Iterated mixed problems for d’Alembertians

By Rentaro AGEMI

§1. Introduction and main results

Let R%™ be the open half space {(¢ z); x=(, z,)=(x1, ***, 01, Tn)
x,, >0} with boundary x,=0. By (P, B;;j=1, -+, 1), briefly (P, B;) we shall
mean a mixed, or hyperbolic boundary value problem for a #-strictly hyper-
bolic operator P and boundary differential operators B;:

P(t, z; D,, D,)u(t, x)=f(t,z) in RI*,
By(t, 2’ ; D,, D,)u(t, 2, 0)=g,(¢, ) (j=1,---,I) on R".

a —

Here D,= —iﬁ(i=~/—1), D,=—1i and D,=(D,, ---,D,). Throughout

Ly
this paper we assume that all the coefficients of P and B, are C* and con-
stant outside a compact subset of R"*. Moreover, Q° denotes the principal
part of a differential operator Q and (r, o, 1) denote the dual variables of
(¢, &', z,) respectively.

Let P} (j=1,---,m) be d’Alembertians:

n—1
Pi(¢, x; 7,0, ) = —*+ay(t, x)2<22+ PN oﬁ) ,
k=1
0<am<t’ $>< t <a1(ta x)
and let B; (j=1,-:,m) be boundary differential operators of first order:

n—1
Bj(t, x'; 7,0, ) =2— 2] bu(t, 2')o—cy(t, 2')T,

k=1
where it will be assumed, unless otherwise indicated, that the b,,(¢ z'),
c;(¢, ') are real valued. Then for a permutation X=(%, ,m) a mixed

Jis s Im

problem (P, *B;)=(P,*B;;j=1,---,m) is said to be an iterated mixed, or
boundary value problem, if the symbols of P° and *BY have the following
forms:

Ptz 7,0, 2)=11 Pt 3 7,0, 2),
Jj=1
‘B¢, x'; 7, 0,2) = B} (t, 2 ; 7, 0, A),

k-1
‘B¢, x5 t,0, )= W6, 0, )1 P (¢ x; 10,8, (B=2,---,m)
h=1
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An iterated mixed problem (P,”B;) can be formally written the iterated
problems for d’Alembertians:

Piu=mv I P,v =, ’ Py Vpr=f"

Bj,u =0 l Bj,‘vl = C l Bjm'vm—l =0m
The purpose of this paper is to study the iterated mixed problems.
In the paper [9] Sakamoto treated the problem of the following type:
If (P;,B;) are L’-well posed® then is (P, B, so? Here BY=B)Q% and

Q=TI P!. However, this does not contain Neumann problem (P, D%!;
k+J

j=1,---,m) which is important and critical. Our results will show in parti-
cular that Neumann problem occupies a very critical position in our iterated
mixed problems.

Now we shall state main results. Let (P’ Bj),.) denotes a constant -
coefficient problem resulting from freezing the coefficients at a boundary
point (¢ 2/,0). Then we have the following.

THEOREM 1. Suppose that an iterated mixed problem (P,*B;) is L*~well
posed. Then every frozen problem (Pj, BS);..., is also L*~well posed for any
j=1,---,m, and furthermore it holds for every (t, x') and every pair (ji, jr+1)
(k=1,---,m—1) that if (P}, B ) (D5, ., B),, )ea)) does not satisfy the
uniform Lopatinski condition,” (P}, , B}, )¢.y(P3,, B}, )ew)) must be Neu-
mann problem, that is, B}, (Bj)=D,, corresponding to ji<jrs1 (Jrs1<J)

In order to reformulate we shall classify L?-well posed mixed
problems (P, B) of second order with constant coefficients. We say that
(P, B) is of type U if it satisfies the uniform Lopatinski condition and, among
other L’well posed problems, Neumann problem or another problem is of
type N or NU respectively. Moreover, we call (P, B) to be of type NU if
it is of type N or NU and call for convenience every L*well posed problem
to be of type U. For example, let P*(D,, D,)=—Di+a*(Di+---+ D)) and

B(D,, D,)=D,— n}—]lb,cD,c—cD,. Then (P, B) is L*well posed (of type U)
k=1

if and only if ac=4bi+---+b%_,, and it is of type U, NU, N if ac>
WO+, ac=4{BE+---+b:_, and c#0, c=b,=:-=b, =0, respec-
tively. Regarding (c, b, --+,b,_,) as (¢, xy, -+, Z,_1,0), this shows that the set
of L?-well posed mixed problems, i.e. the closed cone with vertex at the
origin, coincides with the section of the propagation cone for P by the

boundary x,=0. For these facts see §4.
An ordered set (P, B), ***,(P.., B..)) of the constant coefficient problems

(1), (2); For the definitions see §2.
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(P;, B,) of second order is said, for instance, to be of type (U, -, U) if all
the (P,, B,) are of type U. When the types of (P;, B;) are mixed, we define
in a similar way a type of (P, By), **,(Py, Bx). Then we have

THEOREM 2. Suppose that a permutation X is the unit of the permuta-
tion group. Then if an iterated mixed problem (P,*B;) is L*well posed,
for any fixed (t, x') a type of (P, B)uurys s (Pms Bw)uay) then becomes one
of the following m-types:

Moreover, this condition is sufficient to be L*-well posed in the case of con-
stant coefficients and of two space variables.

The condition in is not enough to be L:well posed for

a general permutation X, for example, X=@’ %’ g) (m=3). We shall discuss

this problem in the succeeding article.

We shall next consider the problem presented in [2]: If every frozen
problem (P°, BY);, ., is L*~well posed then so is a variable coefficient problem
(P,B,)? It seems much difficult to solve in general this problem. A case
where we can give an affirmative answer to this problem is as follows:

%Wz, 2 D,', D,)= B¢, «'; D,, D,) for any j=1,.--,m.
In this case all the iterated mixed problems (P,*B;) are equivalent to the
problem (P, B;) with
Bt 2';7,0,0)=Bt, 2’ ; 7, 0, )92 (j=1, .-, m).

Then we have the following

THEOREM 3. A mixed problem (P, B,) is L*well posed if and only if
every frozen problem (P, B’), . is L*well posed.

The condition in can be stated in the other words: Every
(P3, B%y is L*-well posed for any j=1,---,m, or every (P°, BY),., is so.
In this case a type of (P, Bi)ueys **s (Pos Bu)e.ey) is one of only two types:

(U, T Ua U)
(N, -+, N, N).
A partial result analogue to where the coefficients of B® are

complex valued, is given in §9.
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Another approach to solve our problem is to assume that a type of
((Pl, Bl)(t,x')a ) (Pm, Bm)(t,m’)) is independent of (t’ x’)' If ((Pla Bl)(t,:c'), T (Pm’
B,)¢.) is of type (N, -, N) uniformly in (¢, 2') then the problem becomes
Neumann problem for iterated d’Alemdertians and if it is of type (U, -+, U)
uniformly in (¢ z') then (P,?B,) for every X becomes L*well posed problem
satisfying the uniform Lopatinski condition. The former was solved in
by the semigroup method when the coefficients are independent of z (For
a general P see e.g. [13]). The latter is a special case of [5] or [10].

In this direction we have the following )

THEOREM 4. If (P, BY)t.ays > (Povy Bu)e,an) 15 of type (U, -+, U, U) uni-
formly in (¢, x'), then an iterated mized problem (P,"B,) for any permutation
X is L*~well posed.

The statement in is also valid, if all the coefficients of
Bj (j=1,---,m) are complex valued. )

For simplicity we confined ourselves here to problems in the half space,
but our results can be extended to the case of general domains with smooth
boundary. v o ‘

The contents of this paper are as follows. An L?well posed mixed
problem is defined in §2. A characterization of L?-well posed mixed problem
with constant coefficients, obtained by applying results in to our iterated
mixed problem, is given in §3. In §4 we give characterizations of L’-well
posed mixed problem for d’Alembertian. They are special cases of results
in [1], [2], [4], [12] Theorems 1, 2, 3 and 4 are proved in §5, 6, 7 and 8,
respectively. An analogue to Theorem 3, where the coefficients of B’ are
complex valued, is given in §9. :

§2. Definition of I’-well posedness

Throughout this paper we use the following function spaces with non-
zero parameter 7 :

H,, (B2 = {u(t, 2); e7ult, ®)e H(By)|  (k20; integer),
H,(R)= {ult, ); e ult, ') e H(R™)®}  (s; real)
with norms defined by ‘ ’
lulz, = X fﬂiﬂ le*f’rfD:D:u(t? 2)|*dtdzx,

Jt+it+lal=%

(udi,, = S e Au(t,x) | dedx’

(3), (4); They are the usual Sobolev spaces.
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respectively, where

Lou(t, o) = (Zn)'”S o A8 6 TV e, o)dede |

Rn

#(z, 0) = S e~ y(t, 2 dtdx!
R'ﬂ

3

b

A&, 0,7)=(|z|*+ o)

r=E—1I, ox' =0+ +0, 1%, 0E€ER"T.

o2 =0d%+ - +3d%,,

For a non-negative integer s, {u)%, is equivalent to
v

J+i+Te’| Jnnle‘”ﬂDﬁD’;Iu(t, ) dedz’,
«'|=

where
o= (d', an) = (ah " an) (ajzo > integer) ’

D= D& Dfn = D ... Din

Moreover, we use the following operator introduced in [7]:
A, )= (Zﬂ)_”s et (12 4 |o[fa(z, o) dedo .
R

Let the orders of P and B, be m and m,<m respectively, let the m;
be mutually distinct and the boundary x,=0 be non-characteristic for P and
B,;. Then we see from the hyperbolicity of P that

Z m—1

Pt x;7,0,0)=11 (Z—-Z}“(t, x;T,o, .2)) II <2—2; (¢, z; T, o))
j=1 k=1
where Im 2} >0 (Im 2; <0) if Im 7= —7<0 and / is independent of (¢, x; z, o)
(Im 7<0). The number of boundary operators B; is assumed to be equal
to /.

DEFINITION. A mixed problem (P, B;;j=1,:--,1) is said to be L’-well
posed, if there exist positive constants C and T, such that for every 72T,
and fe H, ,(R%"") the problem (P, B,;) with ¢,=0 has a wunique solution
ueH, .(R%*"), which satisfies

(2.1) lluellf-r=Clf 15, -

This definition is clearly equivalent to the one in [3], where P° and Bj
are with constant coefficients. Furthermore it is also equivalent to them
in [2] and [6]. This fact follows from Proposition 2.2 below.

Let R(¢, 2'; 7, 0) denote Lopatinski determinant for (P° Bj),.:
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R(t, x';7,0)=B(t, x';7,0)/4(t, ' ; 7, 0),
B, 2';7,0)= det(Bk(t, ;1,02 2,051,071, -, l),

At 257, 0)= 1L (8 (& 2, 05 7, 0)— 2L (5, &, 057z, 0)),

i<k
(e R*', t=¢6—ir, 120, |c]*+]|o)?=1).

Here R is continuously extended to 7=0. Then we say that (P, B;) satisfies
the uniform Lopatinski condition if R(t, z';, 6)#0 for any (¢, 2'; , o) with
Im r=—7<0. It is shown in [5] or that a problem (P, B;) with uniform
Lopatinski condition is L?well posed. Their proofs give in particular the
following.

LEMMA 2.1. Let R, x;; 70, 00)F 0 for some (L, xi; to, 0y) and let
Bt x;&0,7) (E+7+|6)*=1) be C* in all variables and with its support
contained in a compact neighbourhood of (t,, x;,0; 7o, a,). Then there exist
positive constants C and T, such that for any ueH, (R3")

Bl 1+ S (Difas

S C(1Pul+7 Z, (Bt mya T s )

whére
ABu(t? x) = AB(Dt’ Dz’ 7)%

~_1 S et B(¢, x; €, 6, 1)z, 0, ,)dEd0
(271')n R™

Bt,x; & a,7)=P(t x; A7 A7, 477)
Making use of results in [6] and we have

PROPOSITION 2.2. A mixed problem (P, B;) is L*-well posed if and
only if there exist positive constants C and T, such that for every T=T7,,
feH, (R%") and Ai,gjeHm_m \I2") the problem (P, B;) has a unique solution
ueH, (R, which satifies

Pl 1, 705 (A2 DitY s,
(2. 2) =t .
< C(IF 1+ Z b 0 )m s

Moreover, a priori estimate of higher order holds for T27T, and ue€
H, . (R (k=0, integer):
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7‘2”7"”'»» 1+%, 7+T2 Z «A Dju»m 1-mjtk,r
(2. 3)

< Co(IPalt+ 5 04h Bhinyree,)

where 1., C, are some positive constants.

ProoF. The results in [6] show that the statement of [Proposition 2. 2|
is valid if 4, is replaced by 4. The symbols of 4 and 4, are equivalent
in |¢|>04 (§>>0) and is not equivalent elsewhere. But we see from [2], The-
orem 1 and [12], that R(z, 2'; 7, 0)#0 in |¢|<d4, taking ¢ small.
Hence, using partition of unity and Lemma 2. 1, we obtain the estimate (2. 2).

The estimate (2.2) was shown in for L*well posed problems of
second order with real boundary conditions.

~ We finally remark that the solution # of an L*well posed problem
(P, B;) ‘has zero initial data on #=0 provided f=0 and ¢g;=0 in <0 (for
instance see [6]). |

§ 3. A characterization of an L*-well posed problem with
constant coefficients

In this section and the succeeding sections we assume that P and B,
(=1, :--,m) have the form in question:

Pt,xz;7,0,0)= EIP}’(t, x,t,0,4),

Pi(t, z; 7,0, ) = —7"+ay(s, x)2<12+ Ziai),
 (0<anlt < <anl, 2)),

&mxﬁnmb=f—2}ﬂafwrwmfﬁ.

Furthermore we shall drop the variables (¢, x) for the sake of simplicity,
since we consider frozen problems.

We recall Lopatinski determinant and reflection coefficients for a mixed
problem. Let *R and R; denote Lopatinski determinants for an iterated
mixed problem (P°, *Bj) and second order problems (P, B%) respectively :

Ry(z, 6) = BY(z, 0, 4] (z, o)

n—1
3.1) | = 27 (z, 0)— glbjkolc—c_jf ,

L ZR(.T,.G')=.I.B(T: 6)/A(T’ 0)3.
(t=6&—ir, 120, 6eR", |t|*+]|o|*=1)
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where
Pi(z, 0, 2) = a} (1~ (z, 0)) (A— 45 (z, 9)),
*Blz, o) = det ("Bi(r, 0, 2z, o) 7 1, -+, m),
A(r,0)=11I (2} (z, 0)— 2% (, 0)> .
<k
Since for 1= ( L, m)
Jis 5 Jm
k-1
‘Bi =B, 1l P}, ,
h=1
we see easy that
B(z, 0) = 11 Ry(z, o) 1 P3(c, 0, 2t (5, o),
j=1 I>k
which implies »
(3. 2) ‘R(z,0)= 1l Ry(r, o) (2} (z, o)+ 2t (z, 0)).
=1 >k

Here we use the fact that 2} +4;=0 and Pj(1;)=0.

Since the 27 (r, ¢) are mutually distinct for Im 7= —7<0, the reflection
coefficients C,(z, ¢) and *Cj(z, ¢) for (P}, BS) and (P,*Bj) are well defined
respectively and they can be written by the form (see [3], §5):

(3. 3) Cy(z, 0)=B(z, 0, 1" (z, 0)) | Rz, 0),

(3‘ 4) ijk(T, 0')=sz[¢(7.', U)/ZB(T, 0'), (j, k=1, ...,m)
where *B,,(z, 6) is the determinant arising from replacing 2} (z, ¢) by 2z (z, 9)
in *B(z, o).

Let S be the set {(z,0); |z|>*+|o|>’=1,7=0}. Then we have from
Theorem 5.1 the following.

LEMMA 3.1. An iterated mizxed problem (P,*B;) is L:-well posed if
and only if the followings are filfulled:

(i) *R(r,0)#¥0 for Imr=-7<0,

(ii) for every real (&, 00))€S with &+#0 there exist a constant C(&, )
and a neighbourhood U(&,, o)) in S such that for any (z, )€U (&, a,) N {7 >0}

3.5 1Culs, | SC, o)) Im & (e, o) Im &5 (s, [ P2z, 0, A, )| 77
o (],k=1,,ﬁ2) |
where P)=0P°[0A.



112 R. Agemi

Proor. Applying [12], or [4], Theorem 3.1 to our case,
we see that if (P,*B,) is L*well posed then (i) is valid. By the definitions
of 2%, 25(0, 60)= *i|ao| for all j=1, .-+, m, respectively, but *R(0, g,)#0 because
of the assumption on coefficients of Bj. Note that the 2;(r, ¢) are simple
for 7>0. Therefore, using residue formula, the lemma follows from [3],
Theorem 5.1. Here we use a similar technique in the proof of the theorem.

Finally we remark that, by setting m=1, contains a charac-

terization of L?-well posed problem (P;, B,) of second order.

§ 4. Characterizations of an L*well posed mixed problem of
second order

Let (P, B) denote any one of (P;, B;) (j=1, ---,m) and
P'(t, x;7,0,)= —7+alt, x)2<12+ni03€) ,
k=1
Bt 27,0, ) =2— 3 bu(t, )ou—clt, &)1 .
k=1

Moreover, let R(z, 2'; 7, 6) be Lopatinski determinant for a frozen problem
(P°, B4, Then we have the following

LeMMA 4.1. The following statements are equivalent:

(i) (P, B) is L*well posed.

(ii) Every frozen problem (P°, B, ., is L-well posed.

(iii) For every (¢, ') R(t, 2'; 7, 0)#0 if either Im <0 or Im =0 and
&>alt, 2, 0V|o)% '

iv) alg &, 0)c(t, 2| =

PHACESEA

for any (¢, 2'; 0).

(v) alt, 2, 0)c(t, ) Z (by(t, 2V + -+ +bua(t, @F)? for any (¢, 2).

REMARK. Let (¢ ') be fixed and (¢, b,---,b,_;) vary. Then (v) shows
that the set of all the L*well posed mixed problems, i.e. the closed cone
with vertex at the origin, coincides with the section of the propagation cone
by the boundary hyperplane. This fact is also valid for a general P of
second order (see [1], the conditions ((C)), (C))).

Proor. The implications (i1)=>(ii)=>(iii)=>(iv)=>(i) are special cases of
[2], Theorem 1, [12], Theorem 3, [4], Remark of Theorem 4. 2, [1], Theorem
(also see [2], [7]), respectively. However, we give here the proofs of the
implications (iii) = (iv)=>(i) together with the equivalence (iv)< (v) for the
sake of completeness.

The implication (iii)=>(iv). This is originally owe to [1], §2, but the
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proof in which will be stated here is somewhat simple. We may drop
parameters (¢, x') for simplicity. We can shows from (iii) that ¢=0. Let

P(,0, ) =a* (2= (z, 0)) (=1 (5, 0))  (c=§—ir, 720).
Then, by the definition of 1*(r, ), we have
e 0)= —sgné Ela—|s|* in £>a’le|’,

where 41 =1 and sgn §={ __11 Egzgg Hence

n-1
R, 0)= —sgn &/ ET@— ol — & bioi—ck (E>alol).
Note that for any fixed & the surface 1=2%(¢, 0) in (1, 6)ER" is the open
(n—1)- hemisphere Therefore if (iv) is not valid for some ¢ then the hyper-
plane 1= Z b, +ct in (2, 6)€ R™ intersects the open hemisphere. This con-

tradicts to the fact that R(& 0)#0 in &>ad*|”
The implication (iv)—>(i). Since b(¢, z') and c(¢, 2') are real valued, it
sufficies to derive a priori estimate for real ueCy(R%H). Put

Q(t’ x; Dta Dz)

- _;: aaP ¢, z; D,, D,)—alt, 2Pc(t, 2)B'(¢, =5 D,, D,)®,
T

where c(t, 2)=c(t, ') and b.(t, £)=b,(¢, 2'). Then, using integration by parts,
we obtain

2(Pu, 1Qu),,

ou ou ol ou ou
=2r “+1—— 9%\ o5 (a?h.c—
K(‘” ) at)o, Z( “at ax)
—2 azc—ay— Ou ) + Zn: (@2 +1)a? ou , ou ) }
a axn 0,7 k=1 a Ic ax]‘; 0,7

ou ou \
ot~ ox, /or

+{<ac(acz+1) ou 8u>or+22< ?by(a’c®+1)—

+ 5 <ac(bkb,+5k,) Ou > }

£hi=1 " oz,

+{Bu, Su), .+ R(u, u)—- {a'c Bu, Bu),,, ,

where (-, -), and (-, -, are the innerproducts in H,,(R%™) and H,,(R")
respectively, S is a first order differential operator in D,, D,., 6; is Kro-

(5); This is the same one as in
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necker’s symbol and [R(u, u)| <Cll«||},. Hence we see from (iv) that the
integrand of (boundary) volume integral is positive (semi) definite respectively.
Using Schwarz inequality we have, for a large 7>7,,

Plleel, < C(1Pull3, +(A*Bupi,).

“The symbols of A and Ai are equivalent in |¢| =04 (6>0) and not equivalent
elsewhere. But it follows from the fact ¢(4 x')=0 that R,(z, 2'; z, 0)#0.
Therefore the same argument as in the proof of [Proposition 2.2 gives that,
with some constants 7,, C,

72|u]l2, < C1 P2, + (AL Budt,) (r=Ty).

To show the existence of a solution we use the dual problem.
The equivalence (iv)&=(v). Put

(Ag, o) = d’c?|o|*— (Zibkak)z

where a=a(t, 2/,0), c=c(¢, ') and b,=b,(¢, x'). Then it is proved by the
mathematical induction on 7 that the eigenvalues of symmetric matrix A
are

ac’, -, alc?,  alF—(bi+ -+ b)),
N om——
n—2
In fact,
|AI—A|=| s+8, bb,, -, bb,
bib, , s+b5, -, :
baby, buby, -, s+
where s=i—a’’ Expand this determinant with respect to the first row.

Then we obtain by the assumption of the induction and a simple calculation
that

|AI—A] = (s+83)s" (s + B+ -+ + BE)— 5" 2DH(B%+ - -- 4 b2)
=s""Ys+bi+ - +D2).

Therefore there exists an orthogonal matrix 7" such that
n—1

(Ao, 0) = {@%c*—(Bi+ -+ + B2 )} B+ &' X, 6%
k=2

where 6=7To. This implies immediately the equivalence (iv)&>(v).
The proof of the implication (iii)=>(iv) shows in particular the followings
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which are used in §5 and 6.
COROLLARY 4.2. If a constant coefficient problem (P°, B°) is L*-well
posed and ¢>0, then c&+ :Z:ib,pHEO in &>aol’.
CoROLLARY 4.3. If a constant coefficient problem (P°, BY) is of type
NU, that is, ca=(bi+ --- +bfl_1)%, then there exists a posnt (&, a,) on the sheet
£=d’|e|® such that c&+ :Z:Iibk(ok)o=0 and ac|00|=‘zz::ibk(0,c)o

Finally, from Lemma 4.1, (v) and the fact 0<a,<--<a,, we obtain
the following

COROLLARY 4.4. If (P,, B) is L*well posed, then (P;, B) is also L*-well
posed for any j=1, -, m.

§5. Proof of Theorem 1

Applying [2], to our case we see that if an iterated mixed
problem (P,*B,) is L>well posed then every frozen problem (P°, *Bj),. is

also L*-well posed. Then we shall drop parameters (4 x') in this section
and the following one.

We recall the definition of reflection coefficients 'C,i(z, o) for (P, *BY)

(see §3, (3. 4)) and write explicitly them for some pair (j, k) needed for the
proof of [Theorem 1. By the definition we have

'Cyi(z, 0) = *By(z, 0)[*Blz, o)

where the *B,,(r, ¢) are the determinants resulting from replacing 2 (, o) by

(e, 0)in "Bl o). Let x=(1 1> 7) and sgn 1={_] (05 ermitotion 2}

LY Sm

Then we have

*Blz, o) =det ("B(r, o5 2} (z, o7 1, -+, m)
=sgn x| B, (45), B, (45) - B3,(%,)
B PY(5) - By,P(4s,)
0 By PPy, (1)

Here we denote simply BS(z, g, i (z, ), P}(z, g, 4i (7, 0)) by Bj(a%), P;(2%) re-
spectively. Note that 2} +21; =0 and P}(2f)=P5(4;) for j, k=1,--,m. Then
we have

6.1 *cﬁ<r,a>=-§g%=cj<r,o> (=1, m)
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g};(z.;/“_l) ) g;<(z;k+1)
Bg/c+1(l;k+1) 2 BO (2}-&4-1) ng‘”P.;)k—n (zj-k-i—l)

JE+1

B3, (43,) B3, .. (43, ) PPy, (23,

2<ajk+1_ajlc)2jlc+ngt.” })k—l(z;-k+))

" R,(r, )R, (r,0) Py P},_ (%)

(5. 2) Crn, (r0) =

n—1
where a,(r,0)= 3 buo,+cr (j=1,--,m) and R,(r,s) is Lopatinski deter-
k=1

‘minant for (P}, BY) (see (3.1)). The equalities (5. 1) show that *C,, is equal
to the reflection coefficient C; for (P, B}) (see (3. 3)).

We first prove the first part of [Theorem 1. Let *R(r, ¢) be Lopatinski
determinant for (P°,*Bj). Then we have from (3.2)

R(e, 0) = [LR,(s, 9) 1T (% (s, o)+ 3 (5, ).

<k

Hence it follows from [Lemma 3.1, (i) that R,(r, ¢)#0 in Imr=—7<0 for
any j=1,---,m, because 2} (z, )+ 4j (r, 6)#0 in 7>0. Furthermore, we obtain
from (5.1) and [Lemma 3.1, (ii) that for every (&, a))€S={(z, o);|z|*+ |o|?=1,
=0} with &#0 it holds in U(&, ao)N {r>0}
ICs(z, )| <C(6o, 00[Tm 77 (7, o) Im 45, o)
X |P(z, 6, 25(z, o)|T™
<C(g, anlIm Zf (z, o) Im 25 (z, o) |*

« PY(z, 0, % (z, o)|7-! (P;g - %%)

Here we use that fact that 2} (&, 6))— 2z (&, 00)#0 for j#k and &+#0. We
denote hereafter various constants depending only on (&, a,) by C(&, a0).

n—1

Note that R;(0, ¢)=i|e¢|— )] b:0,#0 because the b, are real. Therefore the
k=1

first part of follows from Lemma 3.1 for m=1, that is, for

second order problems.
Next we prove the second part of [Theorem 1. We may assume

Je<Jr+1, since the same argument as below is applicable for j,>j,,,. Let
(&0, 00)€S with &=aj |oo|* be arbitrary but fixed. Then it follows from
Lemma 3.1, (ii) that in particular for small 7>0

1"Cy,4,.(&—1T , 00)]
(5. 3) <C(&, a0)|Im 23, (Es—iT, o) Im 25, (&s—iT, a0)|*
X |Py(6o—1T, 00, 23, (&o—1il, ag)|T7*
Since (Fj,,, Bj,,,) is L-well posed, R, (&,00)#0 from Lemma 4.1, (iii).
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Here we use a;,>a;, .. Hence we have from (5. 2)

[ijkjk_H(So—'iT, O-O)l

(5. 4) > C(&,, 00) |y, (&—1il, a)—ay, (§—1T, ao)|

Rj,c(fo—ir, 00)
On the other hand, we see easy from the hyperbolicity of P; that

|Im 25 (§s—17, a0)| = 0(r)  (£3>ajlool),
IIm 2%(&—i7, a0)] = 0(r) (&= allaol?).
Hence we have from (5. 3), (5.4) and (5. 5)

(5.5)

la.fk+1 (EO_ lr, 00)_ajk (EO—ZT’ 00)'

(5. 6) . 1
-§C(Eo, Go)lek(Eo_lr, GO)IT )
where 7>0 is small.

Now assume that ¢;, >0 and (P}, Bj,) be of type NU, that is, does not
satisfy the uniformly Lopatinski condition. Then it follows from Corol-
laries 4.2 and 4.3 that there exists a real point (&, 6,)€S such that &=
az oo, a;, (&, 00)=0 and a;, (&, 0)#0. Also it follows from Lemma 4.7,
(v) that

(bjkly ) bjkn-l’ Cjk) + (bjk“l? ) bjk+,n—1a cj,H_l) ’

because the contrary leads that (P}, B} ) must be of type U. Hence we
have

(5. 7) ajk+l($o, O'o)_ajk(so, 0'0) *0.

On the other hand, we obtain from (5.5) that
IRjk<50_iT’ 0'0)1 = ]2;-]':(50—17, 0'0)+i(:jkr]

(5. 8) 1

< C(é, 00)7° .

Therefore it follows from (5.6), (5.7) and (5.8) that for small 7>0

]- é C(EO: O'O)T% ’

which implies the contradiction. Hence we conclude that either (Pj , Bj,)
is of type U or if it is of type NU then ¢s,,,=0, that is, B;,..=D,, because
of Lemma 4.1, (v).

§ 6. Proof of Theorem 2
Let X be the unit in the permutation group. Then the first part of
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follows immediately from applying results of to this
case. Hence it is enough to prove the sufficiency in the case of constant
coefficients. We shall omit the upper suffix X in this section.

Since all the problém (P;, B;) (j=1,---,m) are L*-well posed for any
one of m-types:

we see that [Lemma 4. 1|, (iii) and the assumption on coefficients of B} that
R;(z, 0)#0 except the sheets &=aj|e|* (j=1, - -, m) (r=£6—1r), which implies
from (3. 2) that R(r, 06)#0 except the above sheets. Therefore the assertion
(i) of is valid. Moreover, for every real (&, 6,)€S not on the
sheets the assertion (ii) of is also valid, because the right hand
side of (3.5) is estimated below by C(&, g,) (see [3], Lemma 6. 1).

By the above consideration it suffices to show that the conditions (3.5)
are satisfied for each point on the sheets &=d’|g,|>. To do this we write
explicitly the reflection coefficients C,,:

Culr,0)=0 (k<j),

B%(2;
ij(‘f, 0') = R:(i-,i) = Cj(f, 0‘) ’
(6' 1) Cj/c (‘L', 0,) —_ . Tjk (T;C_o'l (k >])
hI:Ith(T, a)hlzljSh( )
where

Tyi(z, 0) = 'Bg-Sj‘(Z;), B3S;(fs), <o, B3S,(2%)
Bg+1Sj+1('2;) ’ Boj+1Sj+1(l;-+1) : :
: 0 . .

BiuSia(i) i ., BLaSiadd)

Blg('z;)’ FO, """"" ’ 0’ B/co(zl_:)

Here we use the same abbreviation as §5. Hence it follows from L*well

posedness of (P;, B;) that the assertion (ii) of is valid for
C,.(k<j) and Cj; (refer to §5 for the latter). '



Iterated mizxed problems for d’Alembertians 119

Let a type Of_S(Pu B), -, (Pro1, Bioy), (P, By), (Pis1, B, o, (P, B,))
assume (U, -+, U, NU, N, ---, N). Then

(6. 2) Ry(z,0)#0 (h<l) in S
and
(6. 3) B (25 =27 (h>1, k=1, ---,m).

We shall prove that the conditions (3.5) are satisfied for Cj (j<k) in each

of the following cases.
(i) The case k<. From [3], Lemma 6.1 we have

(6. 4) Djk(T, U)EC(SQ, O'Q) ln Up(SO) 0'0) (p":l, tty m).

Here

D,.(z, 6) = |Im 2} (z, ¢) Im 2; (z, o)l% |Py(z, 0, (r,0)| T

and we denote simply a neighbourhood in S of (&, g,) satisfying &=aj|a,|*
by U,(&, ). On the other hand, since no R,(h=!/) appear in the denomi-
nator of (6.1), it follows from (6.1) and (6. 2) that

(6.5) |C i (z, 0)=C(&, 0;) in U, (%, ao) (P=1> “e, M),

Hence we see from (6.4) and (6.5) that (3.5) holds for this case.
(ii) The case k=I. From [3], Lemma 6.1 we obtain

Djl (Ta U)EC(&, 00) in Up (607 00) (P'_’él)°

Note that R(r, 6)#0 except the sheet &=a’|s|>. The same argument as in

(i) shows that (3.5) holds in U,(&, o) (p#{). Expand T with respect to

the last row. Then we have from (6.1) and (6. 2)
0 p—

(6. 6) (Cule, o) SC (6, o) 1+] i)

Rl (Ts 0)

) in U,(&, 00)-
Since (P,, B,) is L*-well posed, we see that

6. 7) % <Cl&, ool 4 Im 45|} | P (27|77

<C(&, olIm 27 | P2 T in U, ).
On the other hand, we see from [3], Lemma 6.1 that
(6. 8) Dy (z, 6)=2C(&, 00)|Im 27 l% I[P = C(&, 09) -
Hence it follows from (6. 6), (6.7) and (6.8) that
lez (T, 0>| §C(50, UO)DJZ(T’ 0) in Uz(Eo, 00),
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which is nothing but (3. 5).

When k>1 we shall rewrite, using (6.3), the reflection coefficients
Cy (j<k) in a simple form. By adding the last cloumn to the first one in
T,z we obtain from (6. 1)

Cple, 0) ={ —L200) (E>1>))
(6° 9) h];[j Rn(T: ”)Sn(zz)
0 (k>7>1)
where
Tjk(T’ 0) = —2aJSj(1/? )s B J(Z;-+1) y Sttt s B(}Sj(ﬂ- )
— 20418 11 (A% ) 5 B‘}+1Sj+1(l}“+1)., AN
: 9’ . .
—20(15;(1;:) é s "ttt : ’ 0 ’ B?Sl ('2;-)
and

n-1
B,(z,0,2)=2A—a;(r,0)=2— X bpor—cyt.
k=1

Since the conditions (3.5) are clearly satisfied for C,, (£>j>10), it suffices

to consider the following case.
(iii) The case 2>/=j. From [3], Lemma 6.1 we have

Djk(z', G)gC(EO: 00) in Up(EOy 00) (P=1, R m)

Since the denominator of (6.9) does not vanish from (6. 2) outside the sheet
£*=a’|o|’, we see in the same way as (i) that the conditions (3. 5) are satisfied
in Uy(&,a) (p#![). From (6.2) and (6.9) we have '

a,(z, o)

|Ci(r, 0)| =Cl&, "°)(1+ R(z, o)

) in Uz(&o,o'o)- ‘

Therefore the proof finishes if it is proved that

L (2', 0)

< .
R,(T, 0) =C(50, Go) n Uz(Eo, 0'0)-

(6. 10)

Let n=2 and put b,=b, for simplicity. Then we assume without loss of
generality from (Corollary 4.3 that &=a,0,(s,>0) and

(6. 11) alcl+bl =0.

Since
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T— EO alN/ 22+0' ’—'alao

=a,(e—ay)+a,e” Z+0(2),
we obtain the peiseux expansion of if(r, ¢) in U,(Eo, DK
6.12) e, 0)=2Z% +0(2),
where Z=0(r/a;—0) and Im Z%>0 if Im7<0. Hence we have from (6.11)
oz, 6)=0"la,c,Z .
Therefore it -follows from this and (6. 12) that

a,(z, o)

= <C&, o) ZI<C&, o) in U, o).
.(z, 0)

§ 7. Proof of Theorem 3

In virture of it suffices to prove that (P, B,) is L*well posed
if every frozen problem (Py, B’ ., is L*well posed.

The following lemma is due to [9], [11].

LEMMA 7.1. Let V be an open set of S={(z, 0);|t|*+ |a|*=1, T=0} such
that its closure does not contain (0,0). Moreover, let B'(§ 0,7) be a C™-
function in S with its support contained in V and put P& ¢, 7)=p (47,
oA™Y, 7A7Y). Then, for every non-negative integer s, there exist positive con-
stants C,, T, such that it holds for 1=7, and ueH,, ., (R

lleell3m-s4sr + Z 1QBull3, 2 Cill Buellzm -2+ -
Here Qj=I£IjP,C and

Bu(t, x) = B(D,, D,., Nult, x)
=@ayn (e pie, o, Make, 0, ) dedo
ProorF. Remark that A}(¢, x; 7, 0)=2f(t, x;7,0) (j#%) if and only if

r=0. Then it follows from the proof of [9], Theorem 2.1 that for
ueH,., (R (12T,

”u”1+s r+ ”Pjﬁu”ir'*' ”Pk/su“g TZC,"‘BuHZH )
(]#k,],k':l’, )' 4

Therefore the lemma follows from this formula and the mathematical induc-
tion on m.
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We shall first derive a priori estimate for (P, B)).

PrROPOSITION 7.2. Suppose that (P,, B) is L’~well posed. Then, for
every real s and integer k=0, there exist positive constant T,,, Cs, such
that it holds for 127, and AucH,,,, (R -

@D Plulen, S Con(|4Pul s+ 5 (A B syssees)-

Proor. It suffices to prove the proposition for £=s5s=0, because x,=0
is non-characteristic for P.

Let U be a neighbourhood of the set (0,¢) in S={(z, 0); |z|*+ |o|*=1,
7=0} and let o/(§, 0,7) be a C*-function in S with its support contained in
U. Moreover, put a(§, o,7)=d (647, 647, 747") and B(&, 0, 7)=1—al(§, o, 7).

From [Proposition 2.2 and [Corollary 4.4, there exist positive constants
C, 7, such that

71Qubull, < CUIP,Qubull, + (AL BQuBNS,)
(T—z—ro’ uEI_IZm,r(-RﬁH) ’ j=1, ) m);

where Q;= JI P,. Summing up them with respect to j, then it follows
k+J

from that, with some new constants C, 7,,

7.2) Plfuliner, < C 1P+ 5 (A BQBN, +Plulfcay) (12T

By the definitions of Q; and B, we have
BQj = ;CZ=1 Cj/ch ‘

where C;,=C,.(¢t, x; D,, D,)) is of homogeneous order 2m—2Fk. Note that
B is a pseudo-differential operator of order zero. Therefore it follows from
(7. 2) that, with some new constants C, 7,

7.3) P, S C(IPull,+ 5 (A Byt ls) (2T

Since the b, are real, we see from (3.2) that R(¢, 2'; 7, 0)#0 on the
support of @. Hence it follows from that, with some positive

constants C, 7,,

7.4 Plaulfns, S C{IPUR,+T E (B sy +Tatllrs) (2T

Therefore we -see from (7.3) and (7. 4) that (7.1) holds for s, £=0.
We shall next consider a dual problem (P*, B}) of (P, B,), where P* is
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the formal adjoint of P.
Denote the inner products in L*(R*!) and L*(R"™) by (-, -) and (-, -
respectively. Then, using the integration by parts, we obtain

(Pyu, v)—(u, P}v) =i({Bu, C;v) +{Cju, Bjv)),
(w, ve C(BE™),
where Bi*=D,+ nz_:lb,c(t, 2'\D,+c(t, ')D, and C;, C;* are of order zero. By
=1 : A

repeating this formulas and noting the form of P;, there exist Dirichlet
sets (B;, H}) and (H,, B}) of boundary differential operators such that

(Pu, v)— (1, P*v) = z( jz’i (B,u, Hyo) +{H}u, B}"v)) ,
(wveCr(®m).
Here
B®=D,+ kzl bult, 2')D,+clt, 2') Dy,
Bo—BRDE  (jz2).

For the existence of solutions of (P, B,) it suffices to prove the following ([6]).

PROPOSITION 7.3. Suppose that (P,,B) is L*well posed. Then, for
every real s and integer k=0, there exist positive constants C;y, T3, such
that it holds for 1=7¥, and AueH,,, (R

mo1
TZHASu”gm—Hk,—réCs(”AsP*u“i,—r+ 21«/12' B?u>>2m—zj+s+k,—r> .
e

Proor. Put

P’(t’x; Dtan):P*('—ty X, —"Dt, Dz)’ o
B.Iy'(t, x,; DtaD:c)=B;<(_ta x,; _DtaD:c)'

Then B"=D,+ E’lb,ﬂ(—t, 2\Dy—c(—t, 2')D,. Hence we see from
k=1
4.1, (iv) that if (P,, B) is L*-well posed then (P, B¥) is also L*well posed.

§8. Proof of Theorem 4

In this section the coefficients of B (j=1,---,m) will be complex valued.
Since (P, BY)t,013s ***» Py Bh)eany) is of type (U, -+, U, [_/) uniformly in
(¢, '), we see from (3.2) and Lemma 4.1, (iii) that for any permutation X

(8.1) ‘R(t, 25 7,0)#0 in &>a,(t x,0f|g*.
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Here we use that Lemma 4.7, (iii) is also valid for the case of complex
valued coefficients. Let a point (4, x, &, 6,) satisfying &=<a,, (¢, 4, 0)|6|?
be arbitrary but fixed and let f'(¢, x; &, 0, 7) (£2+ 72+ |6|?=1) be C* and with
its support contained in a compact neighbourhood of (¢, xj, 0; &, 6, Then
making use of partition of unity we can obtain, together with (8.1) and

Lemma 2.1, a priori estimate for (P,’B,) if we show that

P Bl ar S C(I1Pull + 35 (4B )i syt )
8.2
(r=t0, ue H, (B

where 7,, C are positive constants and

ﬁu(t, x) = ﬁ(Dt, Dx, T)u(t9 x)
- (21),, S e B, 25 8, 0, ), 0, 4,)deda

B(t, x; & 0,7)=p(t, x; 847,047, 747Y).

Now we shall transform an iterate mixed problem (P,B,) to the itera-
tion for d’Alembertians:

I leu=“v1 J Pj3v1=v2 I ijvm—1=f

8.3 ) > "0y
8.3 l leu =0 l sz’(h =g l Bjmvm—l =0n

We assume ji,=m. Since P, (%, x),0; &, 00)#0 and Ry, (¢, 53 &, 65)#0
for h#k+1, the following coecive estimates for elliptic boundary wvalue
problems hole from (8.3) (for instance see [11]): For h=0,---, k—1,k+1,
.-.,m—1 there exist positive constants C,, 7, such that for any 7=7, and
uEI_IZm,T(RTH)

| Bvallzm-1-22, = Calll Bras + [PJ,H, s BlUall3m—s-2n.r

(8. 4) TP TR [oN | S
(h=0, ---, k—1),
| Bvallzm-20,r = Calll Basa+ [Py, Bl Vallim-2-22,s
(8.5) + 4 gm0l Bmmzo2mr)

(h=k+1,---,m—1).

where v,=u, v,,=f and [P,, 8] denotes the commutator of P and 8. Note
that the symbols of 4 and 4, are equivalent in a starshaped neighbourhood
of (&, a0) and ||[P;, Blva 5, = Cillvalli,,



Iterated mixed problems for d’Alembertians 125

loalls, < Ca llullza, (h=0,:--,m—1).
Then, multiplying (8. 4) by 7%, we obtain
7 |l‘8'vhH§m—1—zn,r = Ch(rzl[ﬁ'vhﬂugm—s—zn,r

+ <<Ai§' gh+1>>gm—2—2h,r + ”u“gm—lr) ’
(h=0, ---, k—1),

”Athngm—Zh,r = Ch("ﬁvh+1ugm—2—2h,r

+ <<A:;’ gh+1>>§m—2—2h,,r + "u”gm—l,r) ’
(h=k+1, -, m—1).

On the other hand, since (P,,, B;,)=(P,, B,) is L*-well posed, it follows from
[Proposition 2.2 and (8. 3) that

r “.B‘Ukugm—l—u,r = Ck(”ﬁvkﬂngm—z—%.r

(8.6), N5 P SO 11 | B
<r g Tlc ’ uec I_Lm,r(m+1))

(8.6)a

where C,, 7, are positive constants. Therefore, substituting (8. 6), to (8. 6)s+1
successively, we obtain a priori estimate (8.2). The existence of a solution
of (P,*B,) is proved in a similar way to §7.

§9. Remarks
In this section we shall consider an analogue to where the

coefficients of B’ are complex valued, that is,
Bt y; D,, D,)=D,—ib(t,y)D,, b(t,y) is real valued,

where (¢, y, )=(¢, ., 72) (n=2).

LEMMA 9.1. For every j=1,---;m, (P;, B)..,, is L*well posed if and
only if |b(z, y)| <1.

Proor. Since (P;, B),,, is a constant coefficient problem, we drop a
parameter (¢, y) for simplicity. Moreover, we restrict the variables (, g) to
the set S={(r, 0); |z|*+¢*=1, Imr=—7<0}. From and
4.1, (iii) we see that (P;, B) is L*-well posed if and only if

i) Ry(r,0)#0 if either Imnz<0 or Imr=0 and &>a%d’,

ii) for every (&, a,) with &=a%s? there exist a positive constant C(&, o)

and a neighbourhood U(&, go) in S such that
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Bz, 0, 45 (c, o)
-1 R,z o)
< Cléy, o)l Im %} (5, 0) Im 25 (¢, o) (25 (e, 0)— 45 (z, o)) 7"
in U(&, )N {r>0}.

iii) for every (&, g,) with &< a%e? there exist a positive constant C (&, 00)

and a neighbqurhood U(&,, 0,) in S such that
9. 2) [Ry(z, 0)| 2 C(&, o) in Uy, a0) N {7>0}.

From the definitions of R,(r, o) and ij(r, 0) we have R,(c, 0)=21}(z, o)
—1bo,

iy =7’ if Imz<0
(r,0) =1 —sgnéy &lai—d*> if Imz=0 and & = a’o*
) «/voz—{:z/a"} if Imz=0 and &<d’?

where y1 =1. Hence we can easy verify that
9. 3) R(z,0)#0 in Imc<0 if and only if |b|<1,

(9.'4) R(&, 0)=0 (8<aldd) if and only if a?(1—b%a2 =&, ba,>0
and 0< 6|1

and, in a neighbourhood of (&, a,),

9.5 R(z,0)=i(f P—Eal —bo)+T— 5 10(r).
05 Reo=ilAE b1t o
If |56]>1 then it follows from (9.3) that the condition (1) is not wvalid.

Let |6|=1. Then by (9.4) R(0,0,)=0 for b¢,>0. Hence it follows from
this and (9.5) that

|R;(iT, a0)] < C(0, )72,

which contradict to (9.2) for small 7>0. Therefore (P;, B) is not L*well
posed if || =1. .

‘Next we show that (P;, B) is L*well posed if |b|<1. We may as-
sume that 5#0, because (P;, D,) is Neumann problem. It is obvious that
R, 0)#0. Since Im R,(¢, 0)=bo in £=a’s*, we see that R;(& 0)#0 there.
Then it follows from this and (9. 3) that (i) is valid. Note that from [31,
Lemma 6.1 the right hand side of (9. 1) is estimated below by a constant.
Then (ii) is valid, because R;(g ¢)#0 in &=a%”’ It is obvious that if
R; (&, 0)#0 in &<ale? then (9.2) holds. From (9.4) we see that if



Iterated mixed problems for d’ Alembertians 127

R;(&, 0))=0 then &+#0. Therefore it follows from (9.5) that

IRj(T, 0')] g IRe Rj(?, G)I g C(Eo, 0'0)7' .

ProposITION 9. 2. Suppose that 0<b(t, y)<1 or —1<b(¢, ¥)<0. Then
(P, 3,) is L*well posed. Here B;=BD¥.

Proor.

Remark that the condition in is independent of

j=1,--,m. Then it follows from [2], § 5 that (P;, B) is L*-well posed for
every j=1,---,m. To show a priori estimate for (P, B,), we ‘only verify

that R;(¢, v; 0, 0)#0 for every j=1,---,m (see Lemma 7. 1)).

However, this

follows from the fact |b(z, y)|#1.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

R.

R.

R.

R.

H

K.

S.

R.

R.

Department of Mathematics
Hokkaido University

References

AGEMI: On energy inequalities of mixed problems for hyperbolic equations
of second order, Jour. Fac. Sci. Hokkaido Univ., Ser. I. Vol. 21, 221-236
(1971).

AGEMI: Remarks on L2-well posed mixed problems for hyperbolic equations
of second order, to appear.

AGEMI and T. SHIROTA: On necessary and sufficient conditions for L?-well-
posedness of mixed problems for hyperbolic equations, Jour. Fac. Sci.
Hokkaido Univ., Ser. I, Vol. 21, 133-151 (1970).

AGEMI and T. SHIROTA: On necessary and sufficient conditions for L2-well-
posedness of mixed problems for hyperbolic equations II, ibid, Vol. 22,
137-149 (1972).

. O. KREISs: Initial-boundary value problems for hyperbolic systems, Comm.

Pure Appl. Math., Vol. 23, 277-298 (1970).

KUBOTA: Remarks on boundary value problems for hyperbolic equations,

to appear.

. MIYATAKE: Mixed problems for hyperbolic equations of second order, to

appear.

MIZOHATA: Quelque problémes au bord, du type mixte pour des équations
hyperboliques, Collége de France 23-60 (1966-1967).

SAKAMOTO: Iterated hyperbolic mixed problems, Publ. Reser. Inst. Math.
Sci., Kyoto Univ., Vol. 6, 1-42 (1970).

SAKAMOTO: Mixed problems for hyperbolic equations I. II, Jour. Math.
Kyoto Univ., Vol. 10, 349-373, 403-417 (1970).

[11] M. SCHECTER: Integral inequalities for partial differential operators and func-

tions satisfying general boundary conditions, Comm. Pure. Appl. Math,,
Vol. 12, 37-66 (1959).



128 R. Agemi

[12] T. SHIROTA: On the propagation speed of hyperbolic operator with mixed
boundary conditions, Jour. Fac. Sci, Hokkaido Univ., Ser. I, Vol. 22,

25-31 (1972).
[13] T. SHIROTA and K. ASANO: On mixed problems for regularly hyperbolic sys-
tems, ibid. Vol. 21, 1-45 (1970).

(Received May 16, 1973)



	\S 1. Introduction and ...
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...
	THEOREM 4. ...

	\S 2. Definition of L^{2} ...
	\S 3. A characterization ...
	\S 4. Characterizations ...
	\S 5. Proof of Theorem ...
	\S 6. Proof of Theorem ...
	\S 7. Proof of Theorem ...
	\S 8. Proof of Theorem ...
	\S 9. Remarks
	References

