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Introduction. In a 3-dimensional Euclidean space E^{3} a sphere is char-
acterized by certain special properties of a closed surface. In 1900, H.
Liebmann [1]^{1)} has proved that an ovaloid with constant. me\’an curvature
H in E^{3} is a sphere. W. S\"uss [2] generalized this result for a closed convex
hypersurface in an n-dimensional Euclidean space E^{n} . Various generaliza-
tions of the condition H=const. in the Liebmann-S\"uss theorem have been
studied by many investigators and it is one of the interesting problem in the
differential geometry in the large. The interesting results of this problem
for a closed orientable hypersurface in E^{n} were given by T. Bonnesen and
W. Fenchel [3], H. Hopf [4], C. C. \backslash Hsiung [5] , A. D. Alexandrov [6], [7],

S. S. Chern [9], S. S. Chern and C. C. Hsiung [39], K. Amur [40], D. J. Stong
[41], R. L. Bishop and S. J. Goldberg [42], R. B. Gardner [43] and J. K.
Shahin [44]. In the field of these investigations the integral formulas of
Minkowski type has played one of the important role.

We consider an ovaloid F in E^{3}, and let H and K be the mean cur-
vature and the Gauss curvature at a point P of F respectively. Then the
integral formula of Minkowski is

\int\int_{F}(Kp+H)dA=0 :

where p denotes the oriented distance from a fixed point O in E^{3} to the
tangent space of F at P and dA is the area element of F at P.

As generalization of this formula for a closed orientable hypersurface
in E_{\backslash }^{n} C. C. Hsiung derived the integral formulas of Mlnkowski type, and
gave certain characterizations of hyperspheres in E^{n} . Afterward_{l} Y. Katsu-
rada [10], [12] generalized more these formulas of Hsiung in a Riemannian
manifold, that is, derived the integral formulas of generalized Minkowski
type which are valid for a closed orientable hypersurface V^{n-1} in an n-
dimensional Riemannian manifold R^{n} and proved the following theorem:

1) Numbers in brackets refer to the references at the end of the paper.
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THEOREM 0. 1. (Y. Katsurada) Let R^{n} be a Riemannian manifold of
constant curvature which admits a vector fifield \xi^{i} generating a continuous
one-parameter group of conformal transformations in R^{n} and V^{n-1} a closed
orientable hypersurface in R^{n} such that

(i) H_{1}=const. ,
(ii) n_{i}\xi^{i} has fifixed sign on V^{n-1} .

Then every point of V^{n-1} is umbilic, where H_{1} and n_{i} dmote the fifirst mean
cumature of V^{n-1} and covariant componmt of a unit normal vector of
V^{n-1} respectively.

THEOREM 0. 2. (Y. Katsurada) Let R^{n} be a Riemannian manifold of
constant curvature which admits a vector fifidd \xi^{i} gmerating a continuous
one-parameter group of conformal transformations in R^{n} and V^{n-1} a closed
orientable hypersurface in R^{n} such that

(i) k_{1} , k_{2} , \cdots , k_{n-1}>0 on V^{n-1} ,
(ii) H_{\nu}=const. for any \nu(1<\nu\leqq n-2) ,
(iii) n_{i}\xi^{i} has fifixed sign on V^{n-1} .

Thm every point of V^{n-1} is umbilic, where k_{p} (p=1,2, \cdots, n -- 1) and H_{\nu}

dmote principal curvature of V^{n-1} and the \nu-th mean cumature of V^{n-1}

respectively.
THEOREM 0. 3. (Y. Katsurada) Let R^{n} be a Riemannian manifold of

constant curvature which admits a vector fifield \xi^{i} generating a continuous
one-parameter group of confomal transformations in R^{n} and V^{n-1} a closed
orimtable hypersurface in R^{n} such that

(i) H_{1}=const. ,
(ii) n_{i}\xi^{i} has fifixed sign on V^{n-1} .

Then V^{n-1} is isometric to a sphere.
The analogous problems for a closed orientable hypersurface V^{n-1} in

R^{n} have been discussed by A. D. Alexandrov [8], K. Nomizu [45], [46], K.
Yano [18], K. Nomizu and B. Smyth [47], R. C. Reilly [48], T. \hat{O}tsuki [26],
T. Nagai [16], M. Tani [27], T. Koyanagi [28] and T. Muramori [29]. Most
of these investigations are related to the characterization of an umbilical
hypersurface in R^{n} .

Certain generalizations of Theorem 0. 1 and Theorem 0. 3 for an m-
dimensional closed orientable submanifold V^{m} in R^{n}(m\leqq n-1) with constant
curvature have been studied by Y. Katsurada [13], [14], T. Nagai [13], [15]
and the present author [14] and the following theorems were proved:

THEOREM 0. 4. (Y. Katsurada and T. Nagai) Let R_{n} be a Riemannian
manifold of constant cumature which admits a vector fifield \xi^{i} generating
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a continuous one-parameter group of concircular transformations in R^{n} and
V^{m}. a closed orimtable submanifold in R^{n} such that

(i) H_{1}=const. and \Gamma_{E\alpha}^{\prime\prime A}=0,2
)

(ii) \xi^{i} is contained in the vector space spanned by m indepmdent tan-
gent vectors and En^{i} at each point on V^{m} .

(iii) En_{i}\xi^{i} has fifixed sign on V^{m} .
Then every point of V^{m} is umbilic with respect to Euler-Schouten unit vector

En^{i}, where En_{i}
denotes covariant componmts of a unit normal vector which

has the same direction with Euler-Schoutm vector of V^{m3)} .
THEOREM 0. 5. (Y. Katsurada and H. K\^ojy\^o) Let R^{n} be a Riemannian

manifold of constant cumature which admits a vector field \xi^{i} gmerating
a continuous one-parameter group of conformd transformations in R^{n} and
V^{m} a closed orimtable submanifold in R^{n} such that

(i) H_{1}=const. ,
(ii) \xi^{i} is contained in the vector space spanned by m indepmdent tan-

gent vectors and n_{E}^{i} at each point on V^{m},

(iii) En_{i}\xi^{i} has fifixed sign on V^{m} .

Thm every point of V^{m} is umbilic with respect to Euler-Schouten unit
vector En^{i}.

THEOREM 0. 6. (Y. Katsurada and H. K\^ojy\^o) Let R^{n} be a Riemannian
manifold of constant curvature.which admits a vector fifield \xi^{i} generating
a continuous one-parameter group of conformal transformations in R^{n} and
V^{m} a closed orimtable submanifold in R^{n} such that

(i) EEk_{1},k_{2} , \cdots,Ek_{m}>0 on V^{m},-

(ii) H_{\nu}=constE^{\cdot} for any \nu(1<\nu\leqq m-1),

(iii) \xi^{i} is containe\acute{d} in the vector space spanned by m independmt tan-
gent vectors and n^{i}E at each point on V^{m} ,

(iv) En_{i}\xi^{i} has fifixed sign on V^{m} .

Then every point of V^{m} is umbilic with respect to Euler-Schouten unit
vector n^{i} .

E
The analogous problems for a closed orientable submanifold V^{n} in R^{n+p}

has been discussed by K. Yano [20], [21], G. D. Ludden [49], D. E. Blair and
G. D. Ludden [50], T. Nagai [15], and M. Okumura [33].

2), 3) With respect to these object we shall find again in \S 1 of the present paper.
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M. Okumura [32] has proved that a closed orientable.submanifold of
codimension 2 in an odd dimensional sphere with the natural normal contact
structure is totally umbilical under certain conditions.

In 1969, S. Tachibana [31] has introduced a notion of a conformal
Killing tensor field of degree 2 in R^{n+p} as the generalization of conformal
Killing vector field. Furthermore T. Kashiwada [30] has given the defini-
tion of a conformal Killing tensor field of degree p(p\geqq 2) in R^{n+p}. Recently
M. Morohashi [34], [35], [36] has found that a structure tensor of the normal
contact structure is a conformal Killing tensor field of degree 2 defined by
S. Tachibana. Making use of that fact, M. Morohashi investigated about
a submanifold V^{n} of codimension p in a sphere S^{n+p} and a Riemannian
manifold R^{n+p} of constant curvature and showed that the submanifold V^{n}

is totally umbilical under certain conditions. Furthermore he obtained the
following theorem:

THEOREM 0. 7. (M. Morohashi) Let R^{n+p} be a(n+p)-dimensional Ri-
emannian manifold of constant cumature which admits a conformal Killing
tensor fifield T_{i_{1}\cdot\cdot i_{p}} of degree p and V^{n} a closed orientable submanifold in
R^{n+p} such that

(i) the mean curvature vector fifield H^{i} of V^{n} is parallel with respect
to the connection induced on the normal bundle,

(ii) T_{i_{1}} . i_{p_{n+1n+p}}n^{i}‘\cdots n^{i_{p}} has fifixed sign on V^{n} .
Thm every point of V^{n} is umbilic with respect to Euler-Schoutm unit vector

En^{i}, where An^{i}(A=n+1, \cdots, n+p) dmote p unit normal vectors of V^{n}.
However, in the above theorem, if V^{n} is a submanifold of codimension

p in a Riemannian manifold R^{n+p}, then it has been assumed that the ambient
space admits a conformal Killing tensor field of degree p.

The purpose of the present paper is to investigate a closed orientable
submanifold V^{n} of codimension p in a Riemannian manifold R^{n+p} of constant
curvature admitting a conformal Killing vector field without the assumption
that R^{n+p} admits a conformal Killing tensor field of degree p. \S 1 is devoted
to give notations and fundamental formulas in the theory of submanifolds
in a general Riemannian manifold and a Riemannian manifold of constant
curvature respectively, and gives some important relations in R^{n+p}.

Let us denote by M^{n+p} a (n+p)-dimensional Riemannian manifold of
constant curvature which admits a vector field \xi^{i} generating a continuous
one-parameter group of conformal transformations in M^{n+p}. In \S 2 we give
the definition of a conformal Killing tensor field of degree p(p\geqq 2) and
proves by the mathematical induction that M^{n+p} admits necessarily a con-
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formal Killing tensor field of degree p. In \S 3 we derive the integral formulas
which are valid for a closed orientable submanifold V^{n} of M^{n+p} , and making
use of the integral formulas and the results in \S 2, we shall show that a
closed orientable submanifold V^{n} in M^{n+p} is totally umbilic under some
conditions, and from that result we prove that the submanifold V^{n} is is0-
metric to a sphere S^{n} . We study in the last section \S the analogous
problems under weaker conditions than the assumptions in \S 3, and show
that a closed orientable submanifold V^{n} in M^{n+p} is umbilical with respect
to Euler-Schouten unit vector En^{i} .

The present author wishes to express his very sincere thanks to Prof.
Yoshie Katsurada for her many valuable advices and constant guidances.

\S 1. Notations and fundamental formulas in the theory of sub-
manifolds. Let R^{n+p}(n+p>2) be a (n+p)-dimensional Riemannian mani-
fold of class r(r>2) and x^{i} and g_{ij} be the local coordinates and the positive
definite metric tensor of R^{n+p} respectively. We now consider an n-dimen-
sional closed orientable submanifold V^{n} in R^{n+p} whose local expression is

i=1,2, \cdots , n+p ,
x^{i}=x^{i}(u^{\alpha}) ,

\alpha=1,2 , \cdots , n ,

where u^{\alpha} denotes the local coordinates on V^{n} . We shall henceforth confine
ourselves to that Latin indices run from 1 to n+p and Greek indices from
1 to n. If we put

B_{\alpha}^{i}= \frac{\partial x^{i}}{\partial u^{\alpha}} ,

then n vectors B_{\alpha}^{i} are linearly independent vectors tangent to V^{n} . The
Riemannian metric tensor g_{\alpha\beta} on V^{n} induced from g_{ij} is given, by

g_{\alpha\beta}=g_{ij}B_{\alpha}^{i}B_{\beta}^{j}

We indicate by n^{i}A(A=n+1, n+2, \cdots, n+p) the contravariant components

of p unit vectors which are normal to V^{n} and mutually orthogonal. Hence
they satisfy the following relations:

g_{ij\alpha_{A}}B^{i}n^{j}=0j

where \delta_{AB} means the Kronecker delta.
vectors

g_{ij}n^{i}n^{j}=\delta_{AB}AB ,

In this case a set of n+p independent

(1. 1) (B_{1}^{i}, B_{2}^{i_{ }},\cdots, B_{n}^{i},n^{i},n^{i}, \cdots,n^{i})n+1n+2n+p
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determines an ennuple at each point on V^{n} . We put

B_{i}^{\alpha}=gg_{if}B_{\beta}^{j}\alpha\beta , AAn_{i}=g_{if}n^{f} ,

where g^{\alpha\beta} are defined by the equations g^{\alpha\beta}g_{\beta\gamma}=\delta_{\gamma}^{\alpha} . Then we have

g^{if}=g^{\alpha\beta}B_{\alpha}^{i}B_{\beta}^{f}+ \sum^{n+p}n^{i}n^{f}A=n+1AA’.

(1. 2) g_{if}=g_{\alpha 8}B_{i}^{\alpha}B_{j}^{\beta}+ \sum^{n+p}n_{i}n_{f}A=n+1AA

’

\delta_{f}^{i}=B_{\alpha}^{i}B_{f}^{\alpha}+\sum_{A=n+1A}^{n+p}n_{A}^{i}n_{f} .

Denoting by the symbol “ ;” the operation of D-symbol due to van
der Waerden-Bortolotti [52], from the definition we have

B_{\alpha;\beta}^{i}=(B_{r}^{i}B_{f}^{v})_{;k}B_{\alpha}^{f}B_{\beta}^{k}

(1. 3) =( \delta_{j}^{i}-\sum^{l\iota+p}n^{i}n_{f})_{;k}A=’\iota+1AAB_{\alpha}^{f}B_{\beta}^{k}

=- \sum_{A=n+1}^{n+p}(n_{fk}..B_{\alpha}^{f}B_{\rho}^{k})n^{i}AA’.

and

An_{;\alpha}^{i}=( \sum^{n+v}n^{i}n_{f})_{;k}B=n+1BBAn^{f}B_{\alpha}^{k}

(1. 4) =(\delta_{J}^{i}-B_{\rho^{i}}B_{j}^{\beta}),\cdot kn^{j}B_{\alpha}^{k}A

=-(B_{f;k}^{\beta}n^{f}B_{\alpha}^{k})B_{\beta}^{i}A

by virtue of the last equation in (1. 2). Putting H_{\alpha\beta}^{i}=B_{\alpha;\beta}^{i} , we call H_{\alpha\beta}^{i}

the Euler-Schouten curvature tensor. Therefore if we put AAb_{\alpha\beta}=H_{\alpha\beta}^{i}n_{i}, from
(1. 3) we have

(1. 5) H_{\alpha\beta}^{i}= \sum^{n+p}b_{\alpha\beta}n^{i}A=n+1AA^{\cdot}

We call Ab_{\alpha\beta} the second fundamental tensor with respect to An^{i}. Transvecting
(1. 5) with g^{a\beta}, we find

(1. 6) g^{\alpha\beta}H_{\alpha\beta}^{i}= \sum_{A=n+1}^{n+p}n_{AA}H_{1}n^{i} ,

where we put H_{1}=A \frac{1}{n}g^{\alpha\beta}b_{a\beta}A^{\cdot}
H_{1}A is called the first mean curvature of V^{n}

for the normal vector n^{i}A^{\cdot}

On the other hand, the equation (1. 4) may put as follows:
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AAn_{;\alpha}^{i}=\gamma_{\alpha}^{\beta}B_{\beta}^{i}

Multiplying the above equation by g_{if}B_{r}^{j} and contracting, we have

g_{i}JB^{f}n_{;\alpha}^{i}=\gamma_{g_{\beta\gamma}}^{\beta}\alpha r_{AA} .

Since we have

A’ Ab_{\gamma a}=g_{if}B_{\gamma,\alpha}^{f}n^{i}

=-g_{if}B_{\gamma}^{f}n_{;\alpha}^{i}A ,

by means of the last equation we get

Ab_{\gamma\alpha}=-\gamma_{\alpha}^{\beta}g_{\beta\gamma} .

Consequently we obtain

(1. 7) AAn_{;\alpha}^{i}=-b_{\alpha}^{\gamma}B_{\gamma}^{i}e

This equation is called the equation of Weingarten.
By virtue of (1. 3) and (1. 4), after some calculations we find

B_{\alpha;\beta}^{i}= \frac{\partial B_{\alpha}^{i}}{\partial u^{\beta}}+\Gamma_{hf}^{i}B_{\alpha}^{h}B_{\beta}^{f}-\Gamma_{\alpha\beta}^{\prime\gamma}B_{*:}^{i}

\partial n^{i}

AABn_{;\alpha}^{i}= \frac{A}{\partial x^{f}}B_{\alpha}^{f}+\Gamma_{hf}^{i}n^{h}B_{\alpha}^{f}-\Gamma_{A\alpha}^{\prime\prime B}n^{i}
,

where \Gamma_{hf}^{i} are the Christoffel symbol of the first kind formed with g_{if} and

\Gamma_{\alpha\beta}^{\prime\gamma}=\Gamma_{hf}^{i}B_{\alpha}^{h}B_{\beta}^{f}B_{i}^{\gamma}+\frac{\partial B_{\alpha}^{i}}{\partial u^{\beta}}B_{i}^{\gamma} ,

\Gamma_{A\alpha}^{\prime\prime B}=\frac{\partial n^{i}A}{\partial x^{f}}B_{\alpha}^{f}n_{i}+\Gamma_{hf}^{i}n^{h}B_{\alpha}^{f}n_{i}rBAB

Since ABn^{i}n_{i}=\delta_{AB} , from the last relation we can easily find

(1. 8) \Gamma_{A\alpha}^{\prime\prime B}+\Gamma_{B\alpha}^{\prime\prime_{A}}=0 .
Let H^{i} be the mean curvature vector field of V^{n}. Then H^{i} is given by

H^{f}= \frac{1}{n}gH_{\alpha\beta}^{i}\alpha\beta

(1. 9)
= \frac{1}{n}\sum^{n+p}b_{\alpha}^{\alpha}n^{i}A=n+1AA ,
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and H^{i} is independent of the choice of mutually orthogonal unit normal
vectors.

Now we take a unit normal vector n+1n^{i} in the direction of the mean
curvature vector field H^{i} . Then the components of the vector n+1n^{i} are inde-
pendent of a change of parameters u^{\alpha} on V^{n} , that is, the vector r\iota+1n^{i} is deter-
mined uniquely at each point on V^{n}. We may consider the Euler-Schouten
unit vector En^{i} as one of An^{i} in (1. 1). Consequently, putting Er\iota+1n^{i}=n^{i}, we take
a set of n+p independent vectors

(1. 10) (B_{1}^{i}, B_{2}^{i}, \cdots, B_{n}^{i},n^{i},n^{i}, \cdots,n^{i})En+2n+p

as an ennuple at each point on V^{n} .
The first mean curvature of V^{n} for normal vector n^{i} is the socalled\cdot

E
first mean curvature of V^{n}. Hence we denote it by H_{1} without subscript
E. In this case, with respect to the ennuple (1. 10) we get from (1. 6)

(1. 11) g^{\alpha\beta}H_{\alpha\beta}^{i}=nH_{1}n^{i}rE

When at each point of V^{n} the second fundamental tensors Ab_{\alpha\beta} are pr0-

portional to the metric t^{u}ensor g_{\alpha\beta} , that is, satisfying the following condition:
AAb_{\alpha\beta}=H_{1}g_{\alpha\beta} ,

we call V^{l\iota} a totally umbilical submanifold. Then we have the following
lemma:

LEMMA 1. 1. A necessary and sufficimt condition for V^{n} to be totally
umbilical is that the following relations are satisfified:

AAAb_{\alpha\beta}b^{\alpha\beta}= \frac{1}{n}(b_{\gamma}^{\gamma})^{2}

PROOF. The above equations follows from the following relations:

(_{AA}b_{\alpha\beta}- \frac{1}{n}b_{\gamma}^{\gamma}g_{\alpha\beta})(_{AA}b^{\alpha\beta}-\frac{1}{n}b_{\gamma}^{\gamma\alpha\beta}g)_{AA}=b_{\alpha\beta}b^{\alpha\beta}-\frac{1}{n}(Ab_{\gamma}^{\gamma})^{2} ,

and the positive definiteness of the Riemannian metric g_{\alpha\beta} .
Next we consider the normal bundle of V^{n} . For a normal vector n^{i},

if the normal part of n_{1\alpha}^{i} vanishes identically along V^{n}, then we call that
n^{i} is parallel with respect to the connection induced on the normal bundle.
The symbol “

|

” denotes the operator of covariant derivative along V^{n} .
Thus we have the following lemma:
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LEMMA 1. 2. Let V^{n} be a subm\dot{a}nifold of a Riemmnian manifold R^{n+p}.
In order that the mean curvature vector fifield H^{i} of V^{n} is parallel with
respect to the connection induced on the normal bundle, it is necessary and
sufficimt that

\frac{\partial H_{1}A}{\partial u^{\alpha}}-1_{A\alpha}^{\tau\prime\prime B}H_{1}=0B^{\cdot}

PROOF. Since the assumption of Lemma 1. 2 means that the covariant
derivative H_{1\alpha}^{i} of the mean curvature vector field is tangent to the sub-
manifold V^{n}. Differentiating (1. 9) covariantly we get

H_{1\alpha}^{i}=(_{A=n+1} \sum_{AA}^{r\iota+p}H_{1}n^{i})_{1\alpha}

= \sum^{n+p}H_{1}n_{1\alpha}^{i}+\sum_{AA=n+1AA=n+1A}^{n+p}H_{1|\alpha_{A}}n^{i}

=- \sum^{n+p}H_{1}b_{a}^{\gamma}B_{\gamma}^{i}+\sum_{AA=n+1AA=n+1}^{n+p}(\frac{\downarrow\partial H_{1}A}{\partial u^{\alpha}}-\Gamma_{A\alpha_{B}}^{\prime\prime B}H_{1})_{A}n^{i}

by virtue of (1. 7). Then we have

\frac{\partial H_{1}A}{\partial u^{\alpha}}-\Gamma_{A\alpha}^{\prime\prime B}H_{1}=01B

LEMMA 1. 3. Let V^{n} be a submanifold of_{\backslash }Rie_{\iota}mannian manifold R^{n+p}.
If the mean cumature vector fifield H^{i} of V^{n} is parallel with respect to the
connection induced on the normal bundle, thm the mean cumature H_{1} of
V^{n} is constant.

PROOF. The mean curvature H_{1} of V^{n} is given by

H_{1}^{2}= \frac{1}{n^{2}}\sum_{A=n+1}^{n+p}(_{A}b_{\alpha}^{\alpha})^{2} .

Differentiating the above equation covariantly and making use of Lemma
1. 2, we find

\frac{\partial H_{1}^{2}}{\partial u^{\alpha}}=\frac{2}{n^{2}}\sum^{n+p}b_{\beta}^{\beta}\frac{\partial b_{r^{\gamma}}A}{\partial u^{\alpha}}A=n+1A

= \frac{2}{n^{2}}\sum^{n+p}b_{\beta}^{\beta}b_{r^{\gamma}}\Gamma_{A\alpha}^{\prime\prime B}=0A=n+1AB

’

by virtue of (1. 8). This equation shows that H_{1}^{2} is constant.
Consequently from Lemma 1. 2 and Lemma 1. 3, we obtain the following lemma :
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LEMMA 1. 4. Let V^{n} be a submanifold of a Riemannian manifold R^{n+p} .
In order that the mean^{\theta} curvature vector fifield H^{i} of V^{n} is parallel with
respect to the connection induced on the normal bundle, it is necessary and
sufficimt that

H_{1}=const. an‘d \Gamma_{A\alpha}^{\prime\prime E}=0 .
PROOF. As we put En+1n^{i}=n^{i} , we have H_{1}=0B^{\cdot} (B\neq E)

Then from Lemma 1. 2, it follows that

\frac{\partial H_{1}}{\partial u^{\alpha}}=0 and \Gamma_{A\alpha}^{\prime\prime E}H_{1}=0\tau

Therefore we obtain easily the result.
REMARK. When p=1, that is, V^{n} is a closed orientable hypersurface

in R^{n+1}, it is always satisfied that the mean curvature vector field H^{i} of
V^{n} is parallel with respect to the connection induced on the normal bundle.

We now write the equations of Gauss, Mainardi-Codazzi and Ricci-
K\"uhne:

(1. 12) R_{ifkl}B_{\alpha}^{i}B_{\beta}^{f}B_{\gamma}^{k}B_{\delta}^{l}=R_{\alpha\beta\gamma\delta}- \sum^{n+p}b_{\beta r_{A}}b_{\alpha\delta}A=n+1A+A=n+1A\sum^{n+p}b_{\beta\delta}b_{\alpha\gamma}A

’

(1. 13) AAAb_{\alpha\gamma;\theta}-b_{\alpha\beta;r}=R_{ifkl}B_{\alpha}^{i}n^{f}B_{r^{k}}B_{\beta}^{l} ,

(1. 14) R_{ifk}\iota_{ABBABA}n^{i}n^{f}B_{\alpha}^{k}B_{\beta}^{l}=b_{\gamma\alpha}b_{\beta}^{\gamma}-b_{\gamma\beta}b_{\alpha}^{\gamma}+\Gamma_{A\alpha;\beta}^{\prime\prime_{B}}-\Gamma_{A\rho;\alpha}^{\prime\prime B}

+ \sum_{C=n+1}^{n+}\Gamma_{C\alpha}^{\prime\prime B}\Gamma_{A\beta}^{\prime\prime c}-\sum_{C=n+I}^{n+p}\Gamma_{C\beta}^{\prime\prime B}\Gamma_{A\alpha}^{\prime\prime c} ,

where R_{ifkl} is the curvature tensor of R^{n+p} .
Let M^{n+p} be a Riemannian manifold of constant curvature. Then the

curvature tensor R_{fkl}^{i} of M^{n+p} has the form
(1. 15) R_{fkl}^{i}=k(g_{fk}\delta_{l}^{i}-g_{fl}\delta_{k}^{i}) ,

where k is a constant given by k= \frac{R}{(n+p)(n+p-1)} and R is the scalar

curvature.
If M^{n+p} has the curvature tensor of the form (1. 15), then equations

(1. 12), (1. 13) and (1. 14) can be rewritten respectively as

(1. 16) R_{\alpha\beta^{\varphi}\delta},=k(g_{\beta\gamma}g_{\alpha\delta}-g_{\alpha\gamma}g_{\beta\delta})+ \sum^{n+p}b_{\beta\gamma}b_{\alpha\delta}-\sum^{n+p}b_{\beta\delta}b_{\alpha\gamma}A=n+1AAA=n+1AA’.
(1. 17) Ab_{\alpha\gamma;\beta}-b_{a\beta;\gamma}=0 ,
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(1. 18) BABAb_{\gamma\alpha}^{\gamma}b_{\beta}^{\gamma}-b_{\gamma\beta}b_{\alpha}^{\gamma}+ \Gamma_{A\alpha;\beta}^{\prime\prime B}-\Gamma_{A\beta;\alpha}^{\prime\prime B}+\sum_{C=n+1}^{n+p}\Gamma_{C\alpha}^{\prime\prime_{B}}\Gamma_{A\beta}^{\prime\prime C}-\sum_{C=n+1}^{n+p}\Gamma_{C\beta}^{\prime\prime B}\Gamma_{A\alpha}^{\prime\prime C}=0 .

Let V^{n} be a submanifold of M^{r\iota+p} . Then from Lemma 1. 4 and (1. 17)
we have

(1. 19) Ab_{\beta j\alpha}^{\alpha}=0 .

When there exist mutually orthogonal unit normal vector fields n^{i} such
A

that \Gamma_{A\alpha}^{\prime\prime B}=0, we call that the connection induced on the nomal bundle\cdot is
trivial. Then J. Erbacher [38] gave the following lemma:

LEMMA 1. 15. (J. Erbacher) Let M^{n+p} be a Riemannian manifold of
constant cunature. Thm\backslash the connection induced on the normal bundle is
tJ^{-}ivial if and only if the following relation is satisfified:

BABAb_{\gamma\alpha}b_{\beta}^{\gamma}=b_{\gamma\beta}b_{\alpha}^{\gamma}l

REMARK. When p=1, it is a,lways satisfied that the connection induced
on the normal bundle is trivial. When p=2, the connection induced on
the normal bundle is trivial u\grave{n}der the condition that the mean curvature
vector field H^{i} of V^{n} is parallel with respect to the connection induced on
the normal bundle.

If the second fundamental tensor Eb_{\alpha\beta} with respect to En^{i} is proportional

to the metric tensor g_{\alpha\beta} , that is, satisfying Eb_{\alpha\beta}=\lambda g_{\alpha\beta} , where \lambda is a scalar
function on V^{n}, then we say that the submanifold V^{n} is umbilical with
respect to Euler-Schouten unit normal vector En^{i}, or simply pseud0-umbilical.

Thus we have the following lemma:
LEMMA 1. 6. A necessary and sufficient condition for V^{n} to be um-

bilical with respect to Euler-Schoutm unit vector En^{i} is that the following

relation is satisfified:
EEb_{\alpha\beta}b^{\alpha\beta}=nH_{1}^{2} .

PROOF. The above equation follows from the following relation:

(_{EE}b_{\alpha\beta^{-}} \frac{1}{n}b_{\gamma}^{\gamma}g_{\alpha\beta})\cdot(Eb^{\alpha\beta}-\frac{1}{n}bg)E^{r^{\gamma\alpha\beta}}=b_{\alpha\beta}b^{\alpha\beta}-\frac{1}{n}(b_{r^{\gamma}})^{2}EEB

=b_{\alpha\beta}b^{\alpha\beta}-nH_{1}^{2}EE ,

and the positive definiteness of the Riemannian metric g_{\alpha\beta} .
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\S 2. Conformal Killing tensor fields of a Riemannian manifold
M^{n+p} of constant curvature. Let \xi^{i} be a vector field in R^{n+p} such that

(2. 1) Sg_{if}=\xi_{i;f}+\xi_{f;i}=2\phi g_{if}\xi ’

where \phi is a scalar field in R^{n+p} and the symbol ae\xi denotes the operator

of Lie derivation with respect to \xi^{i} . Then \xi^{i} is called a conformal Killing
vector field and a continuous one-parameter group G generated by an in-
finitesimal transformation

x^{i}=x^{i}+\xi^{i}arrow\delta\tau

is called a conformal transformation group. If \phi’=c(c=const.) in (2. 1),
then \xi^{i} is called a homothetic Killing vector field and \backslash the group G is called
a homothetic transformation group. If \phi vanishes identically in (2. 1), then
\xi^{i} is called a Killing vector field and the group G is called a motion.

As the generalization of conformal Killing vector field (2. 1), we shall
show the defif\dot{i}nition of a conformal Killing tensor field.

We shall call a skew symmetric tensor field T_{if} a conformal Killing
tensor field of degree 2 in R^{n+p} if there exists a vector field \rho_{i} such that

(2. 2) T_{ij;k}+T_{kf;i}=2\rho_{f}g_{ik}-\rho_{kg_{ij}}-\rho_{ig_{fk\tau}}

The vector \rho_{i} is called the associated vector field of T_{if} . If \rho_{i} vanishes
identically in (2.2), then T_{if} is called a Killing tensor field of degree 2.
(cf. [31])

Furthermore, we shall generalize it to the case of degree p(p\geqq 2). A
skew symmetric tensor field T_{i_{1}i_{2}\cdots i_{p}} is called a conformal Killing tensor field
of degree p in R^{n+p}, if there exists a skew symmetric tensor field \rho_{i_{1}i_{2}\cdots i_{p-1}}

such that
T_{i_{1}i_{2}\cdots i_{p};i}+T_{ii_{2}\cdots i_{p},i_{1}}.=2\rho_{i_{2}\cdots i_{p}g_{i_{1}i}}

(2. 3)
- \sum_{h=2}^{p}(-1)^{h}(\rho_{i_{1h\iota}}\ldots t\ldots ig_{i_{h}i}+\rho_{ii_{2}}\ldots t_{h}\ldots i_{p}g_{i_{h}i_{1}}) ,

where \hat{i}_{h} means that i_{h} is omitted. We call \rho_{i_{1}i_{2}\cdots i_{p-1}} the associated tensor
field of T_{i_{1}i_{2}\cdots i_{p}} . If \rho_{ii_{2}\cdots i_{p-1}}

‘
vanishes identically in (2. 3), then T_{i_{1}i_{2}\cdots i_{p}} is

called a Killing tensor field of degree p. Especially, if R^{n+p} is a Riemannian
manifold of constant curvature, then the associated tensor field of a con-
formal Killing tensor field of degree p is a Killing tensor field. (cf. [30])

From (2. 3) we have
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T_{i_{1}\cdots i_{\acute{l}}\cdots i_{p};i}+T_{i_{1}\cdots i\cdots i_{p};i_{h}}=(-1)^{h-1}(T_{i_{h}i_{1}}\ldots i_{h}..i_{p};i+T_{ii_{I}\cdots\hat{i}_{h}\cdots i_{p};i_{h}})

=(-1)^{h-1} \{2\rho_{i_{1}}\ldots i_{h}\ldots i_{p}g_{i_{h}i}-\sum_{l=1}^{h-1}(-1)^{l+1}(\rho_{i_{h}i_{1}\cdots\hat{i}_{l}\cdots t_{h}i_{p}g_{i_{l}i}}\ldots

+ \rho ii_{1lhp}\ldots t\ldots t\ldots ig_{i_{l}i_{h}})-\sum_{k=h+1}^{p}(-1)^{k}(\rho_{i_{h}i_{1}}\ldots t_{h}\ldots\hat{i}_{k}\cdots i_{p}g_{i_{k}i}

+\rho_{ii_{1}}\ldots i_{h}\cdots\hat{t}_{k}\cdots i_{p}g_{i_{h}i_{k}})\}

=(-1)^{h-1} \{2\rho_{i_{1}}\ldots\hat{t}_{h}\cdots i_{p}g_{i_{h}i}-\sum_{l=1}^{h-1}(-1)^{l+1}(-1)^{h-2}(\rho_{i_{1}}\ldots t_{lhp}\ldots i\cdots ig_{i_{l}i}

+\rho_{i_{1}\hat{i}_{l}\cdot\cdot i\cdots i_{p}g_{i_{h^{i}l}})-\sum_{k=h+1}^{p}(-1)^{k}(-1)^{h-1}(\rho_{ii_{h}}\ldots i_{k}\cdots i_{p}g_{i_{k}i}}‘\ldots

+\rho_{i_{1}\cdots i\cdots\hat{i}_{k}\cdots i_{p}g_{i_{h^{i}k}}})\}

=-(-1)^{h}2 \rho_{i_{1}}\ldots t_{h}\cdots i_{p}g_{i_{h}i}-\sum_{l=1}^{h-1}(-1)^{l}(-1)^{2(h-1)}(\rho_{i_{1}}\ldots t_{l}\cdots i_{h}\cdots i_{p}g_{i_{l}i}

+ \rho_{i_{1}}\ldots t_{lp}\ldots i\cdots ig_{i_{l}i_{h}})-\sum_{k=h+1}^{p}(-1)^{k}(-1)^{2(h-1)}(\rho_{i_{1}\cdots i_{h}\cdots\hat{i}_{k}\cdots i_{p}}g_{ii_{k}}

+\rho_{i_{1}\cdots i}\ldots t_{kp}\ldots fg_{i_{h}i_{l}})1

Hence we get

T_{i_{1}\cdots i_{h}\cdots i_{p};i}+T_{i_{1}\cdots i\cdots i_{p};i_{h}}=-(-1)^{h}2\rho_{i_{1}}\ldots t_{h}\ldots i_{p}g_{ii_{h}}

(2. 4)
-

(l \neq h’)\sum_{l=1}^{p}(-1)^{l}(\rho_{i_{1}}\ldots\iota_{lhp}\ldots i\cdots ig_{i_{l}i}+\rho_{i_{1}}\ldots t_{l}..i\cdots i_{p}g_{i_{l}i_{h}})
.

If P_{if} is a covariant tensor field, th_{I}en we have

S(P_{if;k})-(SP_{if})_{;k}=-(S\Gamma_{ki}^{l})P_{lf}-(S\Gamma_{kf}^{l})P_{il}\xi\xi\xi\xi . (cf. [51])

Appl\hat{y}\acute{i}ng the above formula to the m^{1}etric tensor g_{if} , we obtain

(2. 5) a_{\xi}S\Gamma_{jk}^{i}=\frac{1}{2}g\{il(s_{\xi\xi\xi}g_{kl})_{;f}+(Sg_{fl})_{;k}-(Sg_{fk})_{;\iota}\} .

Substituting (2. 1) into (2. 5), we find

(2. 6) s_{\xi}\Gamma_{fk}^{i}=\delta_{f}^{i}\phi_{k}+\delta_{k}^{i}\phi_{f}-g_{fk}\phi^{i} ,

where \phi_{i}=\phi_{;i} and \phi^{i}=g^{if}\phi_{f} .
Substituting (2. 6) into

SR_{jkl}^{i}=(S\Gamma_{fk}^{i})_{;l}-(S\Gamma_{lk}^{i})_{jf}\xi\xi\xi

we obtain
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(2. 7) s_{\xi}R_{fkl}^{t}=-\delta_{l}^{i}\phi_{f;k}+\delta_{k}^{i}\phi_{f;l}-g_{fk}\phi_{;l}^{i}+g_{fl}\phi_{k}^{i}.,1

By contraction with res\dot{p}ect to i and l, it fo11o^{\iota}Ws from (2. 7) that
(2. 8) s_{\xi}R_{fk}=-(n+p-2)\phi_{k;f}-g_{fk}\phi_{;i}^{\iota j}, ,

where R_{fk} is the Ricci tensor.
Transvecting (2. 8) with g^{fk} , we find

\backslash .

(2. 9) s_{\xi}R=-2(n+p-1)\phi_{ji}^{i}-2\phi R .

When R^{n+p} is an Einstein space, that is,

R_{fk}= \frac{R}{n+p}g_{fk} . R=clonst.,

we have, for a conformal Killing vector field \xi^{i} ,

. SR_{fk}= \frac{R}{n+p}Sg_{fk}=\frac{2R}{n+p}\phi g_{fk:}\dot{\sigma}\xi s_{\xi}R=0 .

Consequently, from (2. 8) and (2. 9), we get

\frac{2R}{n+p}\phi g_{fk}=-(n+p-2)\phi_{k;f}-g_{fk}\phi_{;i}^{i} ,

(n+p-1)\phi_{ji}^{i}+R\phi=0 ,

respectively. From these relations, it follows that

(2. 10) \phi_{;i;f}=-k\phi g_{if} , k= \frac{R\backslash }{(n+p)(n+p-1)} .

Thus if an Einstein space of dimension n+p(n+p>2) admits a conformal
Killing vector field, then it admits a non-zero scalar function \phi which
satisfies the above equation.

LEMMA 2. 1. Let R^{n+p}(n+p>2) be an Einstein space which admits a
confomal Killing vector fifield \xi^{i} . Thm R^{n+p} admits a Killing vector fifidd.

PROOF. We put

\rho_{i}=\xi_{i}+\frac{1}{k}\phi_{i} , k= \frac{R}{(n+p)(n+p-1)} .

Differentiating the above equation covariantly, by means of (2. 1) and (2. 10)
we get

(2. 11) \rho_{;f}‘+\rho_{fi}..=0 .
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REMARK. Since a space of constant curvature is necessarily an Einstein
space, a Riemannian manifold of constant curvature admits a Killing vector
field. (\#

Let M^{n+p} be a (n+p)-dimensional Riemannian \grave{m}^{\mathfrak{n}}anifo1d of constant
curvature.

LEMMA 2. 2. If M^{n+p} admits a conformd Killing vector field \xi^{i}, thm
M^{n+p} admits a skew symmetric tmsor fifield T_{if} of degree 2 such that

T_{iJ;k}=k(\rho_{f}g_{ki}-\rho_{ig_{fk}}) .
PROOF. Since M^{n+p} admits a Killing vector field \rho_{i} by Lemma 2. 1,

differentiating (2. 11) covariantly, we obtain
\rho_{ijf;k}+\rho_{fjijk}=0 .

From the above equation, we have
\rho_{i;f;k}+\rho_{f;i;k}+\rho_{i;kjf}+\rho_{k;i;f}-(\rho_{fjk;i}+\rho_{k;f;t})=0 .

Then by virtue of Ricci’s identity, we get

2\rho_{i;f;k}-\rho_{h}(R_{fik}^{h}+R_{kif}^{h}+R_{ikf}^{h})=0 .
In consequence of Bianchi’s identity the above equation reduces to

\rho_{i;f;k}+\rho_{h}R_{kfi}^{h}=01

Then by means of (1. 15) the last equation turns to

\rho_{i;f,k}.=k(\rho_{f}g_{ki}-\rho_{ig_{fk}}) .
If we put T_{f}‘=\rho_{i;f} , then the above equation is rewritten as follows:

(2. 12) T_{if;k}=k(\rho_{f}g_{ki}-\rho_{ig_{fk}})t

LEMMA 2. 3. Let M^{n+p} be a(n+p)-dimensional Riemannian manifold
of constant curvature which admits a skew symmetric tmsor fifield T_{if} of
&gree 2 such that

T_{if;k}=k(\rho_{f}g_{ki}-\rho_{ig_{jk}})(

Then M^{n+p} admits a skew symmetric tensor fifield T_{ifk} of degree 3 such that

T_{ifk;l}=k(\rho_{fk}g_{il}-\rho_{ik}g_{fl}+\rho_{if}g_{kl}) ,

where \rho_{fk} is a skew symmetric tmsor fifield of degree 2 defifined by

\rho_{fk}=\rho_{f}\phi_{k}-\rho_{k}\phi_{f}-\phi T_{fk} .
PROOF. We put

(2. 13) T_{ifk}=T_{if}\phi_{k}+T_{fk}\phi_{i}+T_{ki}\phi_{f} .
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Then it is clear that T_{ifk} is skew symmetric with respect to all indices.
Difffferen,tiating (2. 13) covariantly, by means of (2. 10) and (2. 12) we have

T_{ifk;l}=k\{(\rho_{f}\phi_{k}-\rho_{k}\phi_{f}-\phi T_{fk})g_{il}-(\rho_{i}\phi_{k}-\rho_{k}\phi_{i}-\phi T_{ik})g_{fl}

+(\rho_{i}\phi_{f}-\rho_{f}\phi_{i}-\phi T_{if})g_{kl}\} .

Hence if we put

\rho_{fk}=\rho_{f}\phi_{k}-\rho_{k}\phi_{f}-\phi T_{fk} ,

then the last equqtion turns to

(2. 14) T_{ifk;l}=k(\rho_{fk}q_{il}-\rho_{ikg_{fl}+}\rho_{if}g_{kl}) .
LEMMA 2. 4. Let M^{n+p} be a(n+p)-dimensional Riemannian manifold

of constant cumature which admits a skew symmetric tensor fifield T_{i_{1}\cdots i_{p-1}}

of degree p-1 such that

(2. 15) T_{i_{1}\cdots i_{p-1};i}=-k \sum_{h=1}^{p-1}(-1)^{h}\rho_{i_{1}\cdot\cdot\hat{i}_{h}\cdots i_{p-1}g_{i_{h}i}},

’

where \rho_{i_{1}\cdots\hat{l}_{h}\cdots i_{p- 1}} is a skew symmetric tensor fifield of degree p–2. Thm M^{n+p}

admits a skew symmetl\dot{2}C tensor fifield T_{i_{1}\cdot\cdot ip} of degree p such that

T_{i_{1}\cdots i_{p};i}=-k \sum_{h=1}^{p}(-1)^{h}\rho_{i_{1}}\ldots i_{hp}..ig_{i_{h}i} ,

where \rho_{i_{1}\cdots\hat{l}_{h}\cdots i_{p}} is a skew symmetric tensor fifield of degree p-1 defifined by

\rho_{i_{1}\cdots\hat{i}_{h}\cdot\cdot i_{p}}=
(h \neq k)k-,1\sum_{-}^{p}(-1)^{k}\rho_{i_{1}}\ldots\hat{t}_{h}\cdot\cdot\partial_{kp}\ldots i\phi_{i_{k}}+\phi T_{i_{1}\cdots\hat{i}_{h}\cdot i_{p}} .

PROOF. We put

(2. 16) T_{i_{1}\cdots i_{p}}= \sum_{h=1}^{p}(-1)^{h}T_{i_{1}\cdots\partial_{hp}}\ldots\phi_{i_{h}}i .

Then it is clear that T_{i_{1}\cdots i_{\eta}} is skew symmetric with respect to all indices.
Differentiating (2. 16) covariantly we have

T_{i_{1}\cdots i_{p};i}= \sum_{h=1}^{p}(-1)^{h}T_{i_{1}}\ldots t_{h}\cdots i_{p};i\phi_{i_{h}}+\sum_{h=1}^{p}(-1)^{h}T_{i_{1}}\ldots t_{h}..i_{p}\phi_{f_{h};i} .
Substituting (2. 10) and (2. 15) into this equation, we find

T_{i_{1}\cdots p}‘^{;i},= \sum_{h=1}^{p}-(-1)^{h}k\sum_{k=1}^{p}(-1)^{k}\rho_{i\prime}‘\cdot\cdot\hat{i}_{h}\cdots t_{kz3}\ldots i\phi_{i_{h}}g_{i_{k}i}(h\neq k)

-k \phi\sum_{h=1}^{p}(-1)^{h}T_{i_{1}}\ldots t_{hp}\ldots ig_{i_{h^{f}}}
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=-k \sum_{h=1}^{p}(-1)^{h\{_{(h\neq k)}\hat{i}\cdots i}\sum_{k=1}^{p}(-1)^{k}\rho_{i_{1}\cdots\hat{i}_{hkp}}\ldots\phi_{i_{k}}+\phi T_{i_{1}\cdots\hat{i}_{h}\cdots i_{p}}\}g_{i_{h}i} .

Hence if we put

\rho_{i_{1}\cdots\hat{i}_{h}\cdots i_{p}}=\sum_{k=1}^{p}(-1)^{k}\rho_{i_{1}\cdots\hat{i}_{h}\cdots\hat{l}_{k}\cdots i_{p}}\phi_{i_{k}}+\phi T_{i_{1}\cdots\hat{i}_{h}\cdots i_{p}}(h\neq k)
,

then the last equation turns to

T_{i_{1}\cdots i_{p};i}=-k \sum_{h=1}^{p}(-1)^{h}\rho_{i_{1}\cdots\hat{i}_{h}\cdots i_{p}}g_{i_{h}i} .

REMARK. Putting p=2 and p=3 in (2. 15), we obtain (2. 12) and (2. 14)
respectively.

THEOREM 2. 5. Let M^{n+p} be a(n+p)-dimensional Riemannian mani-
fold of constant cumature which admits a conformal Killing vector fifield
\xi^{i} . Then M^{n+p} admits a skew symmetric tensor fifield T_{ii_{p}}‘\ldots of degree p
such that

T_{i_{1}\cdots i_{p};i}=-k \sum_{h=1}^{p}(-1)^{h}\rho_{i_{1}}\ldots t_{h}\ldots i_{p}g_{i_{h}i} .

PROOF. We shall prove Theorem 2. 5 by the mathematical induction.
By virtue of Lemma 2. 2, Lemma 2. 3 and Lemma 2. 4, we can easily obtain
the result.

COROLLARy 2. 6. Let M^{n+p} be a(n+p)-dimmsional Riemannian mani-
fold of constant curvature which admits a conformal Killing vector fifield
\xi^{i} . Thm M^{n+p} admits a conformal Killing tensor fifield of degree p.

PROOF. From (2. 15), we have
T_{i_{1}i_{2}\cdots i_{p};i}+T_{ii_{2}\cdots i},\supset;i_{1}

,

=-k \sum_{h=1}^{p}(-1)^{h}\rho_{i_{1}\cdots\hat{i}_{h}\cdots i_{p}}g_{i_{h}i}-k
(h \neq 1’)\sum_{h=1}^{p}(-1)^{h}\rho_{ii_{2}\cdots\hat{i}_{h}\cdots i_{p}}g_{i_{h}i_{1}}

=-k\{-\rho_{i_{2}\cdots i_{p}g_{i_{1}i}+\sum_{h=2}^{p}(-1)^{h}\rho_{i_{1}}\ldots t_{h}\ldots i_{p}g_{i_{h}i\}}}

-k \{-\rho_{i_{2}\cdots i_{p}g_{i_{1}i}}+\sum_{h=2}^{p}(-1)^{h}\rho_{ii_{2}\cdots\hat{i}_{h}\cdots i_{p}g_{i_{h}i_{1}}\}}

=k\{2\rho_{i_{2}\cdots i_{p}g_{i_{1}i}-\sum_{h=2}^{p}(-1)^{h}(\rho_{i_{1}\cdots\hat{i}_{h}\cdots i_{p}g_{ii_{h}}+\rho_{ii_{2}}\ldots\iota_{hp}}}\ldots ig_{i_{1}i_{h}})\} .

This equation shows that T_{i_{1}\cdot\cdot i_{|J}} is a conformal Killing tensor field of degree
p whose associated tensor field is given by k\rho_{i_{2}\cdots i_{p}} . Therefore by Theorem
2. 5, we get the result.
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\S 3. Certain conditions for V^{n} to be isometric to a sphere. Let
M^{n+p} be a (n+p)-dimensional Riemannian manifold of constant curvature
admitting a conformal Killing vector field \xi^{i} and V^{n} a closed orientable sub-
manifold of codimension p in M^{n+p} . Then by virtue of Corollary 2. 6, M^{n+p}

admits a conformal Killing tensor field T_{i_{1}\cdots i_{p}} of degree p with the associated
tensor field \rho_{i_{1}\cdots i_{p-1}} . In this section we assume that the mean curvature
vector field H^{i} of V^{n} is parallel with respect to the connection induced on
the normal bundle and the connection induced on the normal bundle is
trivial. Under these restrictions we derive some integral formulas which
are valid for V^{n} in M^{n+p} and give some properties of V^{n} .

Now we put

(3. 1) f=T_{i_{1}\cdots i_{p}}n^{i_{1}}\cdots n^{i_{p}}n+1n+p ’

(3. 2) \xi_{\alpha}=\sum^{p}b_{\alpha}^{\beta}T_{i_{1}\cdots i_{h}\cdots i_{p}}n^{i_{1}}\cdots B_{\beta}^{i_{h}}\cdots n^{i_{p}}h=1n+hn+1n+p

’

(3. 3) \eta_{\alpha}=\sum^{p}b_{r^{\gamma}}T_{i_{1}\cdots i_{h}\cdots i_{p}}n^{i_{1}}\cdots B_{\alpha^{i_{h}}}\cdots n^{i_{\Phi}}h=1n+hn+1n+p .

LEMMA 3. 1. f, \xi_{\alpha} and \eta_{\alpha} are independmt of the choice of mutually
orthogonal unit normal vectors.

PROOF. Let A\hslash^{i} be another mutually orthogonal unit normal vectors.

Then there exists an orthogonal matrix (U_{AB}) satisfying the following rela-
tions:

(3. 4)
\sum_{A=n+1}^{n+p}U_{AB}U_{AC}=\delta_{BC} , \sum_{C=n+1}^{n+p}U_{AC}U_{BC}=\delta_{AB} ,

det.(U_{AB})=1 ,

and A\hslash^{i} can be written as

(3. 5) A \hslash^{i}=\sum_{B=n+1}^{n+p}U_{AB}n^{i}B^{\cdot}

Therefore we find

\tilde{f}=T_{i_{1}\cdots i_{p_{n+1n+p}}}\hslash^{i_{1}}\cdots\hslash^{i_{p}}

=T_{i_{1}\cdots i_{p}}( \sum_{A_{1}}U_{n+1A_{1}}n^{i_{1}})\cdots(\sum_{A_{p}A_{1}}U_{n+A_{p}}n^{i_{p}})A_{p}

= \sum sgn(_{A_{1},A_{2},\cdots,A_{p}}^{n+1,n+2,\cdots,n+p}A_{1},\cdots,A_{p})U_{n+1A_{1}}\cdots U_{n+pA_{p}}T_{i_{1}\cdots i_{p_{n+1n+p}}}n^{i_{1}}\cdots n^{i_{p}}

=det. (U_{AB})T_{i_{1} ^{i_{p_{n+1n+p}}}}\cdots,n^{i_{1}}\cdots n^{i_{p}}

=f
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by making use of (3. 4), (3. 5) and the skew symmetry of T_{i_{1}\cdots i_{p}} . The above
equation shows that f is independent of the choice of mutually orthogonal
unit normal vectors.

Next let \tilde{A}b_{\alpha\beta} be the second fundamental tensor with respect to A\hslash^{i}. Then
by means of (1. 5) and (3. 5) we have

B_{\alpha,\beta}^{i}.= \sum_{A=n+1A}^{n+n}\tilde{b}_{\alpha\beta A}\hslash^{i}=\sum_{A,B=n+1}^{n+p}\tilde{b}_{\alpha\beta}U_{AB}n^{i}B

= \sum_{B=n+1}^{n+p}(_{A=n+1}\sum^{n+p}U_{AB}\tilde{b}_{\alpha\beta}I_{B}AB=n+1BB\prime n^{i}=\sum^{n+p}b_{\alpha\beta}n_{\backslash }^{i}

from which we get

\sum_{A=n+1}^{n+\tau\}}U_{AB}\tilde{b}_{\alpha\beta}=b_{\alpha\beta}AB^{\cdot}

By virtue of (3. 4) and the above equation, we find

\sum_{B=n+1}^{n+p}U_{CB}b_{\alpha\beta}=\sum_{BB=n+1}^{n+p}U_{CB}\sum_{A=n+1}^{n+p}U_{AB}\tilde{b_{\alpha\beta}A}

= \sum_{A,B=n+1}^{n+p}U_{CB}U_{AB}\tilde{b_{\alpha\beta}A}

= \sum_{A=n+1}^{n+p}\delta_{CA}\tilde{b_{\alpha\beta}A}

=\tilde{b_{\alpha\beta}c} ,

from which we have

\sum_{B=n+1}^{n+p}U_{CB}b_{\alpha\beta}=\tilde{b}Bc^{\alpha\beta} .

From (3. 5) and the last equation, we obtain

\tilde{\xi}_{\alpha}=\sum^{p}\tilde{b}_{\alpha}^{\beta}T_{i_{1}\cdots i_{h}\cdots i_{p}}\tilde{n}^{i_{1}}\cdots B_{\beta}^{i_{h}}\cdots\hslash^{i_{h}}h=1n+hn+1n+p

= \sum_{n}^{p}b_{\alpha,k}^{\beta},\{k=1+\sum_{h=1}^{p}U_{n+hn+k}T_{i_{1}\cdots i_{h}\cdots i_{p}}(\sum_{A_{1}}U_{n+1A_{1}}n^{i_{1}})\cdots B_{\beta}^{i_{h}}\cdots(\sum_{A_{p}A_{1}}U_{n+pA},n^{i_{p}})\}A_{p}

= \sum^{p}b_{\alpha,k}^{\beta},\sum_{hk=1n+=1}^{p}U_{n+hn+k}\sum_{l=1}^{p}(-1)^{h+l}sgn(_{A_{1}\cdots\hat{A}_{h}\cdots A_{p}}^{n+1\cdots\hat{n+l}\cdots n+p})\cdot U_{n+1A_{1}}\cdots\hat{U_{n+hA_{h}}} .
...

U+pA_{p}Ti_{1}\cdots i_{l}\cdots i_{p_{n+1n+p}}n^{i_{1}}n\ldots B_{\beta}^{i_{l}}\cdots n^{i_{p}}

= \sum^{p}b_{\alpha,k’}^{\beta}\sum_{hk=1n+=1}^{n}U_{n+hn+k}\overline{[f}_{n+hn+l}T_{i_{1}\cdots i_{l}\cdots i_{p}}n^{i_{1}}\cdots B_{\rho^{i_{l}}}\cdots n^{i_{p}}n+1n+p ,

where \hat{n+l},\hat{A}_{h} and U_{n+hA_{h}}\nearrow\sim denotes that n+l, A_{h} and U_{n+hA_{h}} are omitted
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respectively and L^{\overline{T}_{n+hn+_{l}}} means the cofactor of U_{n+hn+l} in det. (U_{AB}). Since
we have

\sum_{h=1}^{p}U_{n+hn+k}\overline{7J}_{n+hn+l}=\{

det. (U_{AB}) , if k=l ,

0 , if k\neq l,\cdot

then we find

\tilde{\xi}_{\alpha}=det. (U_{AB}) \cdot\sum_{k=1n+k}^{p}b_{\alpha}^{\beta}T_{i_{1kp_{n+1n+p}}}\cdots_{i\cdots i},n^{i_{1}}\cdots B_{\beta}^{i_{k}}\cdots n^{i_{p}}=\xi_{\alpha\cup}

The above equation proves that \xi_{\alpha} is independent of the choice of mutually
orthogonal unit normal vectors. In the same way we can prove that \eta_{\alpha}

is independent of the choice of mutually orthogonal unit normal vectors.
Consequently f, \xi_{\alpha} and \eta_{\alpha} are the scalar function and vector fields on V^{n}

respectively.
Differentiating (3. 2) covariantly we have

\xi_{\alpha;\beta}=\sum_{h=1}^{p}(_{n+h}b_{\alpha j\beta}^{\gamma}+\sum_{A=n+1}^{n+p}\Gamma_{n+h\beta}^{\prime\prime A}b_{\alpha}^{\gamma})AT_{i_{1}\cdots i\cdots i}n^{i_{1}}\cdots B_{\gamma}^{i_{h}}\cdots n^{i_{p}}hp_{n+1n+p}

+ \sum^{p}b_{\alpha}^{\gamma}T_{i_{1}\cdots i_{h}\cdots i_{p};i}B_{\beta}^{i}n^{i_{1}}\cdots B_{\gamma}^{i_{h}}\cdots n^{i_{p}}h=1n+hn+1n+p

+ \sum^{p}b_{\alpha}^{\gamma}T_{i\cdots i\cdots i\cdots i}n^{i_{1}}h=1n+h’ n+1\cdots l ^{p}\sum_{(l\neq h)}+1,((-_{n+l’}b_{\beta}^{\delta}B_{\delta}^{i_{l}}+\sum_{A=n+1}^{n+p}\acute{\acute{\Gamma}}_{n+l}^{A}\rho_{A}n^{i_{l}})\cdots B_{r^{i_{h}}}\cdots n^{i_{p}}n+p

+ \sum^{p}b_{\alpha}^{\gamma}T_{i_{1}\cdots i_{h}\cdots i_{p_{n+1n+p}}}h=1n+hn^{i_{1}}\cdots H_{\gamma\beta}^{i_{h}}\cdots n^{i_{p}}

by means of (1. 7).
Multiplying the last equation by g^{\alpha\beta}, by virtue of (1. 5), (3. 1), our assump-
tion and the skew symmetry of T_{i_{1}\cdots i_{p}} we get

\xi_{;\alpha}^{\alpha}=\sum_{h=1n+h}^{p}b_{;\alpha}^{\alpha\gamma}T_{i_{1}\cdots i_{h}\cdots i_{p_{n+1n+p}}}n^{i_{1}}\cdots B_{\gamma}^{i_{h}}\cdots n^{i_{p}}

+ \sum^{p}b^{\alpha\gamma}T_{i_{1}\cdots i_{h}\cdots t_{p};i}B_{\alpha}^{i}n^{i_{1}}\cdots B_{r^{i_{h}}}\cdots n^{i_{p}}h=1n+hn+1n+p

-

(h \neq l)h,l-\sum_{-,1n+hn+l}^{p}b^{\alpha\gamma}b_{\alpha i_{1}\cdots i_{h}\cdots i_{l}\cdots i_{p_{n+1n+p}}}^{\delta}Tn^{i_{1}}\cdots B_{\gamma}^{i_{h}}\cdots B_{\delta}^{i_{l}}\cdots n^{i_{p}}

+ \sum_{A=n+1}^{n+p}f_{AA}b_{\alpha\gamma}b^{a\gamma}

The above equation turns to
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1 p

\xi_{;\alpha}^{\alpha}=\sum b^{\alpha\gamma}(I_{i_{1}\cdot\cdot i_{h}}^{1}\overline{2}h=1n+hi_{p};i+T_{i_{1}\cdots i\cdots i_{p};i_{h}})B_{\alpha}^{i}n^{i_{1}}\cdots B_{\gamma}^{i_{h}}\cdots n^{i_{p}}n+1n+p

-h(h’ \neq l)\sum_{-}^{p}b^{\alpha\gamma}b_{\alpha}^{\delta}T_{i_{1}\cdots i\cdots i\cdot\cdot i}n^{i_{1}}\cdots B_{\gamma}^{i_{h}}\cdots B_{\delta}^{i_{l}}\cdots n^{i}l-,1n+hn+lhlp_{n+1n+p}

+f \sum^{n+p}b_{\alpha^{v}}b^{\alpha\gamma}A=n+1AA

= \frac{1}{2}\sum^{v}b^{\alpha\gamma}\{h=1n+h-(-1)^{h}2\rho_{i_{1}\ldots\hat{i}_{h}\cdots i_{p}g_{i_{h}i}-}
(h \neq k)k-,1\sum_{-}^{p}(-1)^{k}(\rho_{i_{1}}\ldots t_{k}\ldots i_{h}\ldots i_{p}g_{ii_{k}}

+\rho_{i_{1}\cdot\cdot\hat{t}_{k}\cdots i\cdots i_{p}g_{i_{h}i_{k}}})\}B_{\alpha}^{i}n^{i_{1}}\cdots B_{r^{i_{h}}}\cdots n^{i_{p}}n+1n+p

+f \sum^{n+p}b_{\beta\gamma}b^{\beta\gamma}A=n+1AA

by virtue of our assumption, (1. 19) and (2. 4). Thus we obtain

\xi_{;\alpha}^{\alpha}=f\sum^{n+p}b_{\beta\gamma}b^{\beta\gamma}-\sum_{hA=n+1AA=1}^{p}(-1)^{h}b_{\beta}^{\beta}\rho_{i_{1}\cdots\hat{i}_{h}\cdots i_{p_{n+1n+hn+p}}}n^{i_{1}}\cdots\hat{n}^{i_{h}}\cdots n^{i_{p}}n+h ,

where \hslash^{i_{h}} denotes that n^{i_{h}} is omitted. Therefore by means of Green’s the-

orem (cf. [25])n+h we get n+hthe following integral formula:

(I) \int_{V^{n}}(f\sum^{n+p}b_{\beta\gamma}b^{\beta\gamma}-\sum_{hA=n+1AA=1}^{p}(-1)^{h}b_{\beta,h}^{\beta},\rho_{i_{1}\cdots t_{h}\cdots i_{p_{n+1n+hn+p}}}n^{i_{1}}\cdots\hat{n}^{i_{h}}\cdots n^{i_{p}})n+dV=0 ,

where dV is the area element of V^{n} .
Next, differentiating (3. 3) covariantly we have

\eta_{\alpha;\beta}=\sum_{h=1}^{p}(_{n+h}b_{\gamma,\beta}^{\gamma}.+\sum_{A=n+1}^{n+p}\Gamma_{n+h\beta}^{\prime\prime A}b_{r^{\gamma}})AT_{i_{1hp_{n+1n+p}}}\cdots_{i\cdots i},n^{i_{1}}\cdots B_{\alpha}^{i_{h}}\cdots n^{i_{p}}

+ \sum_{h=1n+h}^{p}b_{\gamma\ldots i\cdots i;i}^{\gamma}T_{1hp}B_{\beta}^{i}n^{i_{1}}\cdots B_{\alpha}^{i_{h}}\cdots n^{i_{p}}n+1n+p

+ \sum_{h=1}^{p}bT_{i_{1lh}}\ldots i\cdots i\cdots i_{p_{n+1}}n^{i_{1}}\cdots\sum_{ln+h=1}^{p}r^{\gamma}(-b_{\beta,l’}^{\delta}B_{\delta}^{i_{l}}+\sum_{An+=n+1}^{n+p}\Gamma_{n+l\beta}^{\prime\prime A}n^{i_{l}})A\ldots B_{\alpha}^{i_{h}}\cdots n^{i_{p}}z\iota+p

+ \sum_{hh=1n+^{\gamma i_{1}\cdots i_{h}\cdots i_{p_{n+1n+p}}}}^{p}b^{\gamma}Tn^{i_{1}}\cdots H_{\alpha\beta}^{i_{h}}\cdots n^{i_{p}} ,

by means of (1. 7).
Multiplying the above equation by g^{\alpha\beta}, by virtue of our assumption,

(1. 5) and (3. 1) we find

\eta_{;\alpha}^{\alpha}=\sum_{h=1}^{p}g^{\alpha\beta}b_{r;\beta}^{\nu}T_{i_{1}\cdots i_{h}\cdots i_{p_{n+1n+p}}}n^{i_{1}}\cdots B_{\alpha}^{i_{h}}\cdots n^{i_{p}}n+h

+ \sum^{p}b_{r^{\gamma}}T_{i_{1}\cdots i_{h}\cdots i_{p};i}gB_{\beta}^{i}\alpha\rho n^{i_{1}}\cdots B_{\alpha}^{i_{h}}\cdots n^{i_{p}}h=1n+hn+1n+p



86 H. K\^ojy\^o

-

h,l \overline{-}1n+hn+l\sum_{(h\neq l)}^{p}b_{r^{\gamma}}b^{\alpha\delta}T_{i_{1}\cdots i_{l}\cdots i_{h}\cdots i_{p}}n^{i_{1}}\cdots B_{\delta}^{i_{l}}\cdots B_{\alpha}^{i_{h}}\cdots n^{i_{p}}n+1n+p

+f \sum_{A=n+1}^{n+p}(_{A}b_{\beta}^{\beta})^{2} .

The last equation turns to

\eta_{j\alpha}^{\alpha}=\frac{1}{2}\sum^{p}b_{r^{\gamma}}(T_{i_{1}\cdots i_{h}\cdots i_{p};i}+T_{i_{1}\cdots i\cdots i_{p}ji_{1}})g^{\alpha\beta}B_{\beta}^{i}n^{i_{1}}h=1n+hn+1^{\cdot} ‘
\cdot B_{\alpha^{i_{h}}}\cdots n^{i_{p}}n+p

+f \sum_{A=n+1}^{n+p}(_{A}b_{\beta}^{\beta})^{2}

= \frac{1}{2}\sum^{p}b_{\gamma\{\cdots i\cdots ig_{i_{k}i}}^{\gamma}h=1n+h-(-1)^{h}\rho_{i_{1}\cdots t_{h}\cdots i_{p}g_{i_{h}i}-\sum_{k\overline{-}1}^{p}(-1)^{k}(\rho_{i_{1}}\ldots t_{khp}}(h\neq k)

+\rho_{i_{1}\ldots\hat{i}_{k}\cdots i\cdot\cdot i_{p}}g_{i_{h^{i}k}})\}g^{\alpha\beta}B_{\rho^{i}}n^{i^{1}}\cdots B_{\alpha}^{i_{h}}\cdots n^{i_{p}}n+1n\dagger fJ

+f \sum_{A=n+1}^{n+p}(b_{\beta}^{\beta})^{2}A^{\cdot}

by virtue of our assumption, (1. 19) and (2. 4). Thus by means of the skew
symmetry of T_{\dot{\iota}_{1}\cdots i_{p}} we have

\eta_{;\alpha}^{\alpha}=-n\sum_{n=1}^{p}(-1)^{h}b_{r^{\gamma}}\rho_{i_{1}\cdots\hat{l}_{h}\cdots i_{p_{n+1n+hn+p}}}n^{i_{1}}\cdots\hat{n}^{i_{h}}\cdots n^{i_{p}}n+h

+f \sum_{A=n+1}^{n+p}(_{A}b_{\beta}^{\beta})^{2}.

Therefore by means of Green’s theorem we obtain the following integral
formula :

(II) \int_{r^{n}}(f\sum^{n+p}(b_{\beta}^{\beta})^{2}-n\sum_{hA=n+1A=1}^{p}(-1)^{h}b_{r^{\gamma}}\rho_{i_{1}}\ldots t_{hp_{n+1n+hn+p}}\ldots fn^{i_{1}}\cdots\hat{n}^{i_{h}}\cdots n^{i_{p}})n+hdV=0 .

Eliminating \int_{V^{n}}\sum_{h=1}^{p}(-1I_{n+h}^{h}b_{\beta}^{\beta}\rho_{i_{1}\cdots\hat{l}_{h}\cdots i_{p_{n+1n+hn+p}}}n^{i_{1}}\cdots\hat{n}^{i_{h}}\cdots n^{i_{p}}dV

from (I) and (II), we obtain

(3. 6) \int_{r^{r\iota}}f\sum_{A=n+1}^{n+p}\{Ab_{\alpha\beta}b^{a\beta}-\frac{1}{n}(b_{r^{\gamma}})^{2}\}AAdV=0 .

Hence we have the following theorem:

THEOREM 3. 2. Let M^{n+p} be a(n+p)-dimensional Riemannian mani-
fold of constant curvature which admits a vector fifield \xi^{i} gmerating a con-
tinuous one-parameter group of conformal transformations in M^{n+p} and V^{n}

a closed orimtable submanifold in M^{n+p} such that



Certain properties of submanifolds in a Riemannian manifold 87

(i) the mean cumature vector fifield H^{i} of V^{n} is parallel with respect
to the connection induced on the normal bundle,

(ii) the connection induced on the normal bundle is trivial,
(iii) the scalar function f has fifixed sign on V^{n}.

Thm the submanifold V^{n} is totally umbilical.
PROOF. From (3. 6) and our assumption we have

AAAb_{\alpha\beta}b^{\alpha\beta}- \frac{1}{n}(b_{r^{\gamma}})^{2}=0’.

because AAAb_{\alpha\beta}b^{\alpha\beta}- \frac{1}{n}(b_{r^{\gamma}})^{2} is non negative. Thus this equation shows that
V^{n} is totally umbilical by means of Lemma 1. 1.

REMARK. When p=1, that is, V^{n} is a closed orientable hypersurface
in M^{n+1} , Euler-Schouten unit normal vector n^{i} is the unit normal vector n^{i}

E
of V^{n}. In this case our assumption (i) and (ii) in Theorem 3. 2 is always
satisfied. Accordingly when p=1, Theorem 3. 2 coincides with Theorem
0. 1 due to Y. Katsurada.

From the above theorem and the following theorem due to M. Obata
[37], we obtain Theorem 3. 3.

THEOREM (M. Obata). Let R^{n+p}(n+p\geqq 2) be a complete Riemannian
manifold which admits a non-null function \varphi such that \varphi_{;i;f}=-c^{2}\varphi g_{if}(c=

const.). Then R^{n+p} is isometric to a sphere of radius \frac{1}{c} .

THEOREM 3. 3. Let M^{n+p} be a(n+p)-dimensional Riemannian mani-
fold of constant cumature which admits a vector fifield \xi^{i} generating a con-
tinuous one-parameter group of conformal transformations in M^{n+p} and V^{n}

a closed orimtable submanifold in M^{n+p} such that
(i) the mean cumature vector fifield H^{i} of V^{n} is parallel with respect

to the connection induced on the normal bundle,
(ii) the connection induced on the normal bundle is trivial,
(iii) the scalar function f has fifixed sign on V^{n},
(iv) \phi\neq const. along V^{n} .

Then the submanifold V^{n} is isometric to a sphere.

PROOF. In \S 2, we proved that M^{n+p} admits a non-zero scalar function
\phi which satisfies the equation (2. 10). On the other hand, by virtue of
Theorem 3. 2, every point of V^{n} is totally umbilic. Since H_{1}=const . and
AH_{1}=0(A=n+2, \cdots, n+p), we have
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(3. 7) Eb_{\alpha\beta}=\lambda g_{\alpha\beta} , (\lambda=const.)

(3. 8) Ab_{\alpha\beta}=0 . (A=n+2, n+3, \cdots, n+p)

Now we have
\phi_{;\alpha}=\phi_{;i}B_{\alpha}^{i}

Differentiating the above equation covariantly we have

(3. 9) \phi_{;\alpha;\beta}=\phi_{ji;j}B_{\alpha^{i}}B_{\beta}^{f}+\phi_{;i}H_{\alpha\beta}^{i}\Gamma

From (2. 10), (1. 5), (3. 7), (3. 8) and (3. 9), we obtain
(3. 10) \phi_{;\alpha;\beta}=(-k\phi+\lambda\phi_{;i}n^{i})g_{\alpha\beta}E^{\cdot}

Differentiating the scalar \phi_{;i}n^{i}E covariantly we have

(\phi_{;i}n^{i})_{j\alpha}=\phi_{;i;f}n^{i}B_{\alpha}^{f}+\phi_{;i}n_{;\alpha}^{i}+\phi_{;i}\Gamma_{E\alpha}^{\prime\prime A}n^{i}EEEA

By means of our assumption (i), (1. 7), (1. 8), (2. 10) and (3. 7) we have

(\phi_{;i}n^{i})_{j\alpha}=E-\lambda\phi_{;\alpha}1

Hence we get

(3. 11) \phi_{;\iota_{E}^{n^{i}=}}-\lambda\phi+c . (c=const.)

Substituting (3. 11) into (3. 10) we obtain

(3. 12) \phi_{;\alpha;\beta}=\{-(k+\lambda^{2})\phi+c\lambda\}g_{\alpha\beta} .

Here k+\lambda^{2}\neq 0 . Because, if k+\lambda^{2}=0, then (3. 12) becomes \phi_{;\alpha;\beta}=c\lambda g_{\alpha\beta} from
which \Delta\phi=nc\lambda , where \Delta means the Laplacian operator on V^{n}. This is
impossible unless \phi=const . Thus k+\lambda^{2} being different from zero, we have,
from (3. 12),

(3. 13) ( \phi-\frac{c\lambda}{k+\lambda^{2}})_{;\alpha;\beta}=-(k+\lambda^{2})\cdot(\phi-\frac{c\lambda}{k+\lambda^{2}})g_{\alpha\beta} .

Therefore we obtain

\Delta(\phi-\frac{c\lambda}{k+\lambda^{2}})=-n(k+\lambda^{2})\cdot(\phi-\frac{c\lambda}{k+\lambda^{2}}) .

Consequently it follows that k+\lambda^{2}>0 .
orem, V^{n} is isometric to a sphere.

Hence, by virtue of M. Obata’s the-
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REMARK. When p=1, Theorem 3. 3 coincides with Theorem 0. 2 due
to Y. Katsurada.

\S 4. Certain conditions for V^{n} to be umbilical with respect to \bm{n}_{E}^{i}.
In this section we study on a closed orientable submanifold V^{n} of codimen-
sion p in a Riemannian manifold M^{n+p} of constant curvature without the
condition in \S 3 that the connection induced on the normal bundle is trivial.

Let M^{n+p} be a (n+p)-dimensional Riemannian manifold of constant
curvature which admits a conformal Killing vector \xi^{i} . Then by virtue of
Corollary 2. 6, M^{n+_{9}} admits a conformal Killing tensor field T_{i_{1}\cdots i_{p}} of degree
p with the associated tensor field \rho_{i_{1}\cdots i_{p-1}} .

We assume that the mean curvature vector field H^{i} of V^{n} is parallel
with respect to the connection induced on the normal bundle.

Now we put

(4. 1) v_{\alpha}=T_{i_{1}\cdots i_{p}}B_{\alpha}^{l_{1}}n^{i_{2}}\cdots n^{i_{p}}n+2n+p ,

(4. 2) w_{\alpha}=b_{\alpha}^{\gamma}T_{i_{1}\cdots i_{p}}B_{r^{i_{1}}}n^{i_{2}}\cdots n^{i_{p}}En+2n+_{p}\cdot

LEMMA 4. 1. The vector v_{\alpha} and w_{\alpha} are ind\varphi mdmt of the choice of
mutually orthogonal unit nomal vectors.

PROOF. Let A\tilde{n}^{i}(A=n+2, \cdots, n+p) be another p–1 mutually orthogonal

unit normal vectors orthogonal to En^{\dot{\iota}}=n^{i}n+1^{\cdot} Then there exists an orthogonal

matrix (U_{AB}), (A, B=n+2, \cdots, n+p) such that det. (U_{AB})=1 . Therefore by
means of (3. 5) and the skew symmetry of T_{i_{1}\cdots i_{p}} , we find

\tilde{v}_{\alpha}=T_{i_{1}\cdots i_{p}}B_{\alpha}^{i_{1}}\tilde{n}^{i_{2}}\cdots\hslash^{i_{p}}n+2n+p

=T_{i_{1}\cdots i_{p}}B_{\alpha}^{i_{1}}( \sum_{A_{2}}U_{n+2A_{2}}n^{i_{2}})\cdots(\sum_{A_{p}A_{2}}U_{n+p_{A_{p}}}n^{i_{p}})

=_{A_{2},\cdots,A_{p}} \sum sgn(_{A_{2\backslash }\cdots,A_{p}}^{n+2,\cdots,n+p},\}U_{n+2A_{2}}\cdots U_{n+pA_{p}}\cdot T_{i_{1}\cdots i_{p}}B_{\alpha}^{i_{1}}n^{i_{2}}\cdots n^{i_{p}}n+2n+p

=det. (U_{AB})T_{i_{1}\cdots i_{p}}B_{ae}^{i_{1}}n^{i_{2}}\cdots n^{i_{p}}=v_{\alpha}n+2n+p .

The above equation shows that v_{\alpha} is independent of the choice of p-1 mu-
tually orthogonal unit normal vectors orthogonal to n^{i}. In the same way

E
we can prove that w_{\alpha} is independent of the choice of mutually orthogonal
unit normal vectors. Consequently v_{\alpha} and w_{\alpha} are the vector fields on V^{n}.

Differentiating (4. 1) covariantly we have
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v_{\alpha;\beta}=T_{i_{1}\cdots i_{p};i}B_{\beta}^{i}B_{a}^{i_{1}}n^{i_{2}}\cdots n^{i_{p}}n+2n+p

+T_{i_{1}\cdots i_{p}}H_{\alpha\beta}^{i_{1}}n^{i_{2}}\cdots n^{i_{p}}n+2n+p

+T_{i_{1}\cdots i_{h}\cdots i_{p}}B_{\alpha^{i_{1}}}n^{i_{2}} \cdots\sum_{hn+2=1}^{p}(-b_{\rho^{\delta},h},B_{\delta}^{i_{h}}+\sum_{An+=n+1}^{n+p}\Gamma_{n+h\beta}^{\prime\prime A}n^{i_{h}})A\ldots nn^{i_{p}}+p

by means of (1. 7).
Multiplying the last equation by g^{\alpha\beta} , by virtue of our assumption, (1.5) and
(3. 1) we get

v_{;\alpha}^{\alpha}=T_{i_{1}\cdots i_{p};i}g^{\alpha\beta}B_{\beta}^{i}B_{\alpha^{i_{1}}}n^{i_{2}}\cdots n^{i_{p}}+fg^{\alpha\beta}b_{\alpha\beta}n+2n+pA

- \sum^{p}b^{\alpha\delta}T_{i_{1}\cdots i_{h}\cdots i_{p}}B_{\alpha^{i_{1}}}n^{i_{2}}\cdots B_{\delta}^{i_{h}}\cdots n^{i_{p}}h=2n+hn+2n+p .

The above equation turns to

v_{;\epsilon}^{\alpha}= \frac{1}{2}(T_{i_{1}\cdots i_{p^{j}}i}+T_{iii_{p};i_{1}}\dot{‘}\ldots)g^{\alpha\beta}B_{\beta}^{i}B_{a}^{i_{1}}n^{i_{2}}\cdots n^{i_{p}}n+2n+p

+nfH_{1}

=_{\frac{1}{2}\{2\rho_{i_{2}\cdots i_{p}g_{i_{1}i}-\sum_{h=2}^{p}(-1)^{h}\cdot(\rho_{i_{1}}\ldots\hat{t}_{h}\cdot\cdot i_{p}g_{i_{h}i}+\rho_{ii}\ldots\iota_{hp}g_{i_{h}i_{1}})\}}}\ldots‘

.
g^{ae\beta}B_{\beta}^{i}B_{\alpha^{i_{1}}}n^{i_{2}}\cdots n^{i_{p}}+nfH_{1}n+2n+p

by virtue of our assumption, (1. 11), (2. 4) and the skew symmetry of T_{i_{1}\cdots i_{p}} .
Thus we have

v_{j\alpha}^{\alpha}=nfH_{1}+n\rho_{i_{2}\cdots i_{p_{n+2n+p)}}}n^{i_{2}}\cdots n^{i_{p}} .

Therefore by means of Green’s theorem we get the following integral
formula :

(I) \int_{r^{n}n+2n+p}(fH_{1}+\rho_{i_{2}\cdots i_{p}}n^{i_{2}}\cdots n^{i_{p}})dV=0 .

Next, differentiating (4. 2) covariantly we have

w_{\alpha j\beta}=(_{E}b_{\alpha j\beta}^{\gamma}+ \sum_{A=n+1}^{n+p}\Gamma_{E\beta}^{\prime\prime A}b_{\alpha}^{\gamma)1}AT_{i_{1}\cdots i_{p}}B_{r}^{i_{1}}n^{i_{2}}\cdots n^{i_{p}}n+2n+p

+b_{\alpha}^{\gamma}T_{i_{1}\cdots i_{p};i}B_{\beta}^{i}B_{r^{l_{1}}}n^{i_{2}}\cdots n^{i_{p}}En+2n+p

+b_{\alpha}^{\gamma}T_{i_{1}\cdots i_{p}}H_{\gamma\beta}^{i_{1}}n^{i_{2}}\cdots n^{i_{p}}En+2n+p

+b_{\alpha}^{\gamma}T_{i_{1}\cdots i_{h}\cdots i_{p}}B_{r^{i_{1}}}n^{i_{2}} \cdots\sum_{hEn+2=2}^{p}(-b_{\rho^{\delta}h}B_{\delta}^{i_{h}}+\sum_{An+=n+1}^{n+p}\Gamma_{n+h\beta A}^{\prime\prime A}n^{i_{h}})\cdots nn^{i_{p}}+p

’
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by means of (1. 7).
Multiplying the above equation by g^{\alpha\beta}, by virtue of our assumption, (1. 5)

and (3. 1) we find

w_{;\alpha}^{\alpha}=b_{;\alpha}^{\alpha\gamma}T_{i_{1}\cdots i_{p}}B_{r^{i_{1}}}n^{i_{g}}\cdots n^{i_{p}}En+2n+p

+b^{\alpha\gamma}T_{i_{1}\cdots i_{p},i}.B_{\alpha}^{i}B_{\gamma}^{i_{1}}n^{i_{z}}\cdots n^{i_{p}}En+2n+p

+fb_{\alpha\gamma}b^{\alpha\gamma}EE

- \sum^{p}b_{\alpha}^{\gamma}b^{\alpha\delta}T_{i_{1}\cdots i_{h}\cdots i_{p}}B_{\gamma}^{i_{1}}n^{i_{2}}\cdots B_{\delta}^{i_{h}}\cdots n^{i_{p}}h=2En+hn+2n+p .

The above equation turns to

w_{;\alpha}^{\alpha}= \frac{1}{2}b^{\alpha\gamma}(T_{l_{1}\cdots i_{p};i}+T_{u_{a}\cdots i_{p_{n+2n+p}}} _{;i_{1}}E’)B_{\alpha^{i}}B_{\gamma}^{i_{1}}n^{i_{2}}\cdots n^{i_{p}}

+fb_{\alpha\gamma}b^{\alpha\gamma}EE

- \sum^{p}b^{\alpha\gamma}b_{\alpha}^{\delta}T_{i_{1hp_{n+2n+p}}}h=2En+h\cdots_{i\cdots i},B_{\gamma}^{i_{1}}n^{i_{2}}\cdots B_{\delta}^{i_{h}}\cdots n^{i_{p}}

= \frac{1}{2}b^{\alpha\gamma}E\{2\rho_{i_{2}\cdots i_{p}}g_{i_{1}i}-\sum_{h=2}^{p}(-1)^{h}(\rho_{i}\ldots t_{\iota},\ldots i_{p}g_{i_{h}i}+\rho_{ii_{t}}\ldots t_{h}\ldots i_{p}g_{i_{h}i_{1}})\}

B_{\alpha}^{i}B_{\gamma}^{i_{1}}n^{i_{2}}\cdots n^{i_{p}}+fb_{\alpha\gamma}b^{\alpha\gamma}n+2n+pEE ,

by virtue of our assumption, (1. 19), (2. 4) and the skew symmetry of T_{i_{1}\cdots i_{p}}.
Thus we have

w_{;\alpha}^{\alpha}=f_{EE}b_{\alpha\beta}b^{\alpha\beta}+nH_{1}\rho_{i_{2}\cdots i_{p_{n+2n+p}}}n^{i_{2}}\cdots n^{i_{p}} .

Therefore by means of Green’s theorem we get the following integral
fomula:

(II) \int_{V^{7l}EE}(fb_{\alpha\beta}b^{\alpha\beta}+nH_{1}\rho_{i_{2}\cdots i_{p_{n+2n+p}}}n^{i_{2}}\cdots n^{i_{p}})dV=0

From (II)-(I)\cross nH_{1} , we obtain

(4. 3) \int_{V^{l}EE},f(b_{\alpha\beta}b^{\alpha\beta}-nH_{1}^{2})dV=0r

This result is analogous to Morohashi’s result [36].

Hence we have the following theorem:
THEOREM 4. 2. Let M^{n+p} be a(n+p)-dimmsiond Riemnnian mani-

fold of constant curvature which admits a vector fifield \xi^{i} gmerating a con-
tinuous one-parameter group of confomd transformations in M^{n+p} and V^{n}
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a closed orientable submanifold in M^{n+p} such that
(i) the mean curvature vector fifield H^{i} of V^{n} is parallel with respect

to the connection induced on the normal bundle,
(ii) the scalar function f has fifixed sign on V^{n} .

Thm the submanifold V^{n} is umbilical with respect to Euler-Schouten unit
vector En^{i}.

PROOF. From (4. 3) and our assumptions we have

EEb_{\alpha\beta}b^{\alpha\beta}-nH_{1}^{2}=0 ,

because EEb_{\alpha\beta}b^{\alpha\beta}-nH_{1}^{2} is non negative. Thus this equation shows that V^{n}

is umbilical with respect to Euler-Schouten unit vector En^{i} by means of
Lemma 1. 6.

REMARK. When p=1, Theorem 4. 2 coincides with Theorem 0. 1 due
to Y. Katsurada.

Department of Mathematics,
Hokkaido University
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