Certain properties of submanifolds in a Riemannian
manifold of constant curvature admitting
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By Hidemaro Ko6jv6

Introduction. In a 3-dimensional Euclidean space E*® a sphere is char-
acterized by certain special properties of a closed surface. In 1900, H.
Liebmann [1]° has proved that an ovaloid with constant mean curvature
H in E? is a sphere. 'W. Siiss [2] generalized this result for a closed convex
hypersurface in an 7n-dimensional Euclidean space E™ Various generaliza-
tions of the condition H=const. in the Liebmann:-Siiss theorem have been
studied by many investigators and it is one of the interesting problem in the
differential geometry in the large. The interesting results of this problem
for a closed orientable hypersurface in E” were given by T. Bonnesen and
W. Fenchel [3], H. Hopf [4], C. C. Hsiung [5], A. D. Alexandrov [6], [7],
S. S. Chern [9], S. S. Chern and C. C. Hsiung [39], K. Amur [40], D. J. Stong
[41], R. L. Bishop and S. J. Goldberg [42], R. B. Gardner and J. K.
Shahin [44]. In the field of these investigations the integral formulas of
Minkowski type has played one of the important role.

We consider an ovaloid F in E% and let H and K- be the mean cur-
vature and the Gauss curvature at a point P of F respectively. Then the
integral formula of Minkowski is

ﬂF(Kp +H)dA=0,

where p denotes the oriented distance from a fixed point O in E? to the
tangent space of F at P and dA is the area element of F at P.

As generalization of this formula for a closed orientable hypersurface
in E», C. C. Hsiung derived the integral formulas of Minkowski type, and
gave certain characterizations of hyperspheres in E”. Afterward Y. Katsu-
rada [10], generalized more these formulas of Hsiung in a Riemannian
manifold, that is, derived the integral formulas of generalized Minkowski
type which are valid for a closed orientable hypersurface V™' in an #-
dimensional Riemannian mamfold R™ and proved the following theorem:

1) Numbers in brackets refer to the references at the end of the paper.
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TueoreMm 0. 1. (Y. Katsurada) Let R* be a Riemannian manifold of
constant curvature which admits a vector field & generating a continuous
one-parameter group of conformal transformations in R* and V™' a closed
orientable hypersurface in R™ such that |

(1) H,=const., o

(i1) n;&° has fixed sign on V™',

Then every point of V"' is umbilic, where H, and n, denote the first mean
curvature of V™' and covariant component of a unit normal vector of
V=1 respectively. |

THEOREM 0. 2. (Y. Katsurada) Let R* be a Riemannian manifold of
constant curvature which admits a vector field & generating a continuous
one-parameter group of conformal transformations in R and V"' a closed
orientable hypersurface in R™ such that

(1) ki, ks, oy ke >0 on V27

(1) H,=const. for any v (1<v<n—2),

(iil) 7€ has fixed sign on V™!,

Then every point of V™' is umbilic, where k, (p=1,2,---,n—1) and H,
denote principal curvature of V™' and the v-th mean curvature of V™!
respectively.

TreoreM 0.3. (Y. Katsurada) Let R™ be a Riemannian manifold of
constant curvature which admits a vector field & generating a continuous
one-parameter group of conformal transformations in R* and V™' a closed
orientable hypersurface in R™ such that

(1) H,= const.,

(ii) »;&° has fixed sign on V"1,

Then V™' is isometric to a sphere.

The analogous problems for a closed orientable hypersurface V*! in
R™ have been discussed by A. D. Alexandrov [8], K. Nomizu [45], [46], K.
Yano [18], K. Nomizu and B. Smyth [47], R. C. Reilly [48], T. Otsuki [26],
T. Nagai [16], M. Tani [27], T. Koyanagi and T. Muramori [29] Most

of these investigations are related to the characterization of an umbilical
hypersurface in R™.

Certain generalizations of Theorem 0.1 and [Theorem 0.3 for an m-
dimensional closed orientable submanifold V™ in R* (m<n—1) with constant

curvature have been studied by Y. Katsurada [13], [14], T. Nagai

and the present author and the following theorems were proved:

THeorReEM 0.4. (Y. Katsurada and T. Nagai) Let R, be a Riemannian
manifold of constant curvature which admits a vector field & generating
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a continuous one-parameter group of concircular transformations in R™ and
V™ a closed orientable submanifold in R* such that
(i) H,=const. and I'"'#,=0,2
(ii) & is contained in the vector space spanned by m independent tan-
gent vectors and ;Jz‘ at each point on V™.

(iil) n&* has fixed sign on V™.
E

Then every point of V™ is umbilic with respect to Euler-Schouten unit vector
n where 7 denotes covariant components of a unit normal vector which

has the same direction with Euler-Schouten vector of V™.

TaeorREM 0.5. (Y. Katsurada and H. K6jy6) Let R* be a Riemannian
manifold of constant curvature which admits a vector field & generating
a continuous one-parameter group of conformal transformations in R* and
V™ a closed orientable submanifold in R* such that

(i) H,=const.,

(ii) & is contained in the vector space spanned by m independent tan-

gent vectors and 735 at each point on V™,

(iii) n,&* has fixed sign on V™.
4 \

Then every point of V™ is umbilic with respect to Euler-Schouten unit

vector n’.
i

TueoreM 0. 6. (Y. Katsurada and H. Ko6jyd) Let R* be a Riemannian
manifold of constant curvature which admits a vector field & generating
a continuous one-parameter group of conformal transformations in R" and
V™ a closed orientable submanifold in R™ such that

(l) kl,kZ)""km>0 on Vm’_

E E P4
(ii) H,=const. for any v (1<v=m—1),
B

(iii) & is contained in the vector space spanned by m independent tan-
gent vectors and n’ at each point on V™,
E

(iv) n;&° has fixed sign on V™.
E

Then every point of V™ is umbilic with respect to Euler-Schouten unit

vector nt.
i

The analogous problems for a closed orientable submanifold V* in R"*?
has been discussed by K. Yano [20], [21], G. D. Ludden [49], D. E. Blair and
G. D. Ludden [50], T. Nagai [15], and M. Okumura [33].

2), 3). With respect to these object we shall find again in §1 of the present paper.
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M. Okumura has proved that a closed orientable submanifold of
codimension 2 in an odd dimensional sphere with the natural normal contact
structure is totally umbilical under certain conditions.

In 1969, S. Tachibana has introduced a notion of a conformal
Killing tensor field of degree 2 in' R**? as the generalization of conformal
Killing vector field. Furthermore T. Kashiwada has given the defini-
tion of a conformal Killing tensor field of degree p (p=2) in R**?. Recently
M. Morohashi [34], [35]; has found that a structure tensor of the normal
contact structure is a conformal Killing tensor field of degree 2 defined by
S. Tachibana. Making use of that fact,, M. Morohashi investigated about
a submanifold V”* of codimension p in a sphere S*** and a Riemannian
manifold R™*? of constant curvature and showed that the submanifold V*
is totally umbilical under certain conditions. Furthermore he obtained the
following theorem:: |

THEOREM 0.7. (M. Morohashi) Let R**? be a (n+p)-dimensional Ri-
emannian manifold of constant curvature which admits a conformal Killing
tensor field T; ., of degree p and V™ a closed orientable submanifold in
R™? such that

(i) the mean curvature vector field H® of V" is parallel with respect

to the connection induced on the normal bundle,

(i) T..,n" - n* has fixed sign on V™.

n+1 n+p
Then every point of V" is umbilic with respect to Euler-Schouten unit vector

n', where n* (A=n+1,---,n+p) denote p unit normal vectors of V™.
E A

However, in the above theorem, if V” is a submanifold of codimension
2 in a Riemannian manifold R**?, then it has been assumed that the ambient
space admits a conformal Killing tensor field of degree p.

The purpose of the present paper is to investigate a closed orientable
submanifold V" of codimension p in a Riemannian manifold R**? of constant
curvature admitting a conformal Killing vector field without the assumption
that R**? admits a conformal Killing tensor field of degree p. §1 is devoted
to give notations and fundamental formulas in the theory of submanifolds
in a general Riemannian manifold and a Riemannian manifold of constant
curvature respectively, and gives some important relations in R"*?.

Let us denote by M"*? a (n+p)-dimensional Riemannian manifold of
constant curvature which admits a vector field & generating a continuous
one-parameter group of conformal transformations in M**?, In §2 we give
the definition of a conformal Killing tensor field of degree p (p=2) and
proves by the mathematical induction that M**? admits necessarily a con-
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formal Killing tensor field of degree p. In §3 we derive the integral formulas
which are valid for a closed orientable submanifold V”* of M™*?, and making
use of the integral formulas and the results in §2, we shall show that a
closed orientable submanifold V™ in M™** is totally umbilic under some
conditions, and from that result we prove that the submanifold V" is iso-
metric to a sphere S™. . We study in the last section §4 the analogous
problems under weaker conditions than the assumptions in §3, and show
that a closed orientable submanifold V* in M™? is umbilical with respect

to Euler-Schouten unit vector z°.
Vi

The present author wishes to express his very sincere thanks to Prof.
Yoshie Katsurada for her many valuable advices and constant guidances.

§1. Notations and fundamental formulas in the theory of sub-
manifolds. Let R**? (n+p>2) be a (n+p)-dimensional Riemannian mani-
fold of class 7 (r>2) and z° and g¢,; be the local coordinates and the positive
definite metric tensor of R™"? respectively. We now consider an n-dimen-
sional closed orientable submanifold V* in R**? whose local expression is

i=1,2, -, n+p,
a:l, 2’ co-,n,
where u* denotes the local coordinates on V”?. We shall henceforth confine

ourselves to that Latin indices run from 1 to n+p and Greek indices from
1 to n. If we put

Bi— ox’

oous

then n vectors B,’ are linearly independent vectors tangent to V*. The
Riemannian metric tensor g,; on V" induced from g,; is given- by

Gap = gijBalzBﬂj .
We indicate by #n° (A=n-+1, n+2,---,n+p) the contravariant components
o . ’ A .
of p unit vectors which are normal to V* and mutually orthogonal. Hence
they satisfy the following relations:

4,5 f i
g?}jBa nj - 0 ’ g??jnfbnj - 5AB >
A A B

where d,; means the Kronecker delta. In this case a set of z+p independent
vectors

(1' 1) (B,l,i, BZi) EREY Bnq:’ ni, ni’ "t ni)

n+l nt+2 7+p
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determines an ennuple at each point on V*. We put
B = gaﬂguBﬁj sy Ng={(qyy n?,
A A
where g% are defined by the equations ¢g*g;,=d7. Then we have

n+p
g =9g*B'B/+ Y n'n?,

A=7L+1A\ A
‘ " n+p
(1. 2) gz’j = g“‘gBa.zB j"l" ninj ’
A=n+14 A
+

6@' _ B iBa & %
j = Dy j+ Z nn;.

. A=n+14 A4

b3

Denoting by the symbol “;” the operation of D-symbol due to van
der Waerden-Bortolotti [52], from the definition we have

Bai;ﬁ‘ = (‘BriBrj);k B«jBﬁk

n+p

(L.3) = (05— 2 n‘ny) BB
A=n+14 A4 ’
n+p
=— 2, (nz:BJSB")n’,
A=n+1 A A4
and

n+y
nt.=( % n'n) n'B}*
A B=n+1 B B |

(1. 4) =(05—Bs'B’j);x ijak
= —(Bf;;x n'B,") By
A
by virtue of the last equation in (1.2). Putting H,=B,;, we call H,*

the Euler-Schouten curvature tensor. Therefore if we put b,,= H,/n,, from
4 4 ,
(1. 3) we have

(1. 5) Hi="3 b,

A=n+1 A4 A
We call b,; the second fundamental tensor with respect to n’. Transvecting
A A
(1. 5) with ¢*, we find

(1.6) Hf= S nHn,

A=n+1 A A
where we put H,= —i—g“’b“ﬁ. H, is called the first mean curvature of V™
A A A
for the normal vector 7°.

A
On the other hand, the equation (1.4) may put as follows:
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ni;a == ZaﬂBﬁi .

A

Multiplying the above equation by ¢,;B,” and contracting, we have
g'ijBrj nlz;a = Taﬁgﬂr *
A A
Since we have
bre=guB/a 1’
A A

— [3
- _g'i.iBerz sa s

by means of the last equation we get

bra = "‘Taﬁgpr .
A

Consequently we obtain

(1.7) » b, = —bB?.
A

A

This equation is called the equation of Weingarten.
By virtue of (1.3) and (1. 4), after some calculations we find

(3 aB I3 (3
Ba; a Bﬁ FzﬁBr ’
an”'
Z "B (4
n ;a - Aa n b
A ax B

where '}, are the Christoffel symbol of the first kind formed with ¢,; and

]‘llarp=1‘v B aB
on’
M= a; B, n¢+F,,jnB e

Since n°n,=0,45, from the last relation we can easily find
A B

(1. 8) "E+IE=0.
Let H? be the mean curvature vector field of V. Then H* is given by

1 ‘
H' = —n“gapHaﬂ

(1.9)

n+p

—_1_ bent
—nZa’

A=n+14
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and H'® is independent of the choice of mutually orthogonal unit normal
vectors. :

Now we take a unit normal vector #° in the direction of the mean
n+1

curvature vector field H?. Then the components of the vector n° are inde-
n+1

pendent of a change of parameters «* on V7, that is, the vector 7’ is deter-
ontl

mined uniquely at each point on V™. We may consider the Euler-Schouten

unit vector n° as one of #° in (1.1). Consequently, putting 7n* = »’, we take
) A E n+1

a set of n+p independent vectors

(1. 10) (Bli, Bzi, Y B?j, néa nia T n$)

H nt2 n+p :

as an ennuple at each point on V™
The first mean curvature of V* for normal vector 7’ is the socalled:

B
first mean curvature of V*. Hence we denote it by H, without subscript
=, In this case, with respect to the ennuple (1.10) we get from (1.6)

(1.11) 9%H ‘= nH, n*.
o

When at each point of V* the second fundamental tensors b,, are pro-
A4

portional to the metric tensor g,4, that is, satisfying the following condition :

baﬂ = H1 Oas 5
A

A

we call V* a totally umbilical submanifold. Then we have the following
lemma :

Lemma 1.1. A necessary and sufficient condition for V" to be totally
umbilical is that the following relations are satisfied:

b b7 = (B
A A

n a4

ProofF. The above equations follows from the following relations:

___1_ T aﬁ__l_ 7 e8| — aﬁ__l_ rz
e LS A T M e

and the positive definiteness of the Riemannian metric g,;.

Next we consider the normal bundle of V”. For a normal vector #’,
if the normal part of #’, vanishes identically along V", then we call that
n’ is parallel with respect to the connection induced on the normal bundle.
The symbol “|” denotes the operator of covariant derivative along V™.
Thus we have the following lemma:
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LeMMA 1.2. Let V™ be a submanifold of a Riemannian manifold R**?.
In order that the mean curvature vector field H® of V™ is parallel with
respect to the connection induced on the normal bundle, it is necessary and
sufficient that

oH, .
A__JVEH =0.
ou" . B

Proor. Since the assumption of means that the covariant
derivative H?, of the mean curvature vector field is tangent to the sub-
manifold V" Differentiating (1.9) covariantly we get

. n+p
Ii@w =:( 2: -Eﬂ7f)m

A=m+1 A 4
nt+p . n+p .
= Z Hlnza"l" Hlaniﬂ
| |
Asnt+14 A A=n+14 . A
" i P jaljl knB ¢
=— 2 H\b'B'+ J —I'""ZH | n
A=n+1 A A4 A=n+1\ Qu” B /4

by virtue of (1.7). Then we have

oH,
4 _J["BEH =0.
ou” : B

LemMMA 1.3. Let V* be a submanifold of. Riemannian manifold R**.
If the mean curvature vector field H® of V™ is parallel with respect to the
connection induced on the normal bundle, then the mean curvature H, of
V™ is constant.
Proor. The mean curvature H, of V™ is:given by
1 &

H’12=___ Z (baajZ.

7% A=n+1 4

Differentiating the above equation covariantly and making use of
1.2, we find

ab,
oH? _ 2 g,
ou” n® 4=mn+14° QU
2 nip 11 B
='—2—' Z bﬁﬂbrr Aa=0,
Nn° A=n+l1l4 B

by virtue of (1.8). This equation shows that H? is constant.
Consequently from Lemma 1.2 and Cemma 1.3, we obtain the following lemma :




74 H. Kéjyé

Lemma 1.4. Let V" be a submanifold of a Riemannian manifold R™**.
In order that the mean’ curvature vector field H* of V™ is parallel with
respect to the connection induced on the normal bundle, it is necessary and
sufficient that

H, = const. and "B (.
Proor. As we put n’= n’, we have H;=0. (B=E)
oy n+l B
Then from it follows thatyi )
0H,

=0 and IM"EH =0.

ou”
Therefore we obtain easily the resuit.

REMARK. When p=1, that is, V* is a closed orientable hypersurface
in R**!, it is always satisfied that the mean curvature vector field H* of
V™ is parallel with respect to the connection induced on the normal bundle.

We now write the equations of Gauss, Mainardi-Codazzi and Ricci-
Kiihne:

(1. 12) Rijsza‘B‘ngrkB‘,l = ngﬁ Z bﬁ?’ ba5 + Z bﬂd ar »

A=n+14 A A=ntld A4
(1.13) Oarsp—bagyr = RM“BJ n'B/B},
4 4 4
(1. 14) R n*n’BrBf = bm b's— bng b’ +F”A,, 51" Be
A B ’

+ Z IYI [1// Z I‘II/ I‘lllAC;"

C=n+1 C~n+

where R;;, is the curvature tensor of R**?. -
Let M™*? be a Riemannian manifold of constant curvature. Then the
curvature tensor R’;, of M™*? has the form

(1- 15) . : Rijkl = k(gjkaf_gjzai) ’

R
(n+p)n+p—1)

and R is the scalar

where % is a constant given by k=

curvature.
If M™** has the curvature tensor of the form (1.15), then equations
(1.12), (1. 13) and (1. 14) can be rewritten respectlvely as

n+p ) n+p
(1' 16) aﬁ s = k(gﬁrgms gargﬁd)+ 2 bﬁr bas— Z bﬁd bar >
A=n+14 4 A=n+14

(1.17)  bu—bu =0,
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(1. 18) Zé;aAbTﬁ ansb + ”AB; ,9_[",,4,5 .+ Z [1// B //(,‘ ; Z F”(,%F"fa =O .

C=n+1 . C=n+1

Let V" be a submanifold of M™*2 Then;‘ from and (1.17)

we have

(1. 19) bap;a = O .
. A

When there exist mutually orthogonal unit normal vector fields 7 such
a7

that I"'2=(, we call that the connection induced on the normal bundle is
trivial. Then J. Erbacher gave the following lemma:

LEmMma 1.15. (J. Erbacher) Let M™*? be a Riemannian manifold of
constant curvature. Then. the connection induced on the normal bundle is
trivial if and only if the following relation is satisfied:

bra b_rﬁ = brﬁ bra

REMARK. When p=1, it is always satlsﬁed that the connection induced
on the normal bundle is trivial. When p=2, the connection induced on
the normal bundle is trivial under the condition that the mean curvature
vector field H* of V™ is parallel with respect to the connection induced on
the normal bundle. '- '

1f the second fundamental tensor b,,ﬂ with respect to n is proportional

to the metric tensor g, that is, satlsfymg baﬂ—lgap, Where A is a scalar

function on V", then we say that the submamfold V” is umbilical with
respect to Euler-Schouten unit normal vector #°, or simply pseudo-umbilical.
E

Thus we have the following lemma:

LEMMA 1.6. A necessary and sufficient condition for V"™ to be um-
bilical with respect to Euler-Schouten unit vector n® is that the following

relation is satisfied:

bos b =nH.
E F
Proor. The above equation follows from the following relation:
(baﬁ——l— b,’gap) : (b“ﬁ—i b,rg«ﬂ> = b, b — L (b
E nE B ne E E n = ‘
= b, b*—nH}?,
E F

and the positive definiteness of the Riemannian metric g,.
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§2. Conformal Killing tensor fields of a Riemannian manifold
M™*? of constant curvature. Let & be a vector field in R*™? such that

(2- 1) o fgw =&u5+tE50= 2004,

where ¢ is a scalar field in R***? and the symbol £ denotes the operator
§

of Lie derivation with respect to &. Then &° is called a conformal Killing
vector. field and a continuous one-parameter group G generated by an in-
finitesimal transformation . | -

=2+ Er

is called a conformal transformation group. If ¢=c (c=const.) in (2.1),
then & is called a homothetic Killing vector field and.the group G is called
a homothetic transformation group. If ¢ vanishes identically in (2.1), then
& is called a Killing vector field and the group G is called a motion.

As the generalization of conformal Killing vector field (2.1), we shall
show the definition of a conformal Killing tensor field.

We shall call a skew symmetric tensor field 73; a conformal Killing
tensor field of degree 2 in R™*” if there exists a vector field £, such that

(2. 2) Tijnt Tkj;; =20;90—Pr0:;— P19 -

The vector @, is called the associated vector field of T;;. If o, vanishes
identically in (2.2), then T}, is called a Killing tensor field of degree 2.
(cf. [31) | )
Furthermore, we shall generalize it to the case of degree.p (p=2). A
skew symmetric tensor field 75, .1, is called a conformal Killing tensor field
of degree p in R**?, if there exists a skew symmetrlc tensor field 0, ,, .
such that

Ay

T'I,liz-'-tp"i + Tu ity 2P¢2...¢pg¢l¢

2.3
(2.3) B (UM Pty Gers + Pty ins),

where 7, means that 7, is omitted. We call Pty the associated .tensor
field of T%,...,. If 04, .i,_, vanishes identically in (2.3), then T, i, 1S
called a K1lhng tensor field of degree p. Especnally, if R**? is a Riemannian
manifold of constant curvature, then the associated tensor field of a con-
formal Killing tensor. field of degree p is a Killing tensor field. (cf. [30])

From (2.3) we have
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n-1 R R
Trg + T"x dd ity ( 1) ‘(Tihil"'ih"'ip;i—{- T":il""ih""ip;ih)

h-1

=(—1)p" {Zpi,.-- Ipipine ™ zZ:=1( - 1)l+1(pi,,i,-~~il---i,,---ng¢lz

1 zpz

y4
+ Pﬁl...il..;ih...ipgmk)-— . Z (— 1)" (Pi,m...2h...ik...¢pg,;k¢

=h+1

+ pﬂl~.-2,‘--.2,c---ngq:,,¢k)}

h—-1

= (_ 1)h_1 {sz,--~?,,-~-i,-,gi,,¢ -2 (— 1)H1(’_ l)hﬂ(pi,--~2,---q;,,---¢pgtli

=1

D .
+ pij,--~z~--i,,g¢,,q)_ kzzh:ﬂ'(""' 1*(— 1)h—l(pilmz,,---?,c---ipg«;k'z ‘

+ 40@1...gy...ik...ipgi,‘ik)}

k-1

= _(_ l)hzlozl---i,,-u@bgi,,i - Z ( - 1)1( - I)Z(h_l) (pi,-~-fz-~~¢;.'"¢pgiﬂ '

D

+ 04ttt Digin) — k§+1( — 1P (= 1A D(O, .yt Gty
+ 0ty yJigiy) -
Hence we get
Tiyiniggot Loty —(—1)"2P¢1...2h...¢pgm

(2. 4)

If P, is a covariant tensor field, then we have

£(Puye)—(EP. )= —(ET P, —(ETHPa.  (ch. [EI]
Applying the above formula to the metric tensor Gizs WE obtain
(2.5) £ = 0" ((£au)s+ (80, S0k
Substituting (2.:'1) into '(2. 5), we find
(2. 6) :,?I" g =05+ 04— g9 5

where ¢;,=¢,, and ¢’=g"g,.
Substituting (2. 6) into

ERYu = £y~ (ET i)

we obtain

77
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(2.7) . .%Riju =015+ 04D 51— 918"+ 9:6% 1 .

By contraction with respect to 7 and I, it follows from (2.7) that
(2. 8) - qulo =—(n+p—2)u;—gund’:, .

where R;, is the Ricci tensor.
Transvecting (2. 8) with ¢, we find

(2.9) fR=—2(n+p—1)¢ﬁz—2¢R.

When R™**? is an Einstein space, that is,

R
n+p

we have, for a conformal Killing vector field &,

Rjk =

0% » R=const.,

Consequently, from (2.8) and (2.9), we get

—2—_5—?‘?591/::—(""'? Z)¢ch Qj/c¢ 34
(n+15_1)¢i;z+_R¢—0,

respectively. From these relations, it follows that

.y _ R
(2.10) B e

Thus if an Einstein space of dimension n+p (n+p>2) admits a conformal
Killing vector field, then it admits a non-zero scalar function ¢ which
satisfies the above equation. :

LEmMMA 2.1. Let R™? (n+p>2) be an Einstein space which admits a
conformal Killing vector field &. Then R*** admits a Killing vector field.

Proor. We put

R
(n+p)n+p—1)

Differentiating the above equation covariantly, by means of (2.1) and (2. 10)
we get

(2. 11) p@;j“l‘pj;,;:()-

+%¢i> k=
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REMARK. Since a space of constant curvature is necessarily an Einstein

space, a Riemannian manifold of constant curvature admits a Killing vector

ﬁeld b \

Let M™? be a (n+p)dimensional Riemannian manifold of constant
curvature. »

LemMMA 2.2. If M™* admits a conformal Killing vector field &, then
M™? admits a skew symmetric tensor field T,; of degree 2 such that

Tign= k(p.;lgkz;pigjk) .
Proor. Since M"**? admits a Killing vector field o, by Lemma 2.1,

differentiating (2. 11) covariantly, we obtain
P+ Psur=0.
From the above equation, we have
OissintPpint Poris+ Prs—OpaetPrze) =0.
Then by virtue of Ricci’s identity, we get
204 52— O4(Rjia+ R+ R s) = 0.
In consequence of Bianchi’s identity the above equation reduces to
O 15+ O R ;=0

Then by means of (1.15) the last equation turns to

oz =R(O;90—0u9 1) -
If we put T;;=0,,, then the above equation is rewritten as follows:
(2.12) Tisin=k(O;9k— P50 ) -

LEMMA 2.3. Let M™** be a (n+p)-dimensional Riemannian manifold
of constant curvature which admits a skew symmetric tensor field Ti; of
degree 2 such that '

Tige=k(O;90—Pi05)
Then M™? admits a skew symmetric tensor field T, of degree 3 such that
Tiss = k(Oss gu—Pur§ s+ Pes Gas) » |
where Py, is a skew symmetric tensor field of degree 2 defined by
Pp=0;02—L1P;—Tss..
Proor. We put
(2.13) Tise=Tosbu+ T+ Tuit;.
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Then it is clear that T}, is skew symmetric with respect to all indices.
Differentiating (2. 13) covariantly, by means of (2.10) and (2.12) we have

T'tjlc 1= k{(pj¢/c —0,.9; ‘¢Tj/c>g'il_(pi¢lc——plc¢i—¢Ti/c)gjl ,
+(P¢¢j P;0;— ¢Tij)gkl}v

Hence if we put 4 ,
Pt =L1Pr—Lxhs—T s,
then the last equgtion turns to

(2- 14) T = k(pﬂ:gil_‘oik gjl"'pij gkz)

LeMMA 2.4. Let M**" be a (n+p)-dimensional Riemannian manifold
of constant curvature which admits a skew symmetric tensor field T . iy
of degree p—1 such that

T e R
(2. 15) Til"'il’“ gt = _kkgl(“" 1)”{’,;‘...2”‘.%7_1 9i,t5

where 0, .1,..., , 1S a skew symmetric tensor field of degree p—2. Then M™+r
admits a skew symmetric tensor field T;,.sp of degree p such that

D
let"'ip;i — _k Z= (_ 1)h pil'-'?h""ip g’l}hi >
where 0;.1,..., 1S a skew symmetrzc tensor field of degree p—1 defined by

D -
pgl..,{h...zp Z( 1) pgl ill, P -3 ¢¢/c+¢T'bx"'ih"'ip

k=1
(hxk)
Proor. We put
»
(2. 16) Toiy= 5 (=1 Toydys, B, -

Then it is clear that T;,.:, is skew symmetric with respect to all indices.
Differentiating (2. 16) covariantly we have

N D I ’
z! Ry = Z= ( ) zl...ih...zp’z¢ih+ Z ( )h il...ih...fgpgs,;h;i .

Substituting (2. 10) and (2. 15) into this equat_ion, we find

Tz hpid Z ( )th( )‘oi','.*-'ih"-ik"'%¢¢hg'5k¢

- (h#k)

3

y4
[— k¢ hZ (—— 1)”‘ Tgl...ih...zp\gihd
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14
=— k>

1

r
( - ]-)h{ ]CZ_I ( - 1)k Pil;hik% ¢f5k + ¢T¢x“'2lz""ip} 9ipi -

(A% k)
Hence if we put
s P2
Pil...ih...% = Z: (""1) pil"‘ih'“%k'“ipgb"'k+¢T51‘"2h"'ip ,

k=1
(hxEk)

then the last equation turns to

P
Tz‘,"-ip;i =—k 2. (—l)h pi,'" weipdipt -

h=1

REMARK. Putting p=2 and p=3 in (2. 15), we obtain (2. 12) and (2. 14)
respectively.

THEOREM 2.5. Let M™?* be a (n+p)-dimensional Riemannian mani-
fold of constant curvature which admits a conformal Killing vector field

§. Then M™** admits a skew symmetric tensor field T;..;, of degree p
such that

»
T'zl""ip;i = _khzzl(— 1)h pil'“i}z"'ip gihi -

Proor. We shall prove [Theorem 2.5 by the mathematical induction.
By virtue of Lemma 2.2, [emma 2. 3 and Lemma 2.4, we can easily obtain
the result.

COROLLARy 2.6. Let M™*? be a (n+p)-dimensional Riemannian mani-
Jold of constant curvature which admits a conformal Killing vector field
&. Then M™* admits a conformal Killing tensor field of degree p.

Proor. From (2.15), we have

Tgliz...f;p;q; + TM:"'ip;ix

» y4
=—k thl("" 1)” ‘0«71-'-2;&---71]) iy k ’LZ_:I( - 1)" pm‘zmihmip Gipi,

(1)
»
= — k { - p"‘;z"'ip g¢1¢ -+ ’LZ=2( - 1)h p";x"jh"'ip gih'b'}
y4
—k { - sz...ip (R + ;¢Z=2( - l)h pm;z...ih...,;p g,;h,;l}
b4
= k {ZPZZ,,p g,;l¢ —_— hZ_ﬂ( —_ 1)h(p¢l...2h...gp giih + piiz"‘ah,'"ip g‘:’:h)} .

This equation shows that 75 .; is a conformal Killing tensor field of degree

P whose associated tensor field is given by %@;,.;,. Therefore by
2.5, we get the result. .
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§ 3. Certain conditions for 7" to be isometric to a sphere. Let
M™? be a (n+p)-dimensional Riemannian manifold of constant curvature
admitting a conformal Killing vector field & and V™ a closed orientable sub-
manifold of codimension p in M”*?. Then by virtue of Corollary 2. 6, M"*?
admits a conformal Killing tensor field 75 ., of degree p with the associated
tensor field @;.,, ,. In this section we assume that the mean curvature
vector field H*? of V* is parallel with respect to the connection induced on
the normal bundle and the connection induced on the normal bundle is
trivial. Under these restrictions we derive some integral formulas which
are valid for V" in M™*? and give some properties of V™.

Now we put

(3. 1) f T,; ;pnl b
n+l n+p
3.2) 5,,=z” b Ty, 1o Bifn oo s,
1'n+h n+p
(3.3) Z} b Ty, ins, - Bn ..
1n+h + n+p

LemMma 3.1. f, & and 1, are independent of the choice of mutually
orthogonal unit normal vectors.

Proor. Let #° be another mutually orthogonal unit normal vectors.
A

Then there exists an orthogonal matrix (U,;) satisfying the following rela-
tions :
n+p

(3 4) v Z UABUAC = 536" ’ Z UACUBC = 6AB R

A=n+1 C=n+1

det. (UAB) = 1 ’
and A® can be written as
A
(3. 5) At = Z UAB;li .
Therefore we find

= Ti,...ﬂ,,(Z U1, 7%) (2 Un+,»Ap n'r)
4 4, 1, 4,

- n+1 2, -,
= B (AN U Ve T g g

Ay Ay 2 5 " Pyt n+p

'—'det (UAB)Ti gpn‘ n
n+p
=f
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by making use of (3.4), (3.5) and the skew symmetry of T;..s,- The above
equation shows that f is independent of the choice of mutually orthogonal
unit normal vectors.

Next let b,,p be the second fundamental tensor with respect to 7% Then

A
by means of (1. 5) and (3.5) we have

«ﬂ'— Z b At = Z ba,eUABn

A=n+14 A A,B=n
n+p n+p n+p :
= Z ( Z UABbaﬁ) = Z baﬁn ’
B=n+1\Ad=n+1 B=n+1B B
from which we get
n+n
Z UAB ¢,9_b¢ﬁ
A=n+1

By virtue of (3.4) and the above equation, we find

n+p

Z U(,'B b = Z Ues Z UAB s
B=n+1 A=n+1 .
n+p
= Z UCB UAB aﬁ
A,B=n+1
n+p
Z 5CA aﬁ
A=n+1
= aj >
from which we have
n+p -
Z UCB baﬁ=bae
B=n+1 B (44
From (3.5) and the last equation, we obtain
y —~ .
?a= Z baﬁTil...,;k...g ﬁi“"B;""" ﬁih‘
h=1n+n P n+1 n+p
)
= £ BE Unsrnss Toy (5 Ui, 190 B (5 Ung, 1)
k=1nt+k o~ Ap
P D S
_ 8 1\ n+1 ntl-- n+p ) )
2 8% Unenws H(=1) sgn( PR A R LA A
"'Un+pApT¢1---il ipn+ Biz n+p
P . — .
= Z . 2 Un+hn+l¢: Unirnte Til---'tl"- B L
k=ln+k h=1 n+p

TN A S - - . .
where n+1[, A, and U, +aa, denotes that n+1/, A, and U,,s4, are omitted
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respectively and U,4,.+, means the cofactor of U,ians; In det. (U,5). Since
we have

det.(UAB), Z:f k=l,
0 , if kxI,

Z nthnt+k Un+h n+? = {
then we find

E, =det.(U,p)- Z b o R il---Bﬂ"k---n”p=§¢.
=1ln+k +1 nt+p
The above equation proves that &, is independent of the choice of mutually
orthogonal unit normal vectors. In the same way we can prove that 7,
is independent of the choice of mutually orthogonal unit normal vectors.
Consequently f, & and 7, are the scalar function and vector ﬁelds on V"
respectively.
Differentiating (3. 2) covariantly we have

Eup = Z ( b5+ Z F""“ﬁgA ar) Tq:l---i,,--qu ,}rm...Brih L)

h=1 \n+nh A=n+1

yy
+ Z bar Ti:"'ih'“ip’iBﬂ n 1. Bi"‘

h=1n+n2 n+p

+ Z b T;,, "":Iz"'il"’zp b Z <(_ bﬂBB 7'l'|" Z -l,-'n+lﬁn ) "Brih %2

=1lnt+s n+1 I+1 n+i nt+p
(2%2)

+ Z b Tz g g g 71 Hrpdh”' ni”

=ln+nh n+p

by means of (1.7).
Multiplying the last equation by g"ﬁ, by virtue of (1.5), (3.1), our assump-

tion and the skew symmetry of T} ., we get
@ 2 ar P3
S & hz_l b sa T";x""dla"‘ip B % .
=ln+h n+p
P
+ Z bdr Til'"ih'"ip;'i Bai nil o .BT?;"I .o nip
hr=1n+ni n+1 ntp
p
- Z bar b d T’i (B g byt n 1. B th.. B (72N
(hhil)1n+h n+i P+l nﬂ,
f Zrak
A R+l

The above equation turns to
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1 & . o A .
a‘ —_— xr . . s . .. v Zyees Phees %)
£, 5 hZ_:W{)h (Ts,tpiypst Toposs o) Ba n B, R
< ar [ (3 k3 2
—_— Leoee ,°
h;mfh nlzl T, tigiy n --Bj»-.. B, -
(hx2)

+ £ b b

A=n+1 4 A

1 y |
= 7 Z b { ( 1)h 2p'51"'§h"'ip g¢hi— /cZ—1(_ 1)k(pzl§k7,h¢p gnk

=lnt+h =
(h=k)

+p¢ ik g ,;pg,,,h,;k)}B n B’lih

n+p

+ f Z bﬂrbﬂr

A=n+1 A A
by virtue of our assumption, (1.19) and (2.4). Thus we obtain

f Z bﬁ b — ( )h bﬁﬁp@l P nlree A pto

A=n+1 4 A n+1 n+h ntp

where 7 denotes that 7’ is omitted. Therefore by means of Green’s the-
n+h n+kh

orem (cf. [25]) we get the following integral formula:

(I) S (f > by b— 3 (- R e LA

A=n+1 A A n+h n+1 n+h n+p

where dV is the area element of V™.
Next, differentiating (3. 3) covariantly we have

r n+tp
— 17 A4 [3 ] k3
N = 2 < b+ AZ+11 n+hﬂf77> Tiigyoty BBl '
=n

h=1 \m+2 n+1 n+p
p .

+ 37 B Togysyi B - Bin
h=1nth n+1 n+p

+ Z b T‘IJ ...zl...@k...,;pn e Z( bﬁ(’Bil—I— Z F,,n-l-lﬁ n ) "Baih"' nip

ln+h =1 n+i A=n+1 n+p
< g z
T
+ 30 B Ty, noe-Hyn oo s,
h=1n+nh n+p

by means of (1.7).
Multiplying the above equation by ¢*, by virtue of our assumption,
(1.5) and (3.1) we find

D
= Fh Ty, - Bjn..
;ggn;i’ﬁ 4y, q:p n+p
% 4 (2
Z b T'il e ip,igaﬂB nésee Byl n'v
h= n+h n+1 n+p
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2 .

— 3 b Ti,---i;--'ih-""v'p nh.- Bt Bltr.. o
RiT=1n+h ntl n+1 ' ntp
(A1)

n+p B\

+f 2 (6.

A=n+1 4

The last equation turns to

y
7% =—1‘Z b/ (T4, RIS T, ip,'i) “Byf nhre- Bt -+ n'r

2 Aointn n+1 n+p
+f n+p bﬁ)z
A=n+1 4
1 p ; ¥4 ®
=—2‘"§1n+£ {—'(_1) [ iy Gyt ™ ; (—1) (pi,---2k~--ih~-~¢pg'lki

(h=k)

+ pi .-.ik...i...ip gihik)} gdﬂBﬁd 7’l¢1 .o -Baiﬂ .o nip

n+1 n+p

by virtue of our assumption, (1.19) and (2.4). Thus by means of the skew
symmetry of T}.. we have

—__nZ( ) rpd-..ih... tee ﬁih-.. nip
n+ n+1 n+h n+p
+f 5 (B
A=n+1 A

Therefore by means of Green’s theorem we obtain the following integral
formula:

an [ (75 0pr—n 5 (=10 870,00, 1t A0 0 AV =0

A=n+1 A k=1 n+h n+1 n+h ntp

Eliminating S 1) BP0yt e A 0 AV
PR r=1 nt+h

n+1 nt+h n+p

from (I) and we obtain

(3. 6) Svn f;f:;H {b,,; b— L (by}}av =0.

Hence we have the following theorem :

TueoreM 3.2. Let M™* be a (n+p)-dimensional Riemannian mani-
fold of constant curvature which admits a vector field & generating a con-
tinuous one-parameter group of conformal transformations in M™*? and V™
a closed orientable submanifold in M™* such that
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(1) the mean curvature vector field H® of V™ is parallel with respect
to the connection induced on the normal bundle,

(i1) the connection induced on the normal bundle is trivial,
(iil) the scalar function f has fixed sign on V™.

Then the submanifold V™ is totally umbilical.

Proor. From (3.6) and our assumption we have
by b — L (b7 =0,
4 4 n 4

because b&,; b*— %(br’)2 is non negative. Thus this equation shows that
4 A A
V™ is totally umbilical by means of Lemma 1.1.

ReEMARK. When p=1, that is, V” is a closed orientable hypersurface

in M**!, Euler-Schouten unit normal vector n’ is the unit normal vector n°
i

of V*. In this case our assumption (i) and (ii) in [Theorem 3.2 is always
satisfied. Accordingly when p=1, [Theorem 3.2 coincides with Theorem
0.1 due to Y. Katsurada. .

From the above theorem and the following theorem due to M. Obata

[37], we obtain [Theorem 3.3

THEOREM (M. Obata). Let R™'? (n+p=2) be a complete Riemannian
manifold which admits a non-null function ¢ such that ¢,;;=—cg.; (c=

const.). Then R™™® is isometric to a sphere of radius ——lc—

THEOREM 3.3. Let M™** be a (n+p)-dimensional Riemannian mani-
fold of constant curvature which admits a vector field & generating a con-
tinuous one-parameter group of conformal transformations in M™** and V"
a closed orientable submanifold in M™*® such that |

(i) the mean curvature vector field H*® of V™ is parallel with respect
to the connection induced on the normal bundle,

(ii) the connection induced on the normal bundle is trivial,
(iii) the scalar function f has fixed sign on V™,
(iv) @=xconst. along V™. :

Then the submanifold V™ is isometric to a sphere.

Proor. In §2, we proved that M”**? admits a non-zero scalar function
¢ which satisfies the equation (2.10). On the other hand, by virtue of
Theorem 3.2, every point of V” is totally umbilic. Since H,=const. and
H=0 (A=n+2,---,n+p), we have
A
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(3.7) bop = A (2=const.)
o

(3-8) bas=0. (A=n+2,n+3, -, n+p)
A

Now we have

Pie = ¢;iBai .

Differentiating the above equation covariantly we have

(3- 9) ¢;a;ﬂ = ¢;‘5;.7'B¢¢ Bﬁj +¢;4H¢ﬁi .

From (2.10), (1.5), (3.7), (3.8) and (3.9), we obtain

(3. 10) Prazs = (—kp+ 29, ;zi)gaﬁ .

Differentiating the scalar ¢,; #° covariantly we have
E

(850 7°)e = Griss W* B+ §yy 10+ 50 I 2 *
E H E A
By means of our assumption (i), (1.7), (1.8), (2.10) and (3.7) we have
(¢;a: 7'11:);« = —19;. -

E
Hence we get

(3.11) 925;,;;2”' = —Ap+c. (c=const.)
Substituting (3. 11) into (3. 10) we obtain
(3.12) Biasp = { —(k+ 2)+ A gus .

Here 2+ A%0. Because, if 2+ #=0, then (3.12) becomes ¢.,,;=cAg,; from
which 4d¢=nc2, where 4 means the Laplacian operator on V”. This is

impossible unless ¢=const. Thus 2+ 4 being different from zero, we have,
from (3. 12),

_Ch — oy [ cA
(3.13) (¢ s )ﬁ <k+z>(¢ S )g,ﬁ.

Therefore we obtain
A g——A \e k) [g——C2 ).
(¢ Bt ) nlke+) <¢ g

Consequently it follows that £+ 42>0. Hence, by virtue of M. Obata’s the-
orem, V™ is isometric to a sphere.
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ReMaArRk. When p=1, [Theorem 3.3 coincides with [Theorem 0.2 due
to Y. Katsurada.

§ 4. Certain conditions for V* to be umbilical with respect to n’.
E

In this section we study on a closed orientable submanifold V” of codimen-
sion p in a Riemannian manifold M™*” of constant curvature without the
condition in § 3 that the connection induced on the normal bundle is trivial.

Let M™** be a (n+p)-dimensional Riemannian manifold of constant
curvature which admits a conformal Killing vector &% Then by virtue of
Corollary 2.6, M™*> admits a conformal Killing tensor field 7., of degree
p with the associated tensor field 0, ., .

We assume that the mean curvature vector field H*® of V™ is parallel
with respect to the connection induced on the normal bundle.

Now we put

(4. 1) Ve = Ttl"'ip Bail niz ce nil’ N
n+2 n+p
(4. 2) W, = b, T, Bint.. o ntp,
E n+2 ntyp

LEMMA 4.1. The vector v, and w, are independent of the choice of
mutually orthogonal unit normal vectors.

Proor. Let #' (A=n+2,---,n+p) be another p—1 mutually orthogonal
A

unit normal vectors orthogonal to 7#* = n’. Then there exists an orthogonal
n+1

E
matrix (Uup), (A, B=n+2, ---,n+p) such that det. (U z)=1. Therefore by
means of (3.5) and the skew symmetry of T; ..,,, we find

T = [ 2 1
Vg = T':x’“ipBa Vit P
n+2 n+p

= Til»@p B2 U,iz4, n%) (2 Uy, nP)
H 4, 4 4,

=A ZASgn(n+2’ e, n+l’} Un+2A2'“Un+pAp'Tq: B nte-- ntp
prady

g
A2 y "7y Ap vop n+2 n+p
=det. (U 3)T;..; Brnb-- - n'r=1v,.
v n+2 n+p

The above equation shows that v, is independent of the choice of p—1 mu-
tually orthogonal unit normal vectors orthogonal to n’. In the same way
E

we can prove that w, is independent of the choice of mutually orthogonal
unit normal vectors. Consequently v, and w, are the vector fields on V™.

Differentiating (4. 1) covariantly we have
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=T;,. ip,iBﬂ B nte... pnto

n+2 n+p
+ Typg) Hoght e
n+2 n+p

+T5,..

thip

Bﬂa,&...f( by Bin+ 5T p"n+”n¢h) o

n+2 h=1 n+n A=n+1 n+p

by means of (1.7).
Multiplying the last equation by ¢g*, by virtue of our assumption, (1.5) and
(3.1) we get

Ve = Ty 4569" B B '+ - m' +fg¢ﬂbaﬁ

n+2 n+p
»
—_— Z b Til-"ik'--dp Bail ... B;h eoo 1
h=2n+2 n+2 ntp

The above equation turns to

vﬂ;c = 'l_(T g ,¢+ Tii 3 ,i ) ¢ﬂB'f_B“':l niz ) nip
2 ? P n+2 n+p
+nfH,
1 [, B \
= 7 o;.. 20,6 22( ].) . (‘oil'--ih"'ip 9ipt O B g,,;h,,;l)I
. gaﬁBﬁiBail ndz ip + anIl
n+2 n+p

by virtue of our assumption, (1.11), (2.4) and the skew symmetry of Tj..,;
Thus we have

“a=nfH +np; ., n'- n'.

d i”n+2 ntp
Therefore by means of Green’s theorem we get the following integral
formula:

(1) | (FHA0ysy s nidV =0,

n+2 n+p

Next, differentiating (4. 2) covariantly we have

We;p = ( « ,p+ Z f" T) . T‘”;"”‘pBril Nz ... o

A=n+1 n+2 n+tp
+b T, ... ;e B B n' -
» n+2 n+p
+ b, T¢ Hng 1 n n’ip
r v n+2 nt+p

+ 8 Tty B z:( BB B TV yns) e i,
ntp

n+2 h=2 n+h A=n+1
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by means of (1.7).

Multiplying the above equation by g¢*, by virtue of our assumptlon (1.5)
and (3.1) we find
= b sa Lips, Bint...n'»
n+2 n+p

+b T,.. ;B Bl n oo

n+2 n+p
+ f b,, b

- Z b 7‘b¢ T¢ “gp ¢pB¢ln B;h'” n’:”

=2K nth n+2 n+p

The above equation turns to

W, 1 bar(Ti @,,,q:"‘Tu:, dpit, )B,f B/ ns - - n'p

“ 2 +2 n+p
+f b., b
Z ber b Ti -~ih~~-flpBri1 nte.. .Bd'i]z oo ntp
h=2F n+h n+2 n+p

3
= __Z_Ebar {2.‘%2...% F% th(—]_)’l(P,; wdyty Qg T Pss, 20, g%.;‘)}

. BIBS nts- no-+fby b7,

n+2 n+p

by virtue of our assumption, (1.19), (2.4) and the skew symmetry of T, ..,
Thus we have

—fb,,ﬁb P+nH, 0, a1 ERER (4]

+2 n+p

Therefore by means of Green’s theorem we get the following integral
formula:

(Im) [ (£t ER0 g, 1 m9)AV =0
V7D

E E n+2 n+p

From (II)-(I)xnH,, we obtain
(4. 3) S Fbos b —nHAAV =0.
Vn B bl

This result is analogous to Morohashi’s result [36]. -
Hence we have the following theorem:

THEOREM 4.2. Let M™* be a (n+p)-dimensional Riemannian mani-
fold of constant curvature which admits a vector field & generating a con-
tinuous one-parameter group of conformal transformations in M"** and V"
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a closed orientable submanifold in M™® such that

(i) the mean curvature vector field H*® of V™ is parallel with respect
to the connection induced on the normal bundle,
(i) the scalar function f has fixed sign on V™.

Then the submanifold V" is umbilical with respect to Euler-Schouten unit

vector n'.
y

Proor. From (4.3) and our assumptions we have

bes b —nH2 =0,
E E

because b,;6**—nH? is non negative. Thus this equation shows that V”
rE F
is umbilical with respect to Euler-Schouten unit vector 7° by means of

o

REMARK. When p=1, [Theorem 4.2 coincides with Theorem 0.1 due
to Y. Katsurada.

Department of Mathematics,
Hokkaido University
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