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Let G be a transitive permutation group on a finite set \Omega. Let G_{a} be
the stabilizer of a\in\Omega in G. Let \Delta_{1}=\{a\} , \Delta_{2} , \cdots , \Delta_{r} be the orbits of G_{a} on
\Omega (these are called the suborbits of (G, \Omega)). Then we say that the pemuta-

tion group (G, \Omega) is of rank r, and we call |\Delta_{i}| ’s the subdegrees of (G, \Omega)

(From the transitivity of (G, \Omega), the |\Delta_{i}| ’s are independent of the choice of
a\in\Omega). When (G, \Omega) is given, it is sometimes required to obtain the sub-
degrees. The purpose of this short note is to give a practical method to

calculate the subdegrees when the structure of the group G is fairly known.
The authors thank the members of “YUGENGUN TANSHIN” (a semi-

private set of letters written in Japanese circulated periodically among the
Japanese young people who are studying finite group theory), especially Mr.
Hikoe Enomoto and Miss Yoko Usami, for valuable discussions. In par-
ticular, Usami calculated some important examples by applying our method
(see Appendix).

NOTATION: Let G be a transitive permutation group on a set \Omega, and
let H=G_{a} be the stabilizer of a\in\Omega . Let \mathfrak{H}_{1} , \mathfrak{H}_{2} , \cdots , \mathfrak{H}_{t} be the sets of all
H-conjugate subgroups of H(i.e. , any subgroup X\leqq H is contained in some
and only one \mathfrak{H}_{i}). Moreover we fix an element H_{i}\in \mathfrak{H}_{i}(i=1,2, \cdots, t). Let
us define a partial order among \mathfrak{H}_{\vee}i’s by \mathfrak{H}_{i}\leqq \mathfrak{H}_{f} if there exist subgroups
X_{i}\in \mathfrak{H}_{i} and X_{f}\in \mathfrak{H}_{J} such that X_{i}\leqq X_{f} . If X_{i\neq}<X_{f} , we denote by \mathfrak{H}_{i}<\mathfrak{H}_{J} . Let
us set \Omega_{i}=H_{i}\backslash H (the right cosets of H by H_{i}), then H acts on \Omega_{i} naturally.
Let us set

I_{\rho}(H_{i}) –{b\in\Omega|b^{h}=b for any h\in H_{i}} , and
I_{9_{f}}(H_{i})= {b\in\Omega_{f}|b^{h}=b for any h\in H_{i}}

(Note that the cardinality of these sets are independent of the choice of
H_{i} in \mathfrak{H}_{i} and of the choice of H_{f} in \mathfrak{H}_{f},\cdot ) Moreover let us set

A_{G,H}(H_{i})= {X\leqq H| there exists g\in G such that X^{g}=H_{i}}
(where X^{g}=g^{-1}Xg), and

A_{H,H}(H_{i})=\mathfrak{H}_{i}r

*) This is a reproduction of some articles in [2] (1972).

**) Supported in part by the Sakkokai Foundation.
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We denote by y_{i} the number of suborbits \Delta’s such that (H, \Delta) is isomorphic
to (H, \Omega_{i}) as a permutation group (i.e., H_{b}(b\in\Delta) and H_{c}(c\in\Omega_{i}) are conjugate
in H). For a group X and its subgroup Y, N_{X}(Y) denotes the normalizer
of Y in X.

PROPOSITION 1. (This is nothing but a restatement of a result of Alperin
[1] ). We have

|I_{\Omega}(H_{i})|= \frac{|A_{G,H}(H_{i})|\cdot|N_{G}(H_{i})|}{|A_{H,H}(H_{i})|\cdot|N_{H}(H_{i})|}=\frac{|A_{G,H}(H_{i})|\cdot|N_{G}(H_{i})|}{|H|}r

PROOF. Set |A_{G,H}(H_{i})|=d, and set A_{G,H}(H_{i})=\{H_{i}^{g_{1 }},\cdots, H_{i}^{g_{d}}\} . Let us
set A=\{g\in G|H_{\iota^{g}}\leqq H\} . Then g\in A\sigma_{-}^{-\backslash }H_{i}^{g}=H_{i}^{g_{f}} for some j\Leftarrow^{\neg}gg_{f}^{-1}\in N_{G}(H_{i})

\Leftarrow^{\neg}\backslash g\in N_{G}(H_{i})g_{f} . Therefore, |A|=|N_{G}(H_{i})|d. While, let us set A’=\{g\in G|
H_{i}\leqq H^{g}\rangle . Clearly |A’|=|A| . Moreover we have that Hg\in I_{\Omega}(H_{i})\Leftarrow^{\backslash }Hgx

=Hg for any x\in H_{i}\backslash arrow gxg^{-1}\in H\sim\backslash for any x\in H_{i}\subset ix\in H^{g} for any x\in H_{i}C,H_{i}

\leqq H^{g}.Cg\in A’ . Thus |I_{\Omega}(H_{i})|=|A|/|H| . Thus we have completed the proof
of Proposition 1.

PROPOSITION 2. We have

y_{i} \cdot|I_{\Omega_{i}}(H_{i})|=|I_{\Omega}(H_{i})|-\sum_{f}y_{f}|I_{o_{f}}(H_{i})| ,

where the summation ranges over all j ’s such that \mathfrak{H}_{f}>\mathfrak{H}_{i} .
PROOF. Since |I_{\Omega}(H_{i})|= \sum_{f=1}^{t}y_{f}|I_{\Omega_{f}}(H_{i})| and, for i\neq j, |I_{\Omega_{f}}(H_{i})|\neq 0 if and

only if \mathfrak{H}_{J}>\mathfrak{H}_{i}, , the assertion follows at once.
REMARK. The number of suborbits of length 1 is equal to |N_{G}(H)|/|H| .

Also, |I_{\Omega_{i}}(H_{i})|=|N_{H}(H_{i})|/|H_{i}| .
COROLLARY. If H_{i} is maximal in H, then we have

y_{i} \cdot\frac{|N_{H}(H_{i})|}{|H_{i}|}=|I_{o}(H_{i})|-\frac{|N_{G}(H)|}{|H|} .

In addition, if (G, \Omega) is primitive and H_{i} is not normal in H, then
y_{i}=|I_{9}(H_{i})|-1

CONCLUDING REMARK. If we know the number |A_{G,H}(H_{i})| and |N_{G}(H_{i})|

for all i, then we can calculate every |,I_{\Omega}(H_{i})| by Proposition 1. Moreover,
if we know |I_{\rho_{f}}(H_{i})| for any H_{f}>H_{i} (this is equal to |A_{H,H_{f}}(H_{i})|\cdot|N_{H}(H_{i})|/|H_{f}|

by Proposition 1), then, by Proposition 2 we can calculate every y_{i} by induc-
tion on the order \leqq . In this way, (at least theoretically) we can know the
suborbits and subdegrees of a given permutation group (G, \Omega) .

APPENDIX Y. Usami (Ochanomizu University at present) calculated com-
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pletely the subdegrees of G=PSL(2,p^{n}) (p=5 or p^{2n}-1\equiv 0 (m0d5)) acting on
the cosets by H=A_{5} (the alternating group of degree 5) in [2], 1972 May,
upon the authors’ oequest. Here we only give some examples (the following
table will be self-explanatory):

The complete table (which is a little complicated because the result varies
according to some congruence properties of p^{n}) is now available upon request
to any one of the authors.
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