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Let K be an algebraic number field, and L/K the \Gamma-extension associated
to the rational prime p. We put \Gamma_{n}=\Gamma^{p^{n}}, and denote by K_{7\iota} corresponding
subfields. Let A be an abelian variety defined over K.

The purpose of this short note is to improve B. Mazur’s result on the
asymptotic behavior of the rank A(K_{n}) , where A(K_{n}) is the K_{n}-rational-
point-group of A. The known asymptotic estimate is the following, some-
what weak, one: there is a non-negative integer \rho such that rank A(K_{n})+

corankH^{1}(\Gamma_{n}, A(L))=\rho.p^{n}+const. for all sufficiently large n. Here, for a
p-primary \Gamma-module G, corank G means the Z_{p}^{r}-rank of G^{*} , where G^{*} is
the Pontrjagin dual of G (see [1], p. 22).

We shall show that the corank H^{r}(\Gamma_{n}, A(L)) is in fact constant for all
sufficiently large n, so that we get an asymptotic formula for the rank of
A(K_{n}) .

In section 1, we shall prove above fact in general setting, and in section
2 apply it to A(L).

NOTATIONS.
For a finite group X, |X| denotes its order. If G is a group and if

B is a G-module, B^{G} means the subgroup of B consisted of the invariant
elements under the action of G.

1. The aim of this section is to prove the following

THEOREM 1. Let B be a \Gamma-module, such that B^{\Gamma_{n}} is a free Z- mod\dot{u}le

of fifinite rank for all n. Then the corank H^{1}(\Gamma_{n}, B) is constant for all
sufficimtly lar.ge n.

Before beg_{\acute{1}}nning the proof, we recall the well-known structure of
H^{i}(\mathfrak{g}, C) for i=1,2, where \mathfrak{g} is a finite cyclic group and C is a \mathfrak{g}-module:

H^{1}(\mathfrak{g}, C)={}_{s}C/D_{\mathfrak{g}}C_{\tau} H^{2}(\mathfrak{g}, C)=C^{\mathfrak{g}}/N_{\mathfrak{g}}C .

Here N_{5} is the homomorphism Carrow C^{\mathfrak{g}}, defined by N_{\mathfrak{g}}(x)= \sum_{\tau\in q}\tau x for x\in C,

{}_{s}C=Ker(N_{\mathfrak{g}}) , and D_{s}C=\{\tau x-x|x\in C, \tau\in \mathfrak{g}\}=\{\sigma x-x|x\in C\} for any generator
\sigma of \mathfrak{g} .

First we observe that corank H^{1}(\Gamma_{n}, B) is monotone increasing.
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LEMMA 1. Suppose m\geqq n , then corank H^{1}(\Gamma_{m}, B)\geqq corank H^{1}(\Gamma_{n}, B) .
PROOF. Obvious from the inflation-restriction sequence 0arrow H^{1}(\Gamma_{n}/\Gamma_{m} ,

B^{\Gamma_{n}})arrow H^{1}(\Gamma_{n}, B)arrow H^{1}(\Gamma_{m}, B) .
Therefore, without loss of generality, we may assume that the corank

H^{1}(\Gamma_{n}, B) is finite for all n.
Next we discuss the action of \Gamma/\Gamma_{n\iota} of B^{\Gamma_{m}} and obtain non-negative

integers e(p^{i}) , by which |H^{1}(\Gamma/\Gamma_{m}, B^{\Gamma_{m}})| is expressed in case B^{\Gamma}=0 .
Put r_{m}=rank(B^{\Gamma_{n\iota}}) . From the action of \Gamma/\Gamma_{m} on B^{\Gamma_{m}} , we get repre-

sentations \psi_{m} : \Gamma/\Gamma_{m}arrow GL_{r_{m}}(Z) . For m\geqq n , let j_{m,n} be the natural surjection
\Gamma/\Gamma_{m}arrow\Gamma/\Gamma_{n} . Combining \psi_{m} and j_{m,n} , we get representations \psi_{m,n}=\psi_{n}\circ j_{m,n} :
\Gamma/\Gamma_{m}arrow GL_{r_{n}}(Z) . For a fixed generator \sigma_{m} of \Gamma/\Gamma_{m}(\cong Z/p^{m}Z), we put M_{m}

=\psi_{m}(\sigma_{m}), M_{m,n}=\psi_{m,n}(\sigma_{m}) . From the construction, M_{m,n} and M_{n} are equiva-
lent. Denote by F_{m}(X)\in Z[X] the characteristic polynomial of M_{m} . Since
F_{m}(X) divides (X^{p_{m}}-1)^{r_{m}}, we can write F_{m}(X)=1I\Phi_{p^{l}}(X)^{e_{m}(p^{i})}i=0m , 0\leqq e_{m}(p^{i})\leqq r_{m} .
Here \Phi_{d}(X) means the cyclotomic polynomial. Since deg \Phi_{a}(X)=\varphi(d), we
have r_{m}= \sum_{i=0}^{m}\varphi(p^{i})\cdot e_{m}(p^{i}) , (\varphi=Euler’s function). Of course e_{m}(p^{i}) does not
depend on the choice of the r\acute{/}-basis of B^{\Gamma_{m}}, nor on the choice of \sigma_{m} . And
indeed e_{m}(p^{i}) is independent of m. For the proof we need the following

LEMMA 2. Suppose G is a fifinite group and C is a free Z-module of
fifinite rank on which G acts. Then there are submodules D and E of C
which have the following properties respectively.

1) C=C^{G}\oplus D , rank D=rank(_{G}C) ,

2) C=E\oplus {}_{G}Cr
, rank E=rank(C^{G}) .

PROOF. By the elementary divisor theory the existence of the above
direct sum is easily verified. As for the rank, we have only to note the
exact sequence 0-arrow CGarrow Carrow N_{G}(C)-0 , and the relatio.n C^{G}\supset N_{G}(C)\supset|G|\cdot C.

PROPOSITION 1. Notations being as above, suppose m\geqq n . Then we
have e_{m}(p^{i})=e_{n}(p^{i}), for 0\leqq i\leqq n . Hence we can drop the suffix of e_{m} , so
that we get the relations r_{m}= \sum_{i=0}^{m}\varphi(p^{i})\cdot e(p^{i}), r_{m}-r_{m-1}=\varphi(p^{i})\cdot e(p^{i}), for all m.

PROOF. Apply lemma 2. 1) to G=\Gamma_{n}/\Gamma_{m}\cong’\acute{/}/p^{m-n}\Gamma Z, C=B^{\Gamma_{m}} . (Note
that (B^{r_{m}})^{\Gamma_{n}/r_{m}}=B^{r_{n}}) . On account of the direct sum decomposition, matrix
M_{m}( =M, we write for short) can be written in the following form: M=
( \frac{M’|*}{0|R}) , M’=M_{m,n} , R\in GL_{r_{m}-r_{n}}(Z) . Hence we have F_{m}(X)=F_{n}(X)\cdot F_{R}(X),

where F_{R}(X) is the characteristic polynomial of R. Therefore it suffices to
show that all the roots of F_{R}(X)i.e . all the characteristic roots of R are
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We must show that

p^{i}-th primitive roots of unity (i>n) . The generator \sigma_{m}^{p^{n}} of \Gamma_{n}/\Gamma_{m} is repre-

sented in the form M^{p^{n}}=(_{\backslash /}... \frac{01110*}{0|R^{p^{n}}}) . Put T=R^{p^{n}}

among the characteristic roots of T there is not a 1. Norm homomophism
N_{\Gamma_{n}/\Gamma_{m}}= \sum_{f=1}(\sigma_{ln}^{p^{m}})^{j}p^{m-7l} : B^{\Gamma_{m}}arrow B^{r_{n}} is represented \’in the form

\sum_{j=1}^{p^{m- n}}(M^{p^{n}})^{f}=(\frac{p^{m-n}op^{m-n1}}{01}...)\overline{v^{m-n}\sum_{f=1}^{*}T^{f}} .

Hence \sum_{j=1}^{p^{m-n}}T^{f}=0 . This implies the desired result (note that T^{p^{n-n}}=1 ).

The relation between e(p^{i}) and |H^{1}(\Gamma/\Gamma_{m}, B^{\Gamma_{m}})| mentioned above is as
follows.

PROPOSITION 2. Suppose B^{\Gamma}=0, then

1)
|H^{1}(\Gamma/\Gamma_{m}, B^{\Gamma_{m}})|=p^{i=1}m\Sigma e(p^{i})

,

2) in general, for m\geqq n , H^{1}(\Gamma_{n}/\Gamma_{m}, B^{\Gamma_{m}})^{\Gamma 1\Gamma_{\mathcal{R}}}=H^{1}(\Gamma_{n}/\Gamma_{m}, B^{\Gamma_{m}}) , and

|H^{1}(\Gamma_{n}/\Gamma_{m}, B^{\Gamma_{m}})|=p^{i=n+1}m\Sigma e(p^{i})

PROOF. 1) Put C=B^{r_{Jn}} , \mathfrak{g}=\Gamma/\Gamma_{m} . By our assumption B^{\Gamma}=0 , we have
{}_{\mathfrak{g}}C=C . In GL_{r_{m}}(C) , the matrix M_{m}-1 is equivalent to the matrix

(\begin{array}{llll}\omega_{1}-1 0 \ddots 0 \omega_{r_{m}} -1\end{array}) , where \omega_{i}’s are the p^{m}-th roots of unity (\neq 1) . Hence

M_{m}-1 is regular. As D_{\mathfrak{g}}(C)=C(M_{m}-1) , we get |H^{1}(\mathfrak{g}, C)|=|C/D_{\mathfrak{g}}(C)|=

| \det(M_{m}-1)|=|\prod_{i=1}^{r_{m}}(\omega_{i}-1)|=|\prod_{i=1}^{m}\Phi_{p^{i}}(1)^{e(p^{i})}|=p^{i=1}m\Sigma e(p^{i})

2) Notations being as in the proof of 1), put \mathfrak{h}=\Gamma_{n}/\Gamma_{m} . Apply lemma

2. 1, taking \mathfrak{h} in place of G. Then M_{m}=( \frac{*|0}{*|S}) , S\in GL_{k}(Z) , k=r_{m}-r_{n} .

The same reasoning as in the proof of 1) gives |H^{1}(\mathfrak{h}_{ 1},JC)|=|\det(S-1)|

=p^{i=n+1}m\Sigma e(p‘) Since |H^{1}(\mathfrak{h}, C)|\leqq|H^{1}(\mathfrak{h}_{ \iota_{J}},C)| , we have
|H^{1}(\mathfrak{h}, C)|\leqq p^{i=n+1}m\Sigma e(p^{i})

But the exact sequence of Hochschild-Serre 0arrow H^{1}(\mathfrak{g}/\mathfrak{h}, C^{tJ})arrow H^{1}(\mathfrak{g}, C)arrow H^{1}(\mathfrak{h} ,

C)^{\mathfrak{g}/\mathfrak{b}}arrow\cdots implies p^{i=n+1}m\Sigma e(p^{i})\leqq|H^{1}(\mathfrak{h}, C)^{q/\mathfrak{h}}.| . Hence we have our assertion.
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Now we can prove theorem 1. By means of the exact sequence of
Hochschild-Serre, we easily see that corank H^{1}(\Gamma, B)=corank H^{1}(\Gamma_{n}, B)^{\Gamma/\Gamma_{7?}} .
Since \Gamma_{n}=\lim\Gamma_{n}/\Gamma_{m} ,

a\backslashnd B= \lim B^{\Gamma_{n}} , we have H^{1}( \Gamma_{n}, B)=\lim H^{1}(\Gamma_{n}/\Gamma_{m} ,
\overline{m\geqq n} \overline{m} \overline{m\geqq n}

B^{r_{m}}) . So the validity of our assertion in case B^{\Gamma}=0 is obvious, on account
of Prop. 2. 2).

To prove the theorem in general case, put B’=B/B^{\Gamma} . Then we have
(B’)^{\Gamma}=0 . Indeed from the exact sequence; (^{*})Oarrow B^{\Gamma}arrow Barrow B’arrow 0, we get
the exact sequence Oarrow B^{\Gamma}arrow B^{\Gamma}arrow(B’)^{\Gamma}->H^{1}(\Gamma, B^{\Gamma})=\lim H^{1}(\Gamma/\Gamma_{m}, B^{\Gamma})=0 .

\overline{m}

From (^{*}), we also get the exact sequence

0=H^{1}(\Gamma_{n}, B^{\Gamma})-H^{1}(\Gamma_{n}, B)arrow H^{1}(\Gamma_{n}, B’)arrow H^{2}(\Gamma_{n}, B^{\Gamma}) .
But H^{2}( \Gamma_{n}, B^{\Gamma})=\lim H^{2}(\Gamma_{n}/\Gamma_{m}, B^{\Gamma})\cong\lim B^{I^{v}}/p^{m-n}B^{\Gamma} . So, dualizing above se-

\overline{m\geq n} \overline{m\geq n}

quence, we obtain the following inequality:

corank H^{1}(\Gamma_{n}, B)\leqq corankH^{1}(\Gamma_{n}, B’)\leqq corank H^{1}(\Gamma_{n}, B)+rank(B^{\Gamma}) .
r

(Note that B^{\Gamma}/p^{m-n}B^{\Gamma}\cong^{r}\overline{Z/p^{m-n}\prime Z\oplus}\cdots\overline{\oplus Z/p^{n\iota-nr_{\acute{J}}}} , where r is the rank of B^{\Gamma}).
As theorem 1 holds in case B^{\Gamma}=0 , corank H^{1}(\Gamma_{n}, B’) is constant for all n.
Therefore, by means of the above inequality and lemma 1, the corank
H^{1}(\Gamma_{n}, B) must be constant for all sufficiently large n. This completes the
proof of our theorem 1.

2. In order to apply the theorem 1 to A(L), we need some modifica-
tions on A(K_{n}) . Let \tilde{A}(K_{m}) be the set of points of finite order in A(K_{m}) .
Ry Mordell-Weil’s theorem \tilde{A}(K_{m}) is finite. Denote its order by N_{m} . We
put \overline{A_{m}}=N_{m}\cdot A(K_{m}) ( =freeZ-module of the same rank as of A(K_{m})), and
for m\geqq n define homomorphisms f_{n,m} : \overline{A_{n}}arrow\overline{A_{m}} by f_{n,m}(x)= \frac{N_{m}}{N_{n}}x, for x in

\overline{A_{n}} . Since the system (\overline{A_{n}}, \{f_{n,m}\}) is inductive, we can define \overline{A_{L}}=\varliminf^{A_{n}} .
The group \overline{A_{L}} has obvious \Gamma-module structure and (\overline{A_{L}})^{\Gamma_{n}}\cong\overline{A_{n}} as \Gamma-module.
Hence rank (\overline{A_{L}})^{r_{n}}=rank\overline{A_{n}}=rankA(K_{n}) .

LEMMA 3. We have corank H^{1}(\Gamma_{n}, A(L))=corankH^{1}(\Gamma_{n},\overline{A_{J_{d}}}) , for
all n.

PROOF. Let m\geqq n . The exact sequence of \Gamma_{n}/\Gamma_{m}-modules: 0arrow\tilde{A}(K_{m})-

q_{m}

A(K_{m})arrow N_{m}\cdot A(K_{m})=\overline{A_{m}}arrow 0, where g_{m} is the multiplication by N_{n\iota} , yields
the exact sequence of cohomology groups:
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\ldotsarrow H^{1}(\Gamma_{n}/\Gamma_{m},\tilde{A}(K_{m}))-H^{1}(\Gamma_{n}/\Gamma_{m}, A(K_{m})) -

H^{1}(\Gamma_{n}/\Gamma_{m}, A_{m})arrow H^{2}(-\Gamma_{n}/\Gamma_{m},\tilde{A}(K_{m}))arrow-\cdots

Since
H^{1}( \Gamma_{n}, A(L))=\lim_{\vec{m\geqq n}}H^{1}(\Gamma_{n}/\Gamma_{m}, A(K_{m}))

etc., we get the exact sequence

arrow H^{1}(\Gamma_{n},\tilde{A}(L)) -arrow H^{1}(\Gamma_{n}, A(L))arrow H^{1}(\Gamma_{n},\overline{A_{L}})arrow H^{2}(\Gamma_{n},\tilde{A}(L)) .

Now independent of m, the order of H^{i}(\Gamma_{n}/\Gamma_{m},\tilde{A}(K_{m})) is bounded (for
i=1,2). Indeed, as \Gamma_{n}/\Gamma_{m} is a finite cyclic group and \tilde{A}(K_{m}) is finite,
|H^{1}(\Gamma_{n}/\Gamma_{m},\tilde{A}(K_{m}))|=|H^{2}(\Gamma_{n}/\Gamma_{m},\tilde{A}(K_{m}))|\leqq|\tilde{A}(K_{n})| . So their inductive limit

H^{i}(\Gamma_{n},\tilde{A}(L)) must be finite (for i=1,2). Hence we have our assertion.
THEOREM 2. Let A be an abelian variety defifined over a number fifield

K, L/K the \Gamma-extension associated to the rational prime p, and K_{n} the sub-
fifield of L/K such that Gal(K_{n}/K)\acute{\iota}s isomorphic to Z/p^{n}\prime Z. Then there
exists a non-negative integer \rho, for which we have rank A(K_{n})=\rho.p^{n}+const,

for all sufficiently large n.
For the proof, apply theorem 1 and lemma 3 to B. Mazur’s estimate

mentioned in the introduction.
Although we do not know at present even an example in which \rho is

positive, by means of Prop. 1, 2 we easily get the following
PROPOSITION 3. If corank H^{1}(\Gamma, A(L))>0 , then rank A(K_{n}) grows

arbitralily large, as narrow\infty .
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