ; odd, then the image d
([\hat{W}, F/0])=0 .

(PROOF) According to [1, Theorem 3. 7], the image of i_{*}; \pi_{4n}(F/O)arrow

\pi_{4n}(BSO)\cong Z is generated by m(2n). In the diagram

[S^{8n}, F/0] arrow P_{*}[\hat{W}, F/0]arrow r_{*}[W, F/0]\cong\bigoplus_{1}^{l}\pi_{4n}(F/0)

\downarrow i_{*}

P_{*}
A

\downarrow i_{*} \downarrow i_{*}

[S^{8n}, BSO] arrow[W, BSO]arrow r_{*}[W, BSO]\cong\bigoplus_{1}^{l}\pi_{4n}(BSO)

, we can choose elements v_{i}(i=1,2, \cdots, l) so that i_{*}r_{*}(v_{i})=m(2n) since r_{*}

is onto [Lemma 3. 3]. For any element x of [t\hat{7^{\gamma},}. F/O] there exists elements
y of \pi_{8n}(F/0), z of [\dot{\grave{W}}, F/O] and integers b_{l}(i=1,2, \cdots, l) so that i_{*}x=P_{*}y

+i_{*}( \sum b_{i}v_{i})+i_{*}z and i_{*}r_{*}z=0 . Then \mathscr{S}(x)=1/8\langle L(\hat{W}) (1-L(i_{*}x), [ \hat{W}’\rangle=-

1/8 \langle L_{2n}(i_{*}x), [\hat{W}]\rangle=-1/8\langle\sum_{i=1}^{l}L_{2n}(b_{i}v_{i})+L_{2n}(P_{*}y)+L_{2n}(i_{*}z)+\sum_{i<f}b_{i}b_{j}L_{n}(v_{i})L_{n}(v_{f}),

[ \hat{W}]\rangle\equiv-1/8\langle\sum_{i=1}^{l}\frac{1}{2}S_{n}^{2}b_{i}^{2}p_{n}^{2}(v_{i})+\sum_{i<j}b_{i}b_{j}S_{n}^{2}p_{n}(v_{i})p_{n}(v_{f}), [\acute{W}]\rangle=-\langle\{\frac{1}{4}S_{n}\cdot m(2n)

. a_{n} \cdot(2n-1).’(\sum_{i=1}^{l}b_{i}u_{i})\}^{2} . [ T\hat{l}^{7}]\rangle=-\{\frac{1}{4}S_{n}\cdot m(2n)\cdot a_{n}(2n-1)!\}^{2}\varphi(b_{1}, \cdots, b_{l})=-

\{2^{2n-1}(2^{2n-1}-1)a_{n} .numevator ( \frac{B_{n}}{4n})\}^{2}\varphi(b_{1}, \cdots, b_{l}) . Here we used the following

facts and Lemma 3. 5.

(1) L_{2n}=s_{2n}p_{2n}+1/2(s_{n}^{2}-s_{2n})p_{n}^{2}+other terms, where s_{n}= \frac{2^{2n}(2^{2n-1}-1)}{(2n)!}B_{n}

(n\geqq 1) . [4]

(2) Let v_{i} and u_{i} be the generators of \overline{K}0(S^{4n}) and H^{4n}(S^{4n}) respectively.
Then p_{n}(v_{i})=a_{n}\cdot(2n-1) ! u_{i} . If k is odd, then i_{*}; \pi_{2k}(F/0)arrow\pi_{2k}(BSO) is

zero. And the similar argument show the assertion. Q. E. D.
LEMMA 3. 5 For an element \xi of [\hat{W}. F/O] , 1/8 \langle L_{2n}(i_{*}\xi), [\hat{W}]\rangle\equiv 1/8

\langle 1/2s_{n}^{2}p_{n}^{2}(\xi), [W]\rangle (mod \sigma_{2n}/8), where W is in Proposition 3. 2.
(PROOF) It follows from (1) that we \dot{n}eed to prove 1/8 \langle s_{2n}(p_{2n}(\xi)-

1/2p_{n}^{2}(\xi)) , [\hat{W}]\rangle\equiv 0 (mod \sigma_{2n}/8). By [7], we may write i_{*} \xi=\sum_{i}k_{i}^{ei}(\psi_{R^{i}}^{k}-1)(\xi_{i})

for some integers k_{i} , e_{i} and \xi_{i}\in\overline{K}0(1\acute{\grave{V}}.) . 1/8 \langle s_{2n}(p_{2n}(\xi)-1/2p_{n}^{2}(\xi)), [V\hat{V}]\rangle--

\langle 2^{4n-2}(2^{4n-1}-1)\frac{B_{2n}}{8n}\cdot ph(\xi), [\hat{W}^{-}]\rangle=2^{4n-2}(2^{4n-1}-1)\frac{B_{2n}}{8n}\sum_{i}k_{i}^{ei}(k_{i}^{4n}-1) \langle ph(\xi_{i}), [\hat{W}]\rangle .
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It follows from [1, p. 139] and Proposition 3. 2. Q. E. D.
PROOF OF THEOREM 0. 2 The first part of Theorem 0. 2 follows from

Theorem 3. 4. since there exists (a_{1}, \cdots, a_{l}) so that \varphi(a_{1}, \cdots, a_{l})=2 . It is
sufficient to prove the latter part to show that any homotopy sphere of bF_{8}^{0}

is represented in the image d. Let a homotopy sphere \Sigma bound an F-
parallelizable manifold with I(W)=0. Then we may consider W 3-c0nnected,
In fact, we can make W3-connected by framed surgery, since a spherical
trivialization over 3-skelton reduces to a framing. Now we have a h-
smoothing h ; (W’, \partial Tt^{I’})-(.W\partial W) so that w’\prime\prime is parallelizable, 3-c0nnected
and I(ft^{I})=0 . So \sum=\partial W\# (-\partial W^{\gamma\prime}) since I(Tb^{r\prime},)=0 . Q. E. D.

Department of Mathemalics
Hokkaido University
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