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Introduction. We shall be concerned with the decompositions of
function algebras which are finer than the maximal antisymmetric decomp0-
sition. This fact was pointed out by Arenson [1] and Nishizawa [7], who
respectively used the methods of Glicksberg [4] and Bishop [2]. Throughout
the paper, underlying space $X$ is a compact Hausdorff space and $C(X)$ denotes
the algebra of all continuous complex-valued functions on $X$. We aim at
the more systematic investigations of such decompositions of closed subspaces
of $C(X)$ and of function algebras on $X$. Now we state our results in more
detail, and define some usual notations which are used in this paper.

In \S 1, we consider a closed subspace $B$ of $C(X)$ . We show that the
decompositions by the Glicksberg-Arenson method are always the decomp0-
sitions by the Bishop-Nishizawa method, and that there exists the finest
decomposition for each of the two methods. In \S 2, we consider a function
algebra $A$ on $X$. We show that there exists a one-t0-0ne correspondence
between $p$-sets in $th_{\acute{c}}$ base space $X$ and $p$-sets in the maximal ideal space
$-\prime \mathscr{M}(A)$ . In virtue of this correspondence, we investigate the relations be-
tween the decompositions on $X$ and those on -

$-\mathscr{M}(A)$ . In \S 3, we consider
the rational function algebra $R(X)$ on a compact plane set $X$. In \S 4, we
show that the difference between the maximal antisymmetric decomposition
and the finer decomposition is of topological character. In \S 5, we shall
$co\mathfrak{n}_{-}struct$ three examples. Especially, Example 1 indicates that there must
exists a decomposition which consists of more elementary components instead
of the maximal antisymmetric components: Nevertheless, elementary com-
ponents will not make simple algebras in general treatments.

Notations. $M(X)$ denotes the usual Banach space of all complex finite
regular Borel measures on $X$. For $\mu$ in $M(X)$, we shall employ the nota-
tional abuse: $\mu(f)=.\backslash \cdot fd\mu$ . Let $B$ be a closed subspace of $C(X)$, and we
$\overline{d}enote$ by $B^{\infty^{I}}$ , $b(B^{\perp})$, and $b(B^{\perp})^{e}$ the total of anihilating measures of $B$, the
unit ball of $B^{\perp}$ , and the total of extreme points of $b(B^{\perp})$ , respectively. Let
$E$ be a closed subset of $X$, and we denote by $f|E$ the restriction of the
function $f$ to $E$ and $B|E=\{f|E:f\in B\}$ . Let $B_{E}$ denote the uniform closure
of $B/E$ in $C(E)$, and $\mu_{E}$ the restriction of $\mu$ to $E:\mu_{E}(K)=\mu(K\cap E)$ . $M(E)$

can be considered as the closed subspace of $M(X)$ as the usual way.
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1. Decompositions of closed subspaces of $C(X)$ . Let B be a closed
subspace of $C(X)$ . We consider the family $\mathcal{E}$ of closed subsets of X, which
satisfies the following condition :

(D) If $f\in C(X)$ and $f|E\in B_{E}$ for all $E\in \mathcal{E}$ , then $f\in B$.
This condition suggests that $B$ is obtained by connecting the elements of
$B_{E}$ continuously on $X$ . In this sense, we say $B$ is decomposed to $\{B_{E}\}_{E6\dot{6^{J}}}$ .
This condition is equivalent to the following:

$(D_{1})$ $B^{\perp}=weak^{*}$ closed linear span of $\bigcup_{E\in \mathcal{E}}B_{E}^{\perp}$ .
For if $\mathcal{E}$ satisfies $(D_{1})$, and if $f\in C(X)$ and $f|E\in B_{E}$ for all $E\in \mathcal{E}$, then

$f1B_{E}^{\perp}$ for all $E\in 6^{3}$ . Hence $f1B^{\perp}$ , or $f\in B$. To prove the converse, suppose
$\mathcal{E}$ does not satisfy the condition $(D_{1})$ . Then there exist $f\in C(X)$ and $\mu\in B^{\perp}$

such that $\mu(f)\neq 0$ and $f1B_{E}^{\perp}$ for all $E\in \mathcal{E}$ , thus $f|E\in B_{E}$ for all $E\in \mathcal{E}$ and
$f\not\in B$. Hence (D) is not satisfied.

Here we give some stronger conditions which define the decompositions
of $B$.

(Sc) For any closed subset $S$ of $X$, $6^{3}|S=\{E\cap S:E\in \mathcal{E}\}$ satisfifies the
condition (D) for closed subspace $B_{S}$ of $C(S)$ .

(BN) For any $\mu\in b(B^{\perp})$ and $f\in C(X)$ such that $\mu(f)\neq 0$, there exist
$E\in \mathcal{E}$, and $\nu\in b(B^{L})$ such that

$|\nu(f)|\geq|\mu(f)|$ , and supp $(\nu)\subset supp(\mu)\cap E$ .
(GA) If $\mu\in b(B^{\perp})^{e}$, then there exists $E\in \mathcal{E}$ such that supp $(\mu)\subset E$ .
DEFINITION 1. 1. Let $\mathcal{E}$ be a family of closed subsets of X. If $\mathcal{E}$ satis-

fifies a condition (C), where (C) denotes (D), (Sc), (BN), and (GA), then we
say $\mathcal{E}$ has the property (C), or $\mathcal{E}$ is $a(C)$-family for B. Moreover, if $6^{3}$

is a partition of $X$ ($i.e.$ , a pairwise disjoint, closed covering of $X$ ), then we
say $6^{3}$ has a property $(C^{*})$, or $6^{\gamma}$ is $a(C)$-partition for B. And we shall
use the notation $\mathcal{E}|S$ throughout the paper.

THEOREM 1. 2. Let $\mathcal{E}$ be a family of closed subsets of X. $Thm$ , for
the properties of $\mathcal{E}$ , the following relations hold:

$(GA)\Rightarrow(BN)\Rightarrow(Sc)\Rightarrow(D)$ .
To prove the theorem, we need two lemmas.
LEMMA 1. 3. For any closed subset $S$ of $X$, the following hold:
(i) $B_{S}^{\perp}=B^{L}\cap M(S)$ .
(ii) $b(B_{S}^{L})=b(B^{L})\cap M(S)$ .
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(iii) $b(B_{S}^{L})^{e}=b(B^{L})^{e}\cap M(S)$ .
PROOF: (i) is clear by the definition of $B_{S}$ , and (ii) follows from $(i)$ .

To prove (iii), we suppose $\mu\in b(B_{S}^{L})^{e}$, then $\mu\in b(B^{L})$ by (ii). Thus we take
$0<t<1$ , and $\nu$, $\lambda\in b(B^{L})$ such that $\mu=t\nu+(1-t)\lambda$. Then

$\mu=\mu_{S}=t\nu_{S}+(1-t)\lambda_{S}$ .
Therefore

$1=||\mu||\leq t||\nu_{S}||+(1-t)||\lambda_{S}||\leq 1r$

Thus we must have $||\nu_{S}||=||\lambda_{S}||=1$ , and this implies $\nu_{S}=\nu$ , $\lambda_{S}=\lambda$ . If
$\mu\in b(B^{L})^{e}\cap M(S)$, then (ii) implies immediately $\mu\in b(B_{S}^{L})^{e}$. This proves the
lemma.

LEMMA 1. 4. If a family $6^{\supset}$ of closed sets has the property (Sc) (or
(BN), (GA) $)$ for $B$, then, for any closed subsets $S$ of $X$, $\mathcal{E}|S$ has also the
property (Sc) (respectively (BN), (GA)) for $B_{S}$ .

PROOF: Since $(\mathcal{E}|S)|T=\{(E\cap S)\cap T:E\in \mathcal{E}\}=\mathcal{E}|T$ always holds for
any closed subset $T$ of $S$, the case (Sc) is clear. Suppose $\mathcal{E}$ is a (GA)-family.
If $\mu\in b(B_{S})^{e}$, then $\mu\in b(B^{L})^{e}$ by Lemma 1. 3; therefore there exists $E\in \mathcal{E}$ such
that supp $(\mu)\subset E$. Since $\mu$ is a measure on $S$, we have supp $(\mu)\subset E\cap S$.
This shows the case (GA). Now we assume that $\mathcal{E}$ is a (BN)-family; and
$f\in C(S)$, $\mu\in b(B_{S}^{L})$ such that $\mu(f)\neq 0$ . Let $g$ be a continuous extension of $f$

on $X$, then we have

$\mu(g)=\int gd\mu=\int_{E}fd\mu=\mu(f)\neq 0’$.

and $\mu\in b(B^{\perp})$ by Lemma 1. 3, (ii). Now, there exist $\nu\in b(B^{L})$ and $E\in \mathcal{E}$ such
that $|\nu(g)|\geq|\mu(g)|$ , and supp $(\nu)\subset supp(\mu)\cap E$. Since $\mu$ is a measure on $S$, it
follows supp $(\nu)\subset supp(\mu)\cap(E\cap S)$ . Thus we have $\nu\in b(B_{s^{L}})$ , and $|\nu(f)|=$

$|\nu(g)|\geq|\mu(g)|=|\mu(f)|$ . This shows that $\mathcal{E}|S$ has the property (BN).

PROOF 0F THE THE0REM: In the condition (Sc), put $S=X$, then we
see that (Sc) implies (D). To prove that (BN) implies (Sc), by Lemma 1. 4,
it is sufficient to show that (BN) implies (D); we assume that $6^{\backslash }$ satisfies
(BN). If $f\not\in B$, then there exists $\mu\in b(B^{L})$ such thal $\mu(f)\neq 0$ . By the assump-
tion, there exist $E\in \mathcal{E}$ and $\nu\in b(B^{L})$ such that

$|\nu(f)|\geq|\mu(f)|\neq 0$ ,$\cdot$ supp $(\nu)\subset supp(\mu)\cap E$ .

Then $\nu\in b(B_{E}^{L})$ and $\nu(f)\neq 0$ , so we have $f|E\not\subset B_{E}$ , therefore (D) hold. Finally,
we show that (GA) implies (BN). Under the assumption that $\mathcal{E}$ satisfies
(GA), take any $\mu\in b(B^{1})$, $f\in C(X)$ such that $\mu(f)\neq 0$ . Using Lemma 1. 4
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when $S=supp(\mu)$, $\mathcal{E}|S$ has the property (GA) for $B_{S}$ . The function $\nu\mapsto|\nu(f)|$

attains the maximum on $b(B_{S}^{L})$ at $\nu_{0}\in b(B_{S}^{L})^{e}$ . Therefore, there is a set
$S\cap E\in \mathcal{E}|S$ such that supp $(\nu_{0})\subset E\cap S$, and since $\mu\in b(B_{S}^{L})$, we have

$|\nu_{0}(f)|\geq|\mu(f)|$ , and supp $(\nu_{0})\subset supp(\mu)\cap E$ .
This shows that $\mathcal{E}$ has the property (BN). That completes the proof.

Next, concerning the properties (GA) and (BN), we shall show that
there exists the finest decomposition for each property ($c.f$ . Arenson [1],
Nishizawa [7] $)$ .

For the convenience of the notations, we agree to use the following:
Let $c_{1}^{n}$ , $\mathcal{E}_{2}$ , $\mathcal{E}_{\alpha}$ , and $\overline{\mathscr{F}}$ denote families of subsets of $X$. If, for any $E_{1}\in \mathcal{E}_{1}$ ,
there exists $E_{2}\in \mathcal{E}_{2}$ such that $E_{1}\subset E_{2}$ , then we shall say $\mathcal{E}_{1}$ is finer than $\mathcal{E}_{2}$ ,
and we denote $\mathcal{E}_{1}-\prec\backslash \mathcal{E}_{2}$ . For $\mathcal{E}_{\alpha}(\alpha\in \mathfrak{A})$, we define

$\bigwedge_{a\in\Re}\mathcal{E}_{\alpha}=t_{\alpha\epsilon?l}\cap E_{\alpha}$:$^{E_{\alpha}\in \mathcal{E}_{\alpha}\}}$

Let $S$ be a subset of $X$ which satisfies the following;

if $F\in\swarrow$, and $S\cap F\neq\emptyset$
,$\cdot$ then $F\subset S$ .

We shall say such a set $S$ is saturated with $\mathscr{F},\cdot$ and if all the elements of
$\mathcal{E}$ is saturated with $\mathscr{T}$,

’ then we shall also say $\mathcal{E}$ is saturated with $\mathscr{F}$ . The
following facts are easy to verify:

(1. 1) If all $\mathcal{E}_{\alpha}$ are partitions of $X$, then $\wedge \mathcal{E}_{\alpha}$ is a partition of $X$.
$\alpha$

(1. 2) If $\mathscr{F}$ is fifiner than all $\mathcal{E}_{\alpha}$ , then $\mathscr{F}\prec\wedge \mathcal{E}_{\alpha}$ .
$a$

(1. 3) If all $\mathcal{E}_{\alpha}$ are saturated with $\mathscr{F}$ , then $\wedge \mathcal{E}_{\alpha}$ is saturated with $\mathscr{F}r$

$a$

(1. 4) Let $\mathcal{E}$ be a partition of X. Then $\mathcal{E}$ is saturated with $\mathscr{T}_{r}.\iota f$

and only if $\mathcal{E}\succ \mathscr{F}$

THEOREM 1. 5. Let $\mathcal{E}_{1}$ , $\mathcal{E}_{2}$ , $\mathcal{E}_{\alpha}$ be families of closed subsets of $X$, and
$B$ be a closed subspace of $C(X)$ .

(i) If $\mathcal{E}_{1}\prec \mathcal{E}_{2}$ , and $\mathcal{E}_{1}$ has the property (C), then $\mathcal{E}_{2}$ has also the
property (C). Here (C) denotes (D), (Sc), (BN), and (GA).

(ii) Let $\mathcal{E}_{1}$ have the property (Sc) and $\mathcal{E}_{2}$ have the property (D), then
$\mathcal{E}_{1}\wedge 6_{2}$

’ has the property (D). Moreover, if $\mathcal{E}_{2}$ also has the
property (Sc), then $\mathcal{E}_{1}\wedge \mathcal{E}_{2}$ has the property (Sc).

(iii) If all $\mathcal{E}_{a}$ have the property (GA), then $\bigwedge_{a}\mathcal{E}_{\alpha}$ has the property (GA).

(iv) If all $\mathcal{E}_{\alpha}$ have the property (BN), then $\bigwedge_{a}\mathcal{E}_{\alpha}$ has the property (BN).

PROOF: (i) follows from the definitions.
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(ii) Let $f\in C(X)$ , and we assume that $f|E_{1}\cap E_{2}\in B_{E_{1}\cap E_{2}}$ for all $E_{1}\in^{\beta_{J}}\sim 1$ ,
$E_{2}\in \mathcal{E}_{2}$ . We let $E_{2}\in \mathcal{E}_{2}$ to be fixed. Then $\mathcal{E}_{1}|E_{2}$ has the property (D) for
$B_{E_{2}}$ . Thus, by the assumption, we have $f|E_{2}\in B_{E_{2}}$ . Since this holds for
any $E_{2}\in \mathcal{E}_{2}$ , we have $f\in B$. Now we assume that $\mathcal{E}_{2}$ has the property (Sc).
Then, for any closed subset $S$ of $X$ , both $\mathcal{E}_{1}|S$ and $\mathcal{E}_{2}|S$ have the
property (Sc) for $B_{S}$ . Since $(\mathcal{E}_{1}\wedge c_{2}^{\cap})|S=(\mathcal{E}_{1}|S)\Lambda(\mathcal{E}_{2}|S)$ , the first half implies
$(\mathcal{E}_{1}\wedge \mathcal{E}_{2})|S$ has the property (D).

(iii) Clearly, $\mathcal{E}_{\alpha}$ is a (GA)-family if and only if $\mathcal{E}_{\alpha}\succ^{-}\langle supp(\mu):\mu\in b(B^{\perp})^{e}\}$ .
Thus (iii) follows from (1. 2).

(iv) To execute the proof, we may assume that $\{\mathcal{E}_{\alpha}\}$ is well-0rdered:
$\mathcal{E}_{0}$ , $\mathcal{E}_{1}$ , $\cdots$ , $\mathcal{E}_{\alpha}$ , $\cdots(\alpha<\omega)$, where $\mathcal{E}_{0}=\{X\}$ . Set $\mathscr{F}_{\alpha}=\wedge \mathcal{E}_{\beta}$ . We note that
at the end $\omega$ of the transfinite seriese, $\swarrow^{_{\subset}}\omega$ coinsides $\wedge \mathcal{E}_{a}\beta<\alpha$ ; in the following,

$\alpha\epsilon\Re$

we shall prove that all $\swarrow^{},$

$\alpha$ have the property (BN), simultaneously. Let
$f\in C(X)$ and $\mu\in b(B^{1})$ such that $\mu(f)\neq 0$ . For each $\alpha$, we wish to choose
the measures $\mu_{\alpha}\in b(B^{L})$ (for $\alpha\leq\omega$), and the sets $E_{\alpha}\in \mathcal{E}_{\alpha}$ (for $\alpha<\omega$) which satisfy
the following:

$(*)\{$
(a) $\mu_{0}=\mu$

(b) supp $(\mu_{a})\subset supp(\mu_{\beta})\cap E_{9l}$ , $|\mu_{\alpha}(f)|\geq|\mu_{\beta}(f)|$ for any $\beta<\alpha$ .
We shall constract, by transfinite induction for $\delta(\leq\omega)$ , the measures $\mu_{\alpha}\in b(B^{L})$

$(\alpha\leq\delta)$ and the sets $E_{\alpha}\in \mathcal{E}_{\alpha}(\alpha<\delta)$ satisfying $(*)$ . When $\delta=0$ , $(*)$ holds for
the measure $\mu_{\delta}=\mu$ . Now we assume that the measures $\mu_{\alpha}(\alpha\leq\tau)$ and the
sets $E_{\alpha}(\alpha<\tau)$ have been constracted for all $\tau<\delta$ . If $\delta$ has the immediately
before element $\gamma$ , then, let $S= \bigcap_{\alpha<\gamma}E_{\alpha}$ , we have supp $(\mu_{\gamma})\subset S$ , or $\mu_{\gamma}\in b(B_{S}^{L})$ .
Since, by Lemma 1. 4, $\mathcal{E}_{\gamma}|S$ has the property (BN) for $B_{S}$ , there exist
$\mu_{\delta}\in b(B_{S}^{L})$ and $E,$ $\in \mathcal{E}_{\gamma}$ such that $|\mu_{\delta}(f)|\geq|\mu_{\gamma}(f)|$ and supp $(\mu_{\delta})\subset E_{\gamma}\cap supp(\mu_{\gamma})$ .
Then $\mu_{\alpha}(\alpha\leq\delta)$ and $E_{\alpha}(\alpha<\delta)$ satisfy $(*)$ . If $\delta$ has not the immediatly before
element, then, let $\mu_{\delta}$ be a weak* cluster point of $\{\mu_{\alpha}\}_{\alpha\backslash ’\delta}$ in $b(B^{\perp})$, it is easy
to verify supp $(\mu_{\delta})\subset supp(\mu_{\alpha})$ and $|\mu_{\delta}(f)|\geq|\mu_{\alpha}(f)|$ for $\alpha<\delta$ . Hence, the
measures $\mu_{\alpha}(\alpha\leq\delta)$ and the sets $E_{\alpha}(\alpha<\delta)$ satisfy $(\star)$ . This completes the
construction. Now we let $\nu_{\alpha}=\mu_{\alpha}$ and $F_{\alpha}= \bigcap_{\beta<\alpha}E_{\beta}$ , then

$|\nu_{\alpha}(f)|\geq|\mu(f)|$ , and supp $(\nu_{a})\subset supp(\mu)\cap F_{\alpha}$ .
This completes the proof.

REMARK. In the proof of (iv), the condition supp $(\nu)\subset supp(\mu)\cap E$ is
an essential fact. Nishizawa ([7]) has attended that Bishop had proved not
only the fact supp $(\nu)\subset E$ but also the fact supp $(\nu)\subset supp(\mu)\cap E$, and showed
that there exists the finest (BN)-partition of $p$-sets for function algebras. So
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the idea of this proof entirely due to her.
In virtue of this theorem,

$\mathscr{E}_{GA}=\Lambda\{6$
’ : $\mathcal{E}$ has the property $(GA)\}$

is the finest closed set’s family which satisfies the property (GA), and

$\mathscr{E}_{BN}=\Lambda\{\mathcal{E}:\mathcal{E}$ has the property $(BN)\}$

is the finest closed set’s family which satisfies the property (BN). In other
words the following holds.

COROLLARY 1. 6. Let $\mathcal{E}$ be a family of closed sets.

(i) $\mathcal{E}$ is $a(GA)$-family if and only if $\mathcal{E}\succ\sim \mathscr{E}_{GA}$ .
(ii) $\mathcal{E}$ is $a(BN)$-family if and only if $\mathcal{E}\succ \mathscr{E}_{BN}$ .
However, in the case (GA), we have only to consider {supp $(\mu):\mu\in b(B^{L})^{e}$},

and yet, $\mathscr{E}_{GA}$ contains many redundant sets which are all closed subsets of
supp $(\mu)$ for $\mu\in b(B^{\perp})^{e}$ . Similarly, $\mathscr{E}_{BN}$, also contains redundant sets; but these
sets can not be pointed out distinctly.

If we only consider the partitions of $X$ as the family of closed sets,

then
$\mathscr{E}_{GA}^{*}=\Lambda\{\mathcal{E}:\mathcal{E}$ is a $(GA)- partition\}$

$\mathscr{E}_{BN}^{*}=\Lambda\{\mathcal{E}:\mathcal{E}$ is a $(BN)- partition\}$

are the finest partitions of $X$ for each property.
By the way, we consider families of $p$-sets for $B;p$-set is a closed set

$E$ of $X$ such that $\mu_{E}\in B^{L}$ for any $\mu\in B^{\perp}$ . If $E_{1}$ and $E_{2}$ are $p$-sets, then $E_{1}\cap E_{2}$

is a $p$-set, and if $E_{f}$ is a family of $p$-sets, then $\bigcap_{-}$.
$E_{f}$ is a $p$-set. Thus our

arguments up to this time hold for $p$-set’s families without change, and we
can also define $\mathscr{P}_{GA}$ , $\mathscr{P}_{BN}$ , $’-\mathcal{P}_{GA}^{*},.\mathscr{P}_{BN}^{*}$ , which correspond with closed set’s
families. By Glicksberg ([4], Th. 3. 3), the following relation holds for $(\mathscr{E}_{GA}’*$

and $\mathscr{P}_{GA}^{*}$ .
COROLLARY 1. 7. If a set $E\in \mathscr{E}_{GA}^{*}$ is a $G_{\delta}$-set, $thm$ $E$ is a $p$-set for $B$.

In particular, if $X$ is a metrizable space, thm $\mathscr{E}_{GA}^{*}=\mathscr{P}_{GA}^{*}$ .
For another finest decomposition in some sense, we can consider the

following; let $\mathscr{H}^{}$, be a certain family of subsets of $X$, and we consider the
families of closed sets, or of $p$-sets of $X$ which are saturated with $\mathscr{F}$ . In
fact, Arenson has studied the finest closed set’s families which are saturated
with the weakly analytic sets (see [1]). As one more example, we can con-
sider the famiy $\mathcal{E}$ of $p$-sets such that
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if $E_{1}$ and $E_{2}$ are distinct elements of $\mathcal{E}$ , then $E_{1}\cap E_{2}$

is a interpolation set, $i.e.$ , $B|E_{1}\cap E_{2}=C(E_{1}\cap E_{2})$ .
However, we don’t know any notable properties for these families.

2. Decompositions of function algebras. Let A be a function al-
gebra on X, i.e., uniform closed subalgebra of $C(X)$ which contains the
constant functions and separates the points of X. A closed subset E of $X$

is a peak set for A (frequently, we will also say “on X”) if there is a func-
tion $f\in A$ such that $f(x)=1$ for $x\in E$, and $|f(y)|<1$ for $y\in X\backslash E$, and then
the function f is said to be a peaking function for E. For function algebras,
E is a $p$-set if and only if E is a intersection of peak sets ([6], Th. 4. 8).
Let $\underline,\parallel(A)$ be the maximal ideal space of A, and . $\hat{f}$ denotes the Gelfand
transform of $f\in A$ . Then the total $\hat{A}$ of $\hat{f}$ is regarded as a function algebra
on $\Lambda-$ (A). For closed subset E of X,

$\overline{E}=\{a\inarrow \mathscr{M}$ (A): $|\hat{f}(a)|\leq||f||_{E}$ for all $f\in A\}$

is said to be the $A$-convex hull of E, where $||f||_{E}= \sup_{x\in E}|f(x)|$ . We need
the following well known facts which are easily seen.

(2. 1) $a\in\hat{E}$ if and only if there exists a representing measure for $a$

supported on E, i.e., there exists a positive measure $\mu$ on E such
that $\int fd\mu=\hat{f}(a)$ for all $f\in A$ . Then, necessarily, $||\mu||=\mu(X)=1$ .

(2. 2) $\tilde{E}$ is identifified with the maximal ideal space of $A_{E}$ , and then
$\hat{f|E}=\hat{f}|E$ for any $f\in A$ .

A subset S of X is said to be antisymmetric for A if all real functions
of $A|S$ are constants. Then (2. 1) and (2. 2) imply

(2. 3) E is antisymmetric for A if and only if $\tilde{E}$ is for $\hat{A}$ .
$Let.\mathscr{F}=\{K\}$ be the family of maximal antisymmetric sets for A, then

it is easy to show that $\mathscr{F}$ is a partition of X by closed subsets. In our
terminology, Bishop ([2]) has proved that $- \mathscr{F}$ is a family of $p$-sets and has
the property (BN), and Glicksberg ([4]) has give the simple proof of the
fact: $.\mathscr{F}$ has the property (GA). Furthermore, he showed $that.\tilde{\mathscr{F}}=\{\overline{K}$ :
$K\in \mathscr{F}\}$ (we will use this notation without notice, in general) is the family
of maximal antisymmetric sets for $\hat{A}$ . Thus we obtain the following
theorem.

THEOREM. $Let.\mathscr{F}$ be the family of maximal antisymmetric sets for
function algebra A. Then $\mathscr{F}$ has the following properties.

(a) $- \mathscr{S}$ is a family of $p$-sets on $X$ and has the property (GA).
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(b) $.\mathscr{F}$
$\sim is$ the family of maximal antisymmetric sets for $\hat{A}$ .

In vatue of Lemma 1. 4, we obtain a generalization of a Glicksberg’s
result ([4], Corollary 3. 4).

COROLLARY 2. 1. Let $S$ be any closed subset ofX. $Thm$ $- \mathscr{F}|S=\{S\cap K$ :
$K\in.\mathscr{F}\}$ is a family of $p$-sets and $a(GA)$-partition for A. Moreover $(\overline{\mathscr{F}|S})$

$=\tilde{\mathscr{F}}’|\tilde{S}$ , thus $(.\overline{\mathscr{F}|S})$ is also a family of $p$-sets and $a(GA)$-partition for $\hat{A}_{\tilde{s}}$ .
The last statement will be made clear by Corollary 2. 4. Also, the

following corollary is not difficult to prove.

COROLLARY 2. 2. Let $\mathcal{E}$ be $a(C)$-family of closed sets. $Thm$ there
exists $a(C)$-family $\mathcal{E}’$ which consists of antisymmetric closed sets of $X$ and
is fifiner than $\mathcal{E}$ . Moreover, if $\mathcal{E}$ consists of $p$-sets, then $\mathcal{E}’$ also consists of
$p$-sets, and if $\tilde{\mathcal{E}}$ is a covering of $d$ $(A)$, then $\tilde{\mathcal{E}}’$ also is a covering of $\mathscr{M}(A)$ .
Here, (C) denotes (D), (Sc), (BN), and (GA).

Now we shall study the relations between the decompositions on $X$ and
the decompositions on $\vee \mathscr{A}(A)$ by $p$-set’s families.

THEOREM 2. 3. Let $E$ be a $p$-set for $A$ .
(i) If $a\in E$, then any $repre_{\backslash }\sigma enting$ measure for $a$ is supported on $E$.
(ii) For any closed subset $S$ of $X$,

$\overline{E\cap S}=\hat{E}\cap\tilde{S}$

In particular, if $E\cap S=\ell t$, then $\tilde{\Gamma_{-}^{r}.}\cap\tilde{S}=\emptyset$ .
(iii) $E$ is saturated with Gleason parts in $.\mathscr{M}(A)$ .
PROOF: Let $a\in\tilde{\Gamma^{\gamma}}$ . Then there exists a representing measure $\mu$ for $a$

supported on $E$. Let $\nu$ be any representing measure for $a$ . Then $(\mu-\nu)_{E}$

$=\mu-\nu_{E}\in A^{\perp}$ . Thus $\nu_{E}$ is also representing measure for $a$ . The norms of
representing measures are always equal to 1, and hence $\nu$ must be supported
on $E$. Therefore (i) holds. Let $a\in\tilde{T^{d}}\cap\tilde{S}$ , and take the representing $\mu$ for
$a$ supported on $S$. Then $\mu$ must be supported on $E$ by $(i)$ . So we have
$\tilde{E}\cap\tilde{S}\subset E\overline{\cap S}$. Clearly, the converse inclusion holds. This shows (ii). If
$a$ and $b$ belong to a same Gleason part, then there exist mutually absolutely
continuous representing measures for $a$ and for $b$ . Therefore (iii) follows
from $( i)$ .

COROLLARY 2. 4. Let $\mathcal{E}$ be a family of $p$-sets on $X$.
(i) $(\overline{\mathcal{E}|\acute{S}})=\tilde{\mathcal{E}}|\tilde{S}$ for any closed subset $S$ of $X$.
(ii) $\tilde{\mathcal{E}}is$ a covering of $.f$ $(A)$ if and only if

$\cdot$

$\mathcal{E}^{\cdot}\succ\{supp(\mu):\mu$ is a rep-
resenting measure for $A$}.
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THEOREM 2. 5. There is $a$ one-tO-One correspondence between $p$-sets $E$

on $X$ and $p$-sets $F$ on $\mathscr{M}(A)$ such that $\acute{\tilde{L}}^{i}=F$, and $F\cap X=E$. For this cor-
respondence, it follows that:

(i) $E$ is a peak set on $X$ if and only if $\tilde{E}$ is a peak set on $\epsilon \mathscr{M}(A)$ .
(ii) $\overline{\cap E_{f}}=\cap\tilde{E}_{e}$ , where $E_{f}$ is a $p$-set on $X$.

PROOF: Let $E$ be a peak set on $X$ and $f\in A$ a peaking for $E$. Then
$\hat{f}$ is a peaking function for $\tilde{L^{\gamma}}$ .. For, if $|\hat{f}(a)|=1$ , then we let $\mu$ be a rep-
resenting measure for $a$ and we have

$1=| \hat{f}(a)|=|\int fd\mu|\leq\int|f|d\mu\leq 1\tau$

Since $||f||\leq 1$ and $f$ is a continuous function, $|f|=1$ on the support of $\mu$ .
For $f$ is a peaking function for $E$, $|f(x)|=1$ implies $x\in E$, and we have
supp $(\mu)\subset E$. This shows $a\in\tilde{E}$ . Conversely, if $a\in\tilde{E}$, then $\hat{f}(a)=1$ . So, we
have

(1) $\overline{L\overline{\sqrt}}=\{a\in \mathscr{M}’(A):\hat{f}(a)=1\}$ ,

and $|\hat{f}(a)|<1$ for $a\in \mathscr{A}(A)\backslash \tilde{E}$. Hence $\tilde{E}$ is a peak set on $A$ $(A)$ . On the
other hand, let $F$ be a peak set on ,$\mathscr{M}(A)$ and $\hat{f}\in\hat{A}$ a peaking function for
$F$. Then

(2) $F\cap X=\{x\in X:f(x)=1\}$ .

Therefore $f$ is a peaking function for $F\cap X$ and $F\cap X$ is a peak set on $X$.
From (1) and (2), we obtain a one-t0-0ne correspondence for peak sets:

$\tilde{E}\cap X=E,\overline{F\cap X}=F$. Next, we prove (ii). Clearly, $\overline{\cap,E}_{f}\subset\cap\tilde{E}_{f}$ . To see
the equality, let $a\in\cap.\tilde{E}_{f}$ . Let $\mu$ be a representing measure

’

$for$ $a$ . Since
$a\in\tilde{E}_{f}$ and $E_{f}$ is a $p$-set on $X$, $\mu$ must be supported on any $E_{f}$ . Thus
supp $(\mu)\subset.\cdot\cap E_{\iota}$ , and we have $a\in\overline{\bigcap_{-}E‘}$ . Therefore (ii) holds. Finally, let $E$

be a $p$-set on $X$ and $F$ a $p$-set on $\circ \mathscr{M}(A)$ . We can write $E$ and $F$ as inter-
sections of peak sets, $i.e.$ , $E=\cap E_{f}$ , $F=\cap F_{e}$ , where $E_{f}$ is a peak set on $X$

and $F$, is a peak set on $\mathscr{M}_{\sim}(A).$

:

Then, $byf(ii)$ , we have
$\hat{L^{\gamma}}\cap X=(\cap.\tilde{L_{f}\forall})\cap X=\cap$

,
$(\tilde{E}_{f}\cap X)=\cap‘ E_{t}=E$ ,

$\overline{F\cap X}=\cap.\overline{(F_{f}\cap}X)=\cap.\cdot(\overline{F_{t}\cap X})=\bigcap_{-}F_{f}=F$

This completes the proof.
We will denote the essential set of $A$ by $E_{A}$ . The definition of $E_{A}$
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and the following properties are found in [6], \S 4. 4.
(2. 4) If $f\in C(X)$ and $f|E_{A}\in A|E_{A}$ , then $f\in A$ .
(2. 5) $E_{A}$ is a $p$-set and $\overline{E}_{A}’=E_{\hat{A}}$ .
(2. 6) If $F$ a set satisfifies the property (2. 4), then $E_{A}\subset\overline{F}$ .
THEOREM 2. 6. Let $\mathcal{E}$ be a family of $p$-sets on $X$.
(i) If $\mathcal{E}$ has the property (D) on $X$, then $E_{A}\subset\overline{\cup \mathcal{E}}$ , $where\cup \mathcal{E}$ &notes

$\cup E$.
EC-e

(ii) Let $\mathcal{E}$ has the property (D) on X. Then $\tilde{\mathcal{E}}$ has the property (D)
$on,\mathscr{M}(A)$ if and only if $E_{\hat{A}}\subset\overline{\cup\tilde{\mathcal{E}}}$ .

(iii) Let $\tilde{\mathcal{E}}$ has the property (D) on -
$-\mathscr{M}(A)$, and if $\tilde{\mathcal{E}}$ is a covering of

$\mathscr{M}’(A)$, $thm$ $\mathcal{E}$ has the property (D) on $X$.
(iv) Let $\mathcal{E}$ has the property (D) on X. Let $a$ be in $A(A)\backslash \cup\tilde{\mathcal{E}}$ . If

a function $f\in A$ does not vanish on $X$ and $\hat{f}(a)=0$, then $\hat{f}$ must
vanish at some points on $\cup\tilde{\mathcal{E}}$ .

(v) If $\tilde{\mathcal{E}}$ has the property (Sc) or (BN), (GA) on $.\mathscr{M}(A)$, then $\mathcal{E}$ has
the same property on $X$.

PROOF: (i) Let $f\in C(X)$, $f|\overline{\cup 6^{)}}\in A|\overline{\cup\rho.}$ . Then $f|E\in A|E$ for any
$E\in \mathcal{E}$ . Thus $f\in A$ . Now ( i) follows from (2. 6).

(ii) Suppose $\overline{\cup\tilde{\mathcal{E}}}\supset E_{j\hat{\{}}$ . Let $f\in C(_{\frac{-}{}}\mathscr{M}(A))$ and $f|\tilde{E}\in\hat{A}|\tilde{E}$ for all $E\in \mathcal{E}$ .
Restrict $f$ to $X$, we have $g=f|X\in C(X)$ and $g|E\in A|E$ for all $E\in \mathcal{E}$ . This
implies $g\in A$ . Since $\hat{g}|\hat{E}=\hat{g|E}=\hat{f|E}=f|\hat{L^{\tau}}$ for $E\in \mathcal{E}$ , we see that $g$ and $f$

agree on $\cup\tilde{\mathcal{E}}$, and hence, on $\overline{\cup\tilde{\mathcal{E}}}$ . By $E_{\hat{A}}\subset\overline{\cup\tilde{\mathcal{E}}}$ , $f|E_{\hat{A}}=\hat{g}|E_{\hat{A}}\in\hat{A}|E_{\hat{A}}$ . Thus
$f\in\hat{A}$ by (2. 4). This shows that $\tilde{\mathcal{E}}$ has the property (D). The converse
follows from $( i)$ .

(iii) For $a\in A(A)$, we denote the total of the representing measures
for $a$ by $M_{a}$ . Let $M_{R}= \bigcup_{a\epsilon x(A)}M_{a}$ . Then $M_{R}$ can be expressed as follows;

$M_{R}= \bigcap_{f,g\epsilon A}\{\mu\in\Sigma:\mu(f)\mu(g)=\mu(fg)\}$ ,

where $\Sigma=\{\mu\in M(X):||\mu||=\mu(X)=1\}$ .
Therefore $M_{R}$ is a weak* compact subset of $M(X)$ . Now we can naturally
regard $A(A)$ as a quotient space of $M_{R}$ . Let $f\in C(X)$, and suppose $f|E\in A|E$

for all $E\in \mathcal{E}$ . Define the function $\tilde{f}$ on $M_{R}$ by $\tilde{f}(\mu)=.\uparrow fd\mu$, then $\tilde{f}$ is a con-
tinuous function on $M_{R}$ . For any fixed $a\in_{a}\mathscr{M}(A)$, there is a $p$-set $E\in \mathcal{E}$

such that $a\in\tilde{E}$ . Since $\mu$ is supported on $E$ for $\mu\in M_{a},\hat{f|E}(a)=Jfd\mu$ . This
shows that the $value.\backslash \cdot fd\mu$ is independent of the choice $\mu\in M_{a}$ . Thus we
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can regard $\tilde{f}$ as a continuous function $g$ on the quotient space -
$-\mathscr{M}(A)$ .

Moreover, $g|\tilde{L^{\tau}}=\hat{f|E}\in\hat{A}|\tilde{L\overline,}$ for all $E\in \mathcal{E}$ . Since $\tilde{\mathcal{E}}$ has the property (D) on
$\sim \mathscr{M}(A)$, we have $g\in\hat{A}$ , and $g|X=f\in A$ .

(iv) Since $f$ does not vanish on $X$, $1/f\in C(X)$ . If $\hat{f}$ has no zero on
$\cup\tilde{\mathcal{E}}$, then $\hat{f}|\overline{E}$ is invertible in $\hat{A}|\hat{E}$ for any $E\in 6^{\gamma}$ , so we have l/(f $|E$ ) $=$

$(1/f)|E\in A|E$ for any $E\in \mathcal{E}$ . Hence, we must have $1/f\in A$ . This shows
that $f$ has no zero on -

$-,\nu f(A)$, and contradicts the assumption $\hat{f}(a)=0$ .
(v) It is clear by Lemma 1. 4. This completes the proof.
In the proof of (iii), $\cup\tilde{\mathcal{E}}$ may well lack of the point $a\in A(A)$ which

has a unique representing measure. So, if any $a\in \mathscr{M}(A)$ has a unique repre-
senting measure on $X$, then $\mathcal{E}$ has the property (D) on $X$ whenever $\tilde{\mathcal{E}}$ has
the property (D) on $\vee d$ $(A)$ . More generally we have the following:

COROLLARY 2. 7. If any $a\in A(A)$ has a unique Jmsen measure, $thm$

$\mathcal{E}$ has the property (D) on $X$ whenever $\tilde{\mathcal{E}}$ has the property (D) on $A$ $(A)$.
PROOF: Let $J_{R}$ be the total of the Jensen measures for all $a\in A(A)$ .

In this time, we can write

$J_{R}= \bigcap_{f\in A,\epsilon>0}\{\mu\in M_{R}$ : $| \hat{f}(a)|\leq\exp(\int\log(|f|+\epsilon)d\mu)\}$ .

Therefore $J_{R}$ is a weak* compact subset of $M(X)$, and we find that $J_{R}$ is
homeomorphic to $arrow d(A)$ . The remains of the proof is the same of (iii)

REMARK. In (ii), even if $p$-set’s family $\mathcal{E}$ is a (D)-partition on $X$, we
can construct an example such that $\tilde{\mathcal{E}}$ has not the property (D) on $A$ $(A)$

(Example 3). In (iii), if $\tilde{\mathcal{E}}$ fails to cover $arrow l(A)$, then there exists a counter
example (Example 2). For the converse of (v), even the following is un-
known.

QUESTION. If $a(GA)$-family 6’ of $p$-sets is a partition on $X$, $thm$ are
$\tilde{\mathcal{E}}$ a covering $of.\mathscr{M}$ $(A)$ ?

However, the following partial results hold.
THEOREM 2. 8. Let $a\in.-\mathscr{M}(A)\backslash X$.
(i) Suppose, for any neighborhood $U$ of $a$ in -

$-\mathscr{M}(A)$, there exists $f\in A$

such that $\hat{f}(a)=0$ and $\{b\in \mathscr{M}(A):\hat{f}(b)=0\}\subset U$. $Thm$ $a\in\overline{\cup\tilde{\mathcal{E}}}$ for
any (D)-family $\mathcal{E}$ of $p$-sets on $X$.

(ii) Suppose $a$ has a unique represmting measure, and the Gleason
part which contains $a$, contains at least two point. $Thm$ $a\in\cup\tilde{\mathcal{E}}$

for any (GA) family $\mathcal{E}$ of $p$-sets on $X$.
PROOF: (i) Let $a\not\in\overline{\cup\tilde{\mathcal{E}}}$. There is a neighborhood of $a$ such that
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$U\cap((\overline{\cup\tilde{\mathcal{E}}})\cup X)=\emptyset$ , and then there exists a function $f\in A$ such that $\hat{f}(a)=0$

and $\{b\in-\mathscr{M}(A):\hat{f}(b)=0\}\subset U$. Thus we obtain the function $f\in A$ which does
not vanish on $X$ and $\hat{f}(a)=0$ . This contradicts Theorem 2. 6, (iv).

(ii) Let $m$ be a representing measure for $a$ and $H^{\infty}(m)$ the weak* closure
of $A$ in $L^{\infty}(m)$ . Note that $H_{0^{1}}(m)=$ {$f\in L^{1}(m):.\backslash \cdot fgdm=0$ for all $g\in H^{\infty}(m)$}
([8], Th. 2. 3. 8). Since $H_{0^{1}}(m)$ is a simply invariant space, there exists a
function $F\in H_{0}^{\infty}(m)$ such that $H_{0^{1}}(m)=FH^{1}(m)$ and $|F|=1a.e$ . $[m](c.f.$ $[3]$ ,
Chap. $V$, Th. 6. 2, and Th. 7. 2). Now we want to show that $\mu=Fm\in b(A^{L})^{e}$ .
Clearly, $\mu\in b(A^{\perp})$ . Thus we let $\mu=t\nu_{1}+(1-t)\nu_{2}$ , where $0<t<1$ , and $\nu_{1}$ ,
$\nu_{2}\in b(A^{\perp})$ . Let $\nu_{i}=h_{i}m+\nu_{i}’$ be the Lebesgue decomposition of measure $\nu_{i}$ for
$i=1,2$ . Then we have

$\mu=th_{1}m+(1-t)h_{2}m$

Thus we must have $\nu_{i}=h_{i}m(i=1,2)$ in a manner similar to the proof of
Lemma 1. 3, (iii). Now $h_{i}1H^{\infty}(m)$, for $h_{i}m\in b(A^{\perp})$ . Therefore, $h_{i}\in H_{0}^{1}(m)$

$=FH^{1}(m)$ . Thus we can write $h_{i}=Fg_{i}$ , where $g_{i}\in H^{1}(m)$, and we have
$F=tg_{1}F+(1-t)g_{2}F$

Since $F\overline{F}=1$ , we obtain
$1=tg_{1}+(1-t)g_{2\{}$

On the other hand,

$||g_{i}||_{1}= \int|g_{i}|dm=\int|g_{i}F|dm=||h_{i}7n||=1r$

Since 1 is an extremal function of $H^{1}(m)(c.f.$ $[3]$ , Chap. $V$, Th. 9. 5, and
Lemma 9. 1), we must have $g_{1}=g_{2}=1$ , $i.e.$ , $\nu_{1}=\nu_{2}=\mu$, and hence, we obtain
$\mu\in b(A^{\perp})^{e}$ . Now there is a set $E\in \mathcal{E}$ such that supp $(\mu)\subset E$, and since supp (m)
$=supp(\mu)$, we have $a\in\hat{\dot{E}}^{\tau}$ . That completes the proof.

In the proof of (ii), our purpose was to find the element of $b(A^{\perp})^{e}$ which
is absolutly continuous to a representing measure for $a$ . Along these line
one can ask the following: If $a$ is in -

$-\mathscr{M}(A)\backslash X$ and the Gleason part which
contains $a$, contains at least two points, then are there an element of $b(A^{\perp})^{e}$

which is absolutly continuous to a representing measure for $a$ ?
For the representing measures for $A$ and the elements of $b(A^{\perp})^{e}$, we

note the following property.

THEOREM 2. 9. Let measure $\mu$ be a representing measure for $A$ or an
elemmt of $b(A^{\perp})^{e}$. $Thm$ , for any $p$-set $E$ on $X$,

supp $(\mu)\subset E$ or $|\mu|(E)=01$

PROOF: Let $\mu$ be a representing measure for $a\in\vee d(A)$ . Suppose
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supp $(\mu)\not\subset E$. Then $a_{k^{r}}E$. We may regard $\mu$ as a representing measure on
$\underline{.}\mathscr{M}(A)$, and we have $\mu-\delta_{a}\in\hat{A}$ . Here $\delta_{a}$ denote the unit point mass at $a$ . It
follows $(\mu-\delta_{a})_{E}=\mu_{E}\in\hat{A}$ . Since $\mu_{E}$ is a positive measure and anihilates 1,

we must have $\mu_{E}=0$ . Now let $\mu\in b(A^{\perp})^{e}$. Suppose $\mu_{E}\neq 0$ and $\mu_{x\backslash E}\neq 0$ .
Then we have

$\mu=||\mu_{E}||\frac{\mu_{E}}{||\mu_{E}||}+||\mu_{X_{t}^{\backslash }E}||\frac{\mu_{X^{\backslash }E}}{||\mu_{x\backslash E}||}$
,

and, $||\mu_{E}||+||\mu_{X\backslash E}||=1$ , $0<||\mu_{E}||$ , $||\mu_{X\backslash E}||<1t$

Since $E$ is a $p$-set, it follows $\mu/E||\mu_{E}||\in b$ (A L) and $\mu_{X\backslash E}/||\mu_{X\backslash E}||\in b(A^{1})$ . Thus
we must have $\mu=\mu_{E}/||\mu_{E}||=\mu_{X\backslash E}/||\mu_{x\backslash E}||$ . This contains self-contradiction.

REMARK. If there exists a (GA)-parition $\mathcal{E}$ of $p$-sets on $X$ such that
$\tilde{\mathcal{E}}$ does not cover -

$\sim \mathscr{M}(A)$, then we let $a\in \mathscr{M}(A)\backslash \cup\tilde{\mathcal{E}}$ and $\mu$ be a representing
measure for $a$ with minimal suppot, and we will find that $A_{\sup p(\mu)}$ has some
interesting property by Lemma 1. 4 and Theorem 2. 9.

3. Partitions of $\mathscr{M}(A)$ by $p-$sets and decompositions of $R(X)$.
DEFINITION 3. 1. Let $A$ be a function algera on X. Defifine $\hat{\mathscr{P}}_{*}=\{\hat{L}_{a}\}$

be the fifinest $p$-set’s partition of $\vee{?}(A)$, where $\hat{L}_{a}$ indicates the elmmt of
$\hat{\mathscr{P}}_{*}$ which contains $a$ . Let $\hat{L}_{a}\cap X=L_{a}$ and defifine the $p$-set’s partition $\mathscr{P}_{*}$

of $X$ by $\{L_{a}\}$ .
3. 2. PROPERTIES OF $\{L_{a}\}$ :

(i) $\tilde{L}_{a}=\hat{L}_{a}$ .
(ii) The sets $L_{a}$ are antisymmetric.
(iii) $\mathscr{P}_{*}$ is characterized as the fifinest $p$-set’s partition which is satu-

rated with all supports of representing measures for $A$ .
COROLLARY 3. 3. Let $\mathcal{E}$ be a $p$-set’s partition on X. The following

are equivalent.
(i) $\hat{\mathcal{E}}$ is a partition $of,-\mathscr{M}(A)$ .
(ii) $\mathcal{E}\succ \mathscr{P}_{*}$ .
(iii) $\mathcal{E}$ is saturated with all the supports of representing measures on $X$.
In general, $\{L_{a}\}$ may not define the decomposition of function algebra.

For an example, we propose the Cole’s $example.\theta$ However, we have the
following:

THEOREM 3. 4. Let $A$ be a function algebra such that the anihilating
measures for A which are singular to all representing measures are only
zero. Then $\mathscr{P}_{*}$ is $a(GA)$-partition for $A$ .
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PROOF: Let $\mu\in b(A^{\perp})^{e}$ . Then, by hypothesis, there is a representing
measure $\lambda$ for $a$ such that $\mu\ll\lambda$ ([5], Cor. 1. 3). By the property of $Lp_{*}$ ,
we have supp $(\mu)\subset supp(\lambda)\subset L_{a}$ .

Let $X$ be a compact plane set and $R(X)$ the uniform closure in $C(X)$

of all rational functions with poles off $X$. Since $R(X)$ satisfies the hypothesis
in Theorem 3. 4, $\mathscr{B}_{*}$ is a (GA)-partition for $R(X)$ . Moreover, for $R(X)$,
the following holds.

THEOREM 3. 5. Let $\mathscr{E}_{G}=$ { $P-:P$ is a Gleason part in $X$ }. Then $\mathscr{E}_{G}$

is $a(GA)$-family of closed sets.

PROOF: Let $\mu\in b(R(X)^{\perp})^{e}$ . Then there is a representing measure $m$

for $a\in X$ such that $\mu\ll m$ . Then, by the Wilken’s theorem ([9], Th. 3. 3),
we have supp $(\mu)\subset supp(m)\subset\overline{P}_{a}$ . Here, $P_{a}$ is the Gleason part which con-
tains $a$ .

In \S 5, we shall give an example of a compact plane set such that $R(X)$

is antisymmetric and $\mathscr{P}_{*}$ is a proper partition of $X$ (see Example 1).

4. Topological characterization. We have seen that $\mathscr{E}_{GA}^{*}$ , $\mathscr{E}_{BN}^{*}’$ , etc.
generally are finer than the family $\mathscr{F}$ of maximal antisymmetric sets. In
this section we shall show that if we decompose a function algebra A to
{$A_{E}\rangle_{E\in e}$ in some methods such that $\mathcal{E}$ is finer than $\mathscr{F}$ , then the family $\mathscr{F}$

of maximal antisymmetric sets determined by the condition that the sets of
$\acute{6}\grave{.}$ topologically interwine in X, where we only assume that $\mathcal{E}$ has the fol-
lowing property.

(S) For any $p$-set S which is saturated with $\mathcal{E}$ , $\mathcal{E}|S$ has the property
(D) for $A_{S}$ . (Note: $(Sc)\Rightarrow(S)\Rightarrow(D)$ .)

To state the theorem, we begin with the following definition; let $\Delta$ be
a general topological space. $C_{R}(\Delta)$ denotes all continuous real functions on
X. For two points $\delta_{1}$ , $\delta_{2}\in\Delta$, if $f(\delta_{1})=f(\delta_{2})$ for all $f\in C_{R}(\Delta)$, then we shall
say that $\delta_{1}$ and $\delta_{2}$ are $H$-equivalent. The total of the $H$-equivalent class
will be denoted by $\mathscr{H}(\Delta)=\{\Delta_{h}\}$ , and we define the partition $\mathscr{H}_{\alpha}=\{\Delta_{a}\}$ of
$\Delta$ for each ordinal number $\alpha$, by transfinite induction, as follows.

(i) If $\alpha=0$, then $\mathscr{H}_{0}=\{\Delta\}$ .
(ii) If $\alpha$ has not the immediatly be fore element, then $\mathscr{H}_{a}=\bigwedge_{\beta<a}\mathscr{H}_{\beta}$ .
(iii) If $\alpha$ has the immediatly before element $\beta$, then

$\mathscr{H}_{\alpha}=\bigcup_{\Delta_{b}\in \mathscr{H}_{\beta}}\mathscr{H}(\Delta_{b})$
.

We let $\sigma(\Delta)$ denote the minimum ordinal number $\alpha$ such that $\mathscr{H}_{\alpha}=-\mathscr{H}_{a+1}$ .
We shall call $\mathscr{H}_{\sigma(\Delta)}$ by $\check{S}ilov$ decomposition of $\Delta$, and if ${?}_{\sigma(\Delta)}$ consists of one
point sets $\{\delta\}$ for all $\delta\in\Delta$, then $\Delta$ will be said to be Hausdorff decomposable.
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THEOREM 4. 1. Let $A$ be a function algebra on X. Let $\mathcal{E}$ be $a(S)-$

partition for A which is fifiner than the family $\mathscr{K}$

, of maximal antisymmetric
sets. Let $\Delta$ be the quotimt space of $X$ which is obtained from $\mathcal{E}$ . $Thm$

the partition of $X$ which is defifined by the Silov decomposition $\mathscr{H}_{\sigma(\Delta)}$ of $\Delta$,
coinsides with $.\mathscr{K}$ .

PROOF: Let $q$ be the natural quotient mapping on $X$ onto $\Delta$ . We let
${?}_{\alpha}$ denote the partition of $X$ which is defined by $\mathscr{F}_{\alpha}$ , $i.e.$ , $\mathscr{F}_{\alpha}$ consists
of all the set $\tilde{\Delta}_{a}=q^{-1}(\Delta_{a})$ for all $\Delta_{a}\in \mathscr{N}_{\alpha}$ . Then it follows that;

(a) $\tilde{\Delta}_{a}$ is a $p$-set which is saturated with $C$ .
(b) ${?}_{\alpha}\succ.\mathscr{F}$ .

In fact, it holds for the case $\alpha=0$, clearly. We assume that (a) and (b) hold
for any $\beta<\alpha$ . If $\alpha$ has not the immediatly before element, then, by the
definition, $\Delta_{a}=\bigcap_{\beta<\alpha}\{\Delta_{b}\in \mathscr{B}_{\beta}^{\nearrow }: ^{\Delta_{a}}\subset\Delta_{b}\}$ . Therefore, $\check{\Delta}_{a}=\bigcap_{\beta<\alpha}\{\tilde{\Delta}_{b}\in \mathscr{S}_{\beta }: ^{\tilde{\Delta}_{a}}\subset\tilde{\Delta}_{b}\}$ .
Thus (1. 2) implies (b), and clearly, (a) holds. Now suppose $\alpha$ has the im-
mediatly before element $\beta$ . Let $K\in-\dot{\chi}$ . By the assumption, there is a set
$\Delta_{b}\in \mathscr{F}_{\beta}$ such that $K\subset j\tilde{4}_{b}$ . For $f\in C_{R}(\Delta_{b})$, $f\circ q$ is continuous on $\tilde{\Delta}_{b}$ and con-
stant on each set $E\in \mathcal{E}$ which is contained in $\tilde{\Delta}_{b}$ . The set $\Delta_{b}$ is saturated
with the family $\mathcal{E}$ and $\mathcal{E}$ has the property (S), so we have $f\circ q\in A|\tilde{\Delta}_{b}$ . It
follows that the function $f\circ q$ is constant on $K$, for $f\circ q$ is real valued on
$K$. This holds for any $f\in C_{R}(\Delta_{b})$ . Thus there is a set $\Delta_{a}\in{?}_{\alpha}$ such that
$q(K)\subset\Delta_{a}\subset\Delta_{b}$ . Therefore we obtain $K\subset\tilde{\Delta}_{a}$ , and (b) holds for ${?}_{\alpha}$ . To
prove (a), it suffies to show that $\tilde{\Delta}_{a}$ is a $p$-set. Let $\Delta_{b}/H$ be the quotient
space of $\Delta_{b}$ which is obtained by $H$-equivalence and $p:\Delta_{b}arrow\Delta_{b}/H$ the natural
quotient mapping. For $f\in C_{R}(\Delta_{b}/H)$ , it holds $f\circ p\in C_{R}(\Delta_{b})$ and $f\circ p\circ q\in A|\tilde{\Delta}_{b}$ .
Let $F$ be any closed set of $\Delta_{b}/H$. Since $\Delta_{b}/H$ is a compact Hausdorff space,
it is easy to verify that $(p\circ q)^{-1}(F)$ is a $p$-set for $A|\tilde{\Delta}_{b}$ . Especially, we identify
$\Delta_{a}$ with a point of $\Delta_{b}/H$, and we have $\tilde{\Delta}_{a}$ is a $p$-set for $A|\tilde{\Delta}_{b}$ . Since $\tilde{\Delta}_{b}$ is
a $p$-set for $A$, (a) follows. Now we see that ${?}_{\sigma(\Delta)}$

- $.\mathscr{F}$ . $If.\mathscr{K}$ is actually
finer than $\mathscr{N}_{\lambda(\Delta)}$ , then there is a set $\Delta_{s}\in \mathscr{A}_{\sigma(\Delta)}$ which is the union of several
maximal antisymmetric sets. Certainly, $\tilde{\Delta}_{s}$ is not antisymmetric, and hence
there is a function $f\in A$ such that $f|\tilde{\Delta}_{s}$ is nonconstant real valued on $\tilde{\Delta}_{s}$ .
Since $f|\tilde{\Delta}_{s}$ is constant on each set $K$ which is contained in $\tilde{\Delta}_{s}$ , $f|\tilde{\Delta}_{s}$ defines
a nonconstant real function on $\Delta_{s}$ . This contradicts the definition of $\{\Delta_{s}\}$

and completes the theorem.
COROLLARY 4. 2. Let $\mathcal{E}$ be $a(S)$-partition of closed sets which is fifiner

than $\mathscr{S}’$ . Then $\mathcal{E}$ coinsides with $\mathscr{F}$ if and only if the quotimt space ob-
tained from $\mathcal{E}$ is Hausdorff decomposable.



16 M. Hayashi

5. Examples. In Example 1, let X be a compact plane set as Fig. 1,
we shall see that $R(X)$ is antisymmetric algebra, while the finest $p$-set’s
partition ,$\mathscr{P}_{*}$ define a nontrivial decomposition for $R(X)$ . Example 2 shows
(D)-family 8 of $p$-sets on $A$ $(A)$ not necessarily define (D)-family $p|X$ on
$X$. Example 3 shows Theorem 2. 6, (ii) does not hold unconditionally. To
construct the last example, we are forced by Theorem 2. 8, (i) to use the
method of several complex variable.

EXAMPLE 1. Let $X$ be a compact set as Fig. 1. For example, we make
as follows; take the rectangle $\Gamma$ with the sides of ratio 2: 1, and we shall
denote its base by $X_{1,0}$ . We choose the sequence of rectangles $X_{1,1}$ , $X_{1,2},\cdots$

contained in $\Gamma$, which converges to $X_{1,0}$ , and set $X_{1}= \bigcup_{i=0}X_{1,i}$ . Next, we
choose the figure $X_{2}$ similar to $X_{1}$ with the longer side equal to the shoter
side of $\Gamma-$ We attach $X_{2}$ to the shoter side of $\Gamma$ We continue the same
method as in Fig. 1. We may assume $X_{1}$ , $X_{2}$ , $\cdots$ converges to 0, and we
set $X= \bigcup_{n=0}X_{n}$ , where $X_{0}=\{0\}$ . Then

Fig. 1.

(a) $R(X)$ is an antisymmetric algebra.

(b) $‘ P_{*}=\{X_{n,i} : _{i}\neq 0, n=1,2, \cdots\}\cup\{x\}_{x\in D}\cup\{0\}$ , where $D= \bigcup_{n=1}^{\infty}(X_{n,0}\backslash X_{n-1})$ .
(a) follows easily. (b) is surely known by intuition. However, we shall

prove more exactly. First, we note $C\backslash X$ is connected, so $A(X)=R(X)$ by
the Mergelyan’s theorem ( $c$ . $f$ . [3], Chap. $II$, Th. 9. 1). Here, $A(X)$ denotes
the total of continuous functions on $X$ which are analytic in the interior
of $X$ . We have only to prove $X_{k+1,0}$ is a peak interpolation set for
$R( \bigcup_{n=k+1}X_{n}\cup X_{0})$ ; indeed, if the assertion holds, then it is easy to see that

$\bigcup_{n=0}^{k}X_{n}$ is a peak set for $R(X)$ . Hence, $R(X)| \bigcup_{n=1}^{k}X_{n}=R(\bigcup_{n=1}^{k}X_{n})$ , and since $X_{n,i}$

$(i\neq 0,1\leq n\leq k)$ is a peak set for $R( \bigcup_{n=1}^{k}X_{n})$, we have $X_{n,i}(i\neq 0, n\neq 0)$ is a
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peak set for $R(X)$ . Also, it follows each point of $D$ is a peak point for
$R(X)$ . Now we should show our assertion. For the condition is the same,
it is sufficient to see that $X_{1,0}$ is a peak interpolation set for $A(X)$ . We use
the following lemma ($c.f$ . [3], Chap. $II$ , Th. 12. 5):

LEMMA 5. 1. Let $A$ be a function algebra on X. Let $E$ be a $p$-set for
$A$ , and $f\in A|E$. Then, for any positive continuous function $p$ on $X$ such
that $|f(y)|\leq p(y)$ for $y\in E$, there is a function $g\in A$ such that $g|E=f$ and

$|g(x)|\leq p(x)$ for all $x\in X$.
Let $f$ be any continuous function on $X_{1,0}$ . We must find the continuous

extension $g$ of $f$ such that $|g(x)|<||f||_{X_{1,0}}$ for $x\in X\backslash X_{1,0}$ , and $g$ is analytic
in the interior of $X$. Since $X_{i,0}$ is a peak interpolation set for $A(X_{i})$ , first,
we extend $f$ to a function $g_{1}$ on $X_{1}$ which yields to the conditions. Next,
we extend $g_{1}|X_{1}\cap X_{2}$ to a function $g_{2}$ on $X_{2}$ which yields to the conditions,
and so on. In above, we can take $g_{n}$ such that the norm $||g_{n}||_{x_{n}}$ tends to
0 as $narrow\infty$ . Thus we obtain the continuous function $g$ on $X$ which agrees
with $g_{n}$ on $X_{n}$ and $g(0)=0$ . This completes the assertion.

EXAMPLE 2. Let $X=\Delta\cross[-1,1]$ , where $\Delta=\{z\in C:|z|\leq 1\}$ and [–1, 1]
denotes the closed interval in the real line. Let

$A=\{\begin{array}{lllll}.f(z,t)f\in C(X)\cdot is analytic in |z|<1for each fi xed 0\leq t\leq 1c \end{array}\}$

Then the maximal ideal space $.Jf$ $(A)$ of $A$ is $X$. The $\check{S}^{I}i1ov$ boundary $\Gamma(A)$

of $A$ is {($z$, $t)\in X:|z|=1$ or $t\leq 0$}, and the essential set $E_{A}$ is $\{(z, t)\in X:t\geq 0\}$ .
We have the following:

(a) Let $E_{t}=\{(z, t)\in X:|z|\leq 1\}$ . The closed set $E_{t}$ is a peak set for $A$ ,

and $6^{\tau}=\{E_{t} : t>0\}$ has the property (D) on $\mathscr{M}’(A)$ .
(b) The $p$-set’s family $\mathcal{E}|\Gamma(A)$ has not the property (D) on $\Gamma(A)$ . More

precisely,
$t>0 \bigcup_{t}E_{t}\cap\Gamma(A)$

is not dmse in the essential set $E_{A}\cap\Gamma(A)$ of
$A|\Gamma(A)$ .

EXAMPLE 3. First, we take compact sets $X_{0}$ , $X_{1}$ , $X_{2}$ in $C^{2}$ ;

$X_{0}=\{(z_{1}, z_{2})\in C^{2}$ : $|z_{1}|^{2}+|z_{2}|^{2}\leq 1\}$ ,

$X_{1}=\{(z_{1}, z_{2})\in X_{0}$ : $|z_{2}| \geq\frac{1}{2}\}$ ,

$X_{2}=\{(z_{1}, z_{2})\in X_{0}$ : $|z_{1}| \geq\frac{1}{2}\}$ .

We denote by $P(X_{0})$ the uniform closure on $X_{0}$ of all polynomial functions,



18 M. Hayashi

and by $R(X_{i})(i=1,2)$ the uniform closure on $X_{i}$ of all rational functions
which are analytic on $X_{i}$ . It follows easily:

(5. 1) $X_{0}$ is polynomially convex, and $X_{1}$ , $X_{2}$ are rationally convex.
(5. 2) $S_{0}=\{(z_{1}, z_{2})\in C^{2}$ : $|z_{1}|^{2}+|z_{2}|^{2}=1\}$ is the $S’ilov$ boundary of $P(X_{0})$ .
(5. 3) $S_{i}=S_{0}\cap X_{i}(i=1,2)$ is the Silov boundary of $R(X_{i})$ .
Let $I=[0,1]$ and $\Delta=\{z\in C:|z|\leq 1\}$ , and let $S^{3}$ be the 3-sphere. We

define function algebras as follows;

$A_{i}=C(I)\otimes R(X_{i})\wedge(i=1,2)$ , and $A_{3}=C(S^{3})\otimes R(\Delta)\wedge$ .
Here, $\wedge\otimes$ denotes the uniform closure of algebraic tensor product. The
secure definition of tensor product and the following facts are compared
with [6], \S 8. 4.

(5. 4) For $i=1,2$ and for any closed subset $K$ of $I$, it follows that
(i) $A$ $(A_{i})=I\cross X_{i}$ , $\Gamma(A_{i})=I\cross S_{i}$ .
(ii) $K\cross X_{i}$ is a peak set for $A_{i}$ .
(5. 5) (i) $\vee d$ $(A3)=S3\cross\Delta$ , $\Gamma(A_{3})=S^{3}\cross\partial\Delta$ ,
where $\partial\Delta=\{z\in C:|z|=1\}$ .
(ii) $S^{3}\cross\{1\}$ is a peak interpolation set for $A_{3}$ .
Our example is obtained by pasting $A_{1}$ , $A_{2}$ , A3 to $P(X_{0})$ . To do this,

we need the following lemma; let $Q$ and $R$ be compact Hausdorff spaces.
Let $E$ be a closed subset of $Q$ and $\varphi$ a continuous mapping on $E$ into $R$ .
We denote by $Q\# R$ the direct sum of the spaces $Q$ , $R$, and define the
quotient space $Q\#\varphi R$ of $Q\# R$ by identifying $\{r\}\cup\varphi^{-1}(\{r\})$ to a point for
each $r\in\varphi(E)$ . Then we can easily verify that $Q\#\varphi R$ is a compact Hausdorff
space.

LEMMA 5. 2. Let $X$, $Y$ be compact Hausdorff spaces, and $A$, $B$ function
algebras on $X$, $Y$, respectively. Suppose the intersection of $X$ and $Y$, dmoted
by $E$, is not empty and a $p$-set for $A$ , and suppose $A|E\subset B|E$. Then,

$\tilde{A}=\{f\in C(X\cup Y):f|X\in A$ , $f|Y\in B\}$

is a function algebra on $X\cup Y$. For any closed set $F$ of $X\cup Y$,

(5. 6) $F$ is a $p$-set for $\tilde{A}$ if and only if $F\cap X$ is a $p$-set for $A$ and
$F\cap Y$ is a $p$-set for B. And $thm$ ,

$\tilde{A}|F=\{f\in C(F):f|F\cap X\in A|F\cap X$ , $f|F\cap Y\in B|F\cap Y\}$ .
Moreover, let $\tilde{E}_{A}$ be the $A$-convex hull of $E$, there exists the natural mapping
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$\varphi:\tilde{E}^{A}arrow_{-}.\mathscr{M}(B)$ and
(5. 7) $A$ $(\tilde{A})$ is homeomorphic to $r\mathscr{M}(A)\# wA$ $(B)$ .

Also,
(5. 8) $\Gamma(\tilde{A})=(\overline{\Gamma(A)\backslash E})\cup\Gamma(B)$ .
PROOF: (Later, we shall use the case: $E$ is a peak set for $A$ , so we

shall prove only in this case for simplicity. The general case follows from
the slight modification of this proof). We should note that if $f\in A$ and $g\in B$

are agree on $E$, then the continuous function $h$ on $X\cup Y$ is defined by
$h|X=f$ and $h|Y=g$ , and it follows $h\in\tilde{A}$ ; thus we have $\tilde{A}|Y=B$. In par-
ticular, for a function $f\in A$ which is constant on $E$, to extend $f$ on $Y$ con-
stantly, we define the function, denoted by $\tilde{f}$, of $\tilde{A}$ , and we fix a peaking
function $e\in A$ for $E$ in the following proof; note that $\tilde{e}$ is a peaking function
for $Y$ on $X\cup Y$. To prove that $\tilde{A}$ is a function algebra on $X\cup Y$, it suffice
to show that $\tilde{A}$ separates any distinct points $x$, $y$ of $X\cup Y$. When $x$ ,
$y\in X\backslash E$, there is a function $f\in A$ such that $f(x,)=0$ and $f(y)\neq 0$ . Then the
function $h=(\tilde{1-e)f}$ is separates $x$ and $y$ . The other case will be verified
more easily, and we have the first assertion. Now, let $F$ be a closed set
of $X\cup Y$ such that $F\cap X$ is a $p$-set for $A$ and $F\cap Y$ is a $p$-set for $B$. Let
$k$ be any fixed function of $\tilde{A}|F$ and $p$ a positive continuous function on
$X\cup Y$ such that $|k(x)|\leq p(x)$ for $x\in F$. We want to prove that there is a
function $h\in\tilde{A}$ such that $h|F=k$ and $|h(x)|\leq p(x)$ for $x\in X\cup Y$. Since $F\cap Y$

is a $p$-set for $B$, by Lemma 5. 1, there is a function $g\in B$ such that $g|F\cap Y$

$=k|F\cap Y$ and $|g(y)|\leq p(y)$ for $y\in Y$ (when $F\cap Y$ is empty, we let $g=0$ on
$Y)$ . Let $g_{1}$ be the function which agrees with $g$ on $E$ and agrees with $k$

on $F\cap X$. Then $g_{1}$ is continuous on $E\cup(F\cap X)$ . Since $E\cup(F\cap X)$ is a
$p$-set for $A$, $g_{1}\in A|E\cup(F\cap X)$ . Hence there is a function $f\in A$ such that
$f|E\cup(F\cap X)=g_{1}$ and $|f(x)|\leq p(x)$ for $x\in X$. For $f$ and $g$ agree on $E$, we
have the seeking function $h$ from $f$ and $g$ . This implies that $F$ is an inter-
section of peak set for $A$ . Clearly, the converse holds. Moreover, in above
argument, we only use the facts $k|F\cap X\in A|F\cap X$ and $k|F\cap Y\in B|F\cap Y$ to
construct the function $h$ . Hence we have $\tilde{A}|F=\{f\in C(F):f|F\cap X\in A|F\cap X$,
$f|F\cap Y\in B|F\cap Y\}$ . Now we shall show (5. 7). Since $a\in--\mathscr{M}(A)$ and $b\in.-X(B)$

are non-zero multiplicative linear functionals on $\tilde{A}$ , we can define the natural
mapping $\tau:\Leftarrow \mathscr{M}(A)$ #-\sim$t(B)arrow{?}(\tilde{A})$, $i.e.$ , for $h\in\tilde{A}$ ,

$\hat{h}(\tau(a))=(\hat{h|X})(a)$ , $\hat{h}(\tau(b))=(\hat{h|Y})(b)$ .
Also, we can define the natural mapping $\varphi:\tilde{E}^{A}arrow_{=}\chi(B)$ , $i.e.$ , for $g\in B$ and
$a\in\tilde{E}^{A}$ ,
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$\hat{g}(\varphi(a))=(\hat{g|E})(a)$ .

We have already noted $\tilde{A}|Y=B$. Thus $\tau$ is injective $on.-\chi$ $(B)$ . And, for
$a\in\overline{E}^{A}$ and $h\in\tilde{A}$ , we have

$\hat{h}(\tau(\varphi(a)))=(\hat{h|Y})(\varphi(a))=(\hat{h|E})(a)=(\hat{h|X})(a)=\hat{h}(\tau(a))$ .
Therefore, we obtain the natural mapping $\kappa:,-\mathscr{M}(A)\#\varphi.-\mathscr{M}(B)$- $A$ $(\tilde{A})$ from $\tau$ .
Now we have to show that $\tau$ maps onto $.\mathscr{M}(\tilde{A})$ and is injective on $.\vee\ell(A)\backslash \tilde{E}^{A}$.
Let $I_{E}=\{f\in A:f|E=0\}$ and $I_{Y}=\{h\in\tilde{A}:h|Y=0\}$ . Clearly, $I_{E}$ is isomorphic
to $I_{Y}$ by the correspondence $f$}$arrow\tilde{f}$. To prove “onto”,$\cdot$ we take any point
$a_{0}$ of $.\mathscr{M}(\tilde{A})$ . It is clear when $a_{0}\in \mathscr{M}(B)$ , so we assume $a_{0}\in A(\tilde{A})\backslash \mathscr{M}(B)$,
$i.e.$ , $|\hat{e}(a_{0})|<1$ . Since $1-\tilde{e}\in I_{Y}$ and $(1-\tilde{e})(a_{0})\neq 0$, $a_{0}$ is a non-zero multiplica-
tive linear functional on $I_{Y}$ . Thus a non-zero multiplicative functional $\emptyset$ on
$I_{E}$ is o.btained from $a_{0}$ ; indeed, $\phi$ is defined as follows;

$\phi(f)=f\hat{\tilde{(}}a_{0})$ for $f\in I_{E}$ .
Moreover, since $I_{E}$ is an ideal of $A$ , we can extend ($b$ uniquely to a multi-
plicative linear functional $a$ on $A$, $i.e.$ ,

$\hat{f}(a)=\phi((1-e)f)/\phi(1-e)$ for $f\in A$ .
Then, for any $h\in\tilde{A}$ , we have

$\hat{h}(\tau(a))=(\hat{h|X})(a)=\phi((1-e)(h|X))/\phi(1-e)$

$\sim\sim$

$=((1\overline{-e)(h|}X))(a_{0})/(\hat{1-\tilde{e}})(a_{0})$

$=((\dot{\overline{1}}-\tilde{\tilde{e})h})(a_{0})/(\hat{1-\tilde{e}})(a_{0})$

$=\hat{h}(a_{0})$ .
Thus $\tau$ maps onto $-\mathscr{M}(\tilde{A})$ . And above arguments also prove that $\tau$ is a
bijection on $\mathscr{M}(A)\backslash \tilde{E}^{A}$ onto $y1$ $(\tilde{A})\backslash \mathscr{M}(B)$ . Hence $\kappa$ is a homeomorphism
on $-\mathscr{M}(A)\#\varphi A$ $(B)$ onto $\mathscr{M}(\tilde{A})$, and we have (5. 7). To show (5. 8), we are
sufficient to notice $\Gamma(\tilde{A})=\overline{c(\tilde{A}})$ , where $c(\tilde{A})=$ {$x\in X\cup Y:\{x\}$ is a $p$-set for $\tilde{A}$ }.
Then (5. 8) follows from (5. 6). That completes the proof.

Now, we let $X$ be obtained by pasting together the compact spaces
$I\cross X_{1}$ , $I\cross X_{2}$ , $S^{3}\cross\Delta$ and $X_{0}$ along $\{0\}\cross X_{1}$ at $X_{1}$ , $\{0\}\cross X_{2}$ at $X_{2}$ , and $S^{3}\cross\{1\}$

at $S_{0}$ , respectively. We define the function algebra $A$ on $X$ by

$A=\{f\in C(X)\cdot. f|(S^{3}\cross\Delta)\in Af|X_{0}\in P(X_{0})\prime.3 f|(I\cross X_{i})\in A_{i} (i=1,2),\}$
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Then, by Lemma 5. 2,
(a) $\vee{?}(A)=X$ ,
(b) $\Gamma(A)=S_{0}\cup(I\cross S_{1})\cup(I\cross S_{2})\cup(S^{3}\cross\partial\Delta)$ .

Moreover,

(c) The family $\mathcal{E},$ $=\{\{t\}\cross S_{i}$ : $i=1,2$ , $0<t\leq 1\}\cup\{\{w\}\cross\partial\Delta:w\in S^{3}\}$ is
$a(D)$-partition of $p$-sets on $\Gamma(A)$ .

(d) $\tilde{\mathcal{E}}$ has not the property (D) on ${?}$ $(A)$ . Indeed, $\overline{\cup\tilde{\mathcal{E}}}$ does not contain
$(0, 0)\in X_{0}$ .

$\mathcal{E}$ is a $p$-set’s partition of $X$ follows from Lemma 5. 2. So, to make
sure (c), we suppose $f\in C(\Gamma(A))$ and $f|(\{t\}\cross S_{i})\in A|(\{t\}\cross S_{i})(i=1,2$ , and for all
$t\in I)$ , $f|(\{w\}\cross\partial\Delta)\in A|(\{w\}\cross\partial\Delta)$ (for all $w\in S^{3}$). By Lemma 5. 2, $A|(\{w\}\cross\partial\Delta)$

$=A_{3}|(\{w\}\cross\partial\Delta)$, and since $\{\{w\}\cross\partial\Delta:w\in S^{3}\}$ is the family of maximal anti-
symmetric sets for $A_{3}|(S^{3}\cross\partial\Delta)$ ( $c$ . $f$ . [8], \S 8. 4, Th. 16), we have $f|(S^{3}\cross\partial\Delta)$

$\in A_{3}|(S^{3}\cross\partial\Delta)$ . For $i=1,2$ , it follows $f|(\{0\}\cross S_{i})\in A_{i}|(\{0\}\cross S_{i})$ by uniform
convergence. Similary, since $\{t\}\cross S_{i}$ is the family of maximal antisymmetric
sets for $A_{i}|(I\cross S_{i})$, $f|(I\cross S_{i})\in A_{i}|(I\cross S_{i})$ . Therefore, there exist $f_{i}\in A_{i}$ for
$i=1,2$ , 3 such that $f_{i}|(I\cross S_{i})=f|(I\cross S_{i})(i=1,2)$ and $f_{3}|(S^{3}\cross\partial\Delta)=f|(S^{3}\cross\partial\Delta)$ .
If we see that $f_{1}$ and $f_{2}$ agree on $X_{1}\cap X_{2}$ , we can define the continuous
function $g$ on $(I\cross X_{1})\cup(I\cross X_{1})\cup(S^{3}\cross\Delta)$ such that $g$ coincides $f_{i}$ on each base
space. Then $g$ is analytic in the interior of $X_{1}\cup X_{2}$ . Thus $g$ is uniquely
extended to a function on $X_{0}$ which is analytic in the interior of $X_{0}$ by the
well-known theorem in $se\backslash$ eral complex variable, Since $X_{0}$ is polynomial
convex, we have $g|X_{0}\in P(X_{0})$ by Oka-Weil Aoproximation theorem, and hence,
(c) holds. Now, we restric our argument within $C^{2}$, and show that $f_{1}$ and

$f_{2}$ agree on $X_{1}\cap X_{2}$ . First, we note that $f_{1}$ and $f_{2}$ are coincide with $f$ on
$S_{1}\cap S_{2}$ . Let $r_{1}$ , $r_{2}$ be a pair of real numbers such that $r_{1}>1/2$ , $r_{2}>1/2$ , and
$r_{1}^{2}+r_{2}^{2}=1$ . Define the function $h(z_{1}, z_{2})$ by

$h(z_{1}, z_{2})= \frac{1}{(2\pi i)^{2}}\int_{|\xi_{2}|=r_{2}}\int_{|\xi_{1}|=r_{1}}\frac{f(\xi_{1},\xi_{2})}{(\xi_{1}-z_{1})(\xi_{2}-z_{2})}ae_{1}d\xi_{2}$

for $|z_{1}|<r_{1}$ , $|z_{2}|<r_{2}$ .
Then $h$ is analytic in $\{(z_{1}, z_{2}):|z_{i}|<r_{i}\}$ . The function $f_{2}(\xi_{1}, z_{2})$ is analytic
in $|z_{2}|<r_{2}$ for fixed $\xi_{1}$ such that $|\xi_{1}|=r_{1}$ ; and $f_{2}(\xi_{1}, \xi_{2})=f(\xi_{1}, \xi_{2})$ for $|\xi_{1}|=r_{1}$ ,
$|\xi_{2}|=r_{2}$ . Thus we have

$h(z_{1}, z_{2})= \frac{1}{2\pi i}\int_{|\xi_{1}|=r_{1}}\frac{f_{2}(\xi_{1},z_{2})}{\xi_{1}-z_{1}}ae_{1}$ .

Let $z_{2}$ tend to $\xi_{2}$ , then $f_{2}(\xi_{1}, z_{2})$ uniformly converges to $f_{2}(\xi_{1}, \xi_{2})$ for $|\xi_{1}|=r_{1}$ ,
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so we have

$\lim_{z_{2}arrow\xi_{2}}h(dz_{1}, z_{2})=\frac{1}{2\pi i}\int_{|\xi_{1}|=r}‘\frac{f_{2}(\xi_{1},\xi_{2})}{\xi_{1}-z_{1}}d\xi_{1}$

$= \frac{1}{2\pi i}\int_{|\xi_{1}|=r_{1}}\frac{f(\xi_{1},\xi_{2})}{\xi_{1}-z_{1}}ae_{1}=f_{1}(z_{1},\xi_{2})\tau$

Now, let $z_{1}(|z_{1}|<r_{1})$ to be fixed. Then $h(z_{1}, z_{2})$ is analytic in $|z_{2}|<r_{2}$ , and
extended to $|z_{2}|\leq r_{2}$ continuously. This extension agrees with $f_{1}(z_{1}, z_{2})$ on
$|z_{2}|=r_{2}$ and $f_{1}(z_{1}, z_{2})$ is analytic in $r_{2}<|z_{2}|<\sqrt 1-|z_{1}|^{2}$ . Thus, by Painlev\’e
Theorem, the function $h(z_{1}, z_{2})$ has analytic extension and agrees with
$f_{1}(z_{1}, z_{2})$ on $1/2\leq|z_{2}|\leq\mapsto 1-|z_{1}|^{2}$ Hence $f_{1}(z_{1}, z_{2})$ and $h(z_{1}, z_{2})$ agree on
$\{(z_{1}, z_{2}) : |z_{i}|<r_{i}\}\cap X_{1}$ . Similary, $f_{2}(z_{1}, z_{2})$ and $h(z_{1}, z_{2})$ agree on {$(z_{1}, z_{2})$ :
$|z_{i}|<r_{i}\}\cap X_{2}$ . By arbitariness of $r_{1}$ and $r_{2}$ , and continuity of $f_{1}$ and $f_{2}$ , we
see that $f_{1}$ and $f_{2}$ must agree on $X_{1}\cap X_{2}$ . Thus (c) holds. (d) follows clearly.
This completes Example 3.
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