Finding a homeomorphism between almost homeomorphic manifolds

By Kazuaki Kobayashi

§ 1. Introduction

Throughout this paper we shall only be concerned with the piecewise linear category of polyhedra and piecewise linear maps. In this paper we investigate the following problem; Let W_{1} and W_{2} be two PL manifolds whose interiors and boundaries are $P L$ homeomorphic each other. When are W_{1} and $W_{2} P L$ homeomorphic?

We obtain the result that such homeomorphism problem is closely related to the h-cobordism near the boundary (see Theorem 2).
∂M and Int M stand for the boundary and the interior of the manifold M. § means $P L$ homeomorphic. $I=[0,1]$ is a closed unit interval. $\# X$ means the order of a set X.

§ 2.

Definition 1. Let $W_{i}(i=1,2)$ be bounded manifolds. When $\partial W_{1} \cong$ ∂W_{2} and Int $W_{1} \cong$ Int W_{2}, we say W_{1} is almost homeomorphic to W_{2}. And we define $\mathscr{A}(W)=$ set of $P L$ homeomorphism classes of $P L$ manifolds which are almost homeomorphic to W.

Proposition 1. ([2. Th. 2, 4]) Let $W_{j}^{n}(j=1,2)$ be compact bounded n-manifolds ($n \geqq 6$). Then Int $W_{1}^{n} \cong$ Int W_{2}^{n} if and only if W_{1} and W_{2} are boundary h-cobordant i.e. there are h-cobordisms $\left(U^{(i)} ; \partial W_{2}^{(i)}, M^{(i)}\right)$ such that

Fig. 1.

$$
\left(W_{1}, \partial W_{2}\right) \cong\left(\underset{\partial W_{2}^{(1)}}{W_{2}} U^{(1)} \cup \cdots \underset{\partial W_{2}^{(p)}}{\cup} U^{(p)}, M^{(1)} \cup \cdots \cup M^{(p)}\right)
$$

where p is the number of the components of ∂W_{i}.
Lemma 1. Let $W_{i}(i=1,2)$ be compact bounded n-manifolds such that Int $W_{1} \cong$ Int W_{2} and $g:$ Int $W_{1} \rightarrow$ Int W_{2} be a given PL homeomorphism. Let $c_{1}: \partial W_{1} \times I \rightarrow W_{1}$ be an PL embedding such that $c_{1}(x, 0)=x$ for $x \in \partial W_{1}$ i.e. c_{1} is a boundary collar and let U_{g} be a region bounded by ∂W_{2} and $g c_{1}\left(\partial W_{1} \times\{1\}\right)$ in W_{2}. If $U_{g} \cong \partial W_{1} \times I$, there is a PL homeomorphism h : $W_{1} \rightarrow W_{2}$ such that

$$
h\left|W_{1}-c_{1}\left(\partial W_{1} \times[0,1]\right)=g\right| W_{1}-c_{1}\left(\partial W_{1} \times[0,1]\right)
$$

Proof. Let $\phi: \partial W_{1} \times I \rightarrow U_{g}$ be a $P L$ homeomorphism such that $\phi\left(\partial W_{1}\right.$ $\times\{0\})=\partial W_{2}$ and $\phi\left(\partial W_{1} \times\{1\}\right)=g c_{1}\left(\partial W_{1} \times\{1\}\right)$. Then we may define a $P L$ homeomorphism $h: W_{1} \rightarrow W_{2}$ by

$$
h(x)= \begin{cases}g(x) & \text { on } x \in W_{1}-c_{1}\left(\partial W_{1} \times[0,1]\right) \\ \phi(u, \alpha) & \text { on } x \in c_{1}\left(\partial W_{1} \times[0,1]\right)\end{cases}
$$

where u and α are decided as follows; since $x \in c_{1}\left(\partial W_{1} \times[0,1]\right)$, it can be written $x=c_{1}(y, \alpha)(0 \leqq \alpha \leqq 1)$ and since $\phi\left(\partial W_{1} \times\{1\}\right)=g c_{1}\left(\partial W_{1} \times\{1\}\right)$, we can write $\phi^{-1} g c_{1}(y, 1)=(u, 1)\left(u \in \partial W_{1}\right)$. Since $g=\phi$ on $c_{1}\left(\partial W_{1} \times\{1\}\right)$ by definition, h is well defined.

Definition 2. Let U_{g} be a region defined by Lemma 1 , then U_{g} is an h-cobordism by Proposition 1. We define $\tau\left(g_{\infty}\right)=\tau\left(U_{g}, g c_{1}\left(\partial W_{1} \times\{1\}\right)\right)$ $\epsilon W h\left(\pi_{1}\left(\partial W_{1}\right)\right)$, Whitehead torsion near the boundary with respect to g.

Proposition 2. Let $W_{i}(i=1,2)$ be compact bounded manifolds and $f:$ Int $W_{1} \rightarrow$ Int W_{2} be a PL homeomorphism with $\tau\left(f_{\infty}\right) \neq 0$, then there is no PL homeomorphism $\bar{f}: W_{1} \rightarrow W_{2}$ such that

$$
\bar{f}\left|W_{1}-c_{1}\left(\partial W_{1} \times[0,1]\right)=f\right| W_{1}-c_{1}\left(\partial W_{1} \times[0,1]\right) .
$$

(See also [5. chap. IX]).
Proof. If there is a $P L$ homeomorphism \bar{f} as above,

$$
\begin{aligned}
\tau\left(f_{\infty}\right) & =\tau\left(U_{f}, f c_{1}\left(\partial W_{1} \times\{1\}\right)\right)=\tau\left(U_{f}, \bar{f} c_{1}\left(\partial W_{1} \times\{1\}\right)\right) \\
& =\tau\left(\partial W_{1} \times I, \partial W_{1} \times\{1\}\right)=0 .
\end{aligned}
$$

This is a contradiction.
Theorem 1. Let $W^{n}(n \geqq 6)$ be a connected compact bounded PL n manifold with a connected boundary ∂W. If $W h\left(\pi_{1}(\partial W)\right)=(0), \# \mathscr{A}(W)=1$.

Proof. For any $W_{1}, W_{2} \in \mathscr{A}(W)$, we will show $W_{1} \cong W_{2}$. Let f : Int $W_{1} \rightarrow$ Int W_{2} be a $P L$ homeomorphism and U_{f} be a region bounded by ∂W_{2} and $f c_{1}\left(\partial W_{1} \times\{1\}\right)$. Then U_{f} is an h-cobordism by Proposition 1 and $\tau\left(f_{\infty}\right)=\tau\left(U_{f}, f c_{1}\left(\partial W_{1} \times\{1\}\right)\right)=(-1)^{n-1} \tau\left(U_{f}, \partial W_{2}\right) \in W h\left(\pi_{1}\left(\partial W_{2}\right)\right) \cong W h\left(\pi_{1}(\partial W)\right)$ $=(0)\left(\left[4\right.\right.$, p. 394]). Hence by s-cobordism Theorem [6], $U_{f} \cong \partial W_{2} \times I \cong \partial W_{1}$ $\times I$ and so there is a $P L$ homeomorphism $\bar{f}: W_{1} \rightarrow W_{2}$ such that $\bar{f} \mid W_{1}-$ $c_{1}\left(\partial W_{1} \times[0,1]\right)=f \mid W_{1}-c_{1}\left(\partial W_{1} \times[0,1]\right)$ by Lemma 1.

Proposition 3. Let $W_{i}^{n}(i=1,2)$ be compact bounded manifolds $(n \geqq 6)$ with connected boundaries ∂W_{i} and Int $W_{1} \cong$ Int W_{2}. If n is even and $\pi_{1}\left(\partial W_{1}\right)$ is finite abelian, $D_{\alpha} W_{1} \cong D W_{2}$ where $D W_{2}$ is the double of W_{2} and $D_{\alpha} W_{1}=W_{1} \bigcup_{\alpha} W_{1}$ by some identification homeomorphism $\alpha: \partial W_{1} \rightarrow \partial W_{1}$. Furthermore if α is isotopic to identity, $D_{\alpha} W_{1} \cong D W_{1}$.

Proof. Let W^{+}and W^{-}be the copy of W and $D W=W^{+} \cup_{i d} W^{-}$. Let $f_{ \pm}$: Int $W_{1}^{ \pm} \rightarrow$ Int $W_{2}^{ \pm}$be homeomorphisms and $U_{f \pm}$ be regions bounded by $\partial W_{2}^{ \pm}$and $f_{ \pm} c_{1}^{ \pm}\left(\partial W_{1}^{ \pm} \times\{1\}\right)$ i. e. $\left(U_{f+} ; f_{+} c_{1}^{+}\left(\partial W_{1}^{+} \times\{1\}\right), \partial W_{2}^{+}\right)$and U_{f-} : $\left.f_{-} \mathrm{c}_{1}^{-}\left(\partial W_{1}^{-} \times\{1\}\right), \partial W_{2}^{-}\right) . \quad$ If $\tau=\tau\left(U_{f+}, f_{+} c_{1}^{+}\left(\partial W_{1}^{+} \times\{1\}\right)\right), \tau\left(U_{f-}, \partial W_{2}^{-}\right)=$ $(-1)^{n-1} \bar{\tau}$ [4. p. 394] and so $\tau\left(U_{f+} \bigcup_{\partial W_{2}} U_{f-}, f_{+} c_{1}^{+}\left(\partial W_{1}^{+} \times\{1\}\right)\right)=\tau+(-1)^{n-1} \bar{\tau} \epsilon$ $W h\left(\pi_{1}\left(\partial W_{1}\right)\right)$ [4. Th. 3. 2] where $\left(U_{f+}^{2} \cup U_{f_{-}} ; f_{+} c_{1}^{+}\left(\partial W_{1}^{+} \times\{1\}\right)\right), f_{-} c_{1}^{-}\left(\partial W_{1}^{-} \times\right.$ $\{1\}))$ is an h-cobordism obtained from $U_{f+} \cup U_{f-}$ by ∂W_{2} identiffied. Since $\pi_{1}(\partial W)$ is finite abelian, $\tau=\bar{\tau}$ [4] and so $\tau\left(U_{f+} \cup U_{f-}, f_{+} c_{1}^{+}\left(\partial W_{1}^{+} \times\{1\}\right)\right)=0$ if n is even. Hence $U_{f+} \cup_{\partial W_{2}} U_{f-} \cong \partial W_{1} \times I$ by s-cobordism Theorem. Similarly if

$$
\begin{aligned}
& U_{f-}^{\prime}=\left(U_{f-}^{\prime}: \partial W_{2}^{-}, f_{-} c_{1}^{-}\left(\partial W_{1}^{-} \times\left\{\frac{1}{2}\right\}\right)\right) \text { and } \\
& U_{f-}^{\prime \prime}=\left(U_{f-}^{\prime \prime}: f_{-} c_{1}^{-}\left(\partial W_{1}^{-} \times\left\{\frac{1}{2}\right\}\right), f_{-} c_{1}^{-}\left(\partial W_{1}^{-} \times\{1\}\right)\right), \\
& U_{f+} \cup U_{f-}^{\prime} \cong \partial W_{1} \times I \text { and } U_{f_{-}^{\prime}}^{\prime \prime} \cong \partial W_{1} \times I
\end{aligned}
$$

Let $\phi_{1}: \partial W_{1} \times I \rightarrow U_{f+} \cup U_{f-}^{\prime}$ be a homeomorphism such that $\phi_{1}\left(\partial W_{1} \times\{0\}\right)=$ $f_{+} c_{1}\left(\partial W_{1}^{+} \times\{1\}\right)$

$$
\phi_{1}\left(\partial W_{1} \times\{1\}\right)=f_{-} c_{1}^{-}\left(\partial W_{1}^{-} \times\left\{\frac{1}{2}\right\}\right)
$$

and let

$$
\phi_{2}:\left(\partial W_{1}^{+} \times[0,1]\right) \cup\left(\partial W_{1}^{-} \times\left[0, \frac{1}{2}\right]\right) \rightarrow \partial W_{1} \times I
$$

be a homeomorphism defined by

$$
\begin{aligned}
& \phi_{2}\left(y^{+}, 1-t\right)=\left(z^{+}\left(y^{+}\right), \frac{t}{2}\right), 0 \leqq t \leqq 1 \\
& \phi_{2}\left(y^{-}, t\right)=\left(z^{+}\left(y^{+}\right), \frac{1}{2}+t\right), 0 \leqq t \leqq \frac{1}{2}
\end{aligned}
$$

where

$$
y^{+} \in \partial W_{1}^{+}, y^{-} \in \partial W_{1}^{-} \quad \text { and } \quad \phi_{1}^{-1} f_{+} c_{1}^{+}\left(y^{+}, 1\right)=\left(z^{+}\left(y^{+}\right), 0\right)
$$

And we define a homeomorphism $\gamma: D W_{1} \rightarrow D W_{1}$ by

$$
\begin{aligned}
& \gamma \mid\left(W_{1}^{+}-c_{1}^{+}\left(\partial W_{1}^{+} \times[0,1)\right)\right) \cup\left(W_{1}^{-}-c_{1}^{-}\left(\partial W_{1}^{-} \times[0,1)\right)\right)=i d \\
& \gamma c_{1}^{+}\left(y^{+}, t\right)=c_{1}^{+}\left(y^{+}, \frac{1}{2}(3 t-1)\right) \quad \frac{1}{3} \leqq t \leqq 1 \\
& \gamma c_{1}^{+}\left(y^{+}, t\right)=c_{1}^{-}\left(y^{-}, \frac{1}{2}(1-3 t)\right) \quad 0 \leqq t \leqq \frac{1}{3} \\
& \gamma c_{1}^{-}\left(y^{-}, t\right)=c_{1}^{-}\left(y^{-}, \frac{1}{2}(1+t)\right) \quad 0 \leqq t \leqq 1
\end{aligned}
$$

and let $\beta: c_{1}^{-}\left(\partial W_{1}^{-} \times\left\{\frac{1}{2}\right\}\right) \rightarrow c_{1}^{-}\left(\partial W_{1}^{-} \times\left\{\frac{1}{2}\right\}\right)$ be a homeomorphism defined by

$$
\beta c_{1}^{-}\left(y^{-}, \frac{1}{2}\right)=\left(f_{-}\right)^{-1} \phi_{1} \phi_{2}\left(y^{-}, \frac{1}{2}\right)
$$

We define a homeomorphism $\alpha: \partial W_{1} \rightarrow \partial W_{1}$ by

$$
\alpha=\gamma^{-1} \beta\left(\gamma \mid c_{1}^{+}\left(\partial W_{1} \times\{0\}\right)\right)
$$

Then there is a well-defined homeomorphism $h: D_{\alpha} W_{1} \rightarrow D W_{2}$ defined by

$$
h(x)= \begin{cases}f_{+}\left(x^{+}\right) & x^{+} \in W_{1}^{+}-c_{1}^{+}\left(\partial W_{1}^{+} \times[0,1)\right) \\ \phi_{1} \phi_{2}\left(c_{1}^{-}\right)^{-1} \gamma\left(x^{+}\right) & x^{+} \in c_{1}^{+}\left(\partial W_{1}^{+} \times\left[0, \frac{1}{3}\right]\right) \\ \phi_{1} \phi_{2}\left(c_{1}^{+}\right)^{-1} \gamma\left(x_{1}^{+}\right) & x^{+} \in c_{1}^{+}\left(\partial W_{1}^{+} \times\left[\frac{1}{3}, 1\right]\right) \\ f_{-} \gamma\left(x^{-}\right) & x^{-} \in W_{1}^{-}\end{cases}
$$

Next we will show $D_{\alpha} W_{1} \cong D W_{1}$ if α is isotopic to identity. Since $\alpha \approx i d$., there is a level preserving homeomorphism $H: \partial W_{1} \times I \rightarrow \partial W_{1} \times I$ such that $H_{0}=\alpha$ and $H_{1}=i d$. Let $c_{1}: \partial W_{1} \times I \rightarrow W_{1}$ be a collar (embedding) such that $c_{1}(y, 0)=y \in \partial W_{1}$ and $c_{1}^{\alpha}: \partial W_{1} \times I \rightarrow W_{1}$ be $c_{1}^{\alpha}(y, t)=c_{1} H(y, t)$. Then we define
a homeomorphism

$$
F: D W_{1} \rightarrow D_{a} W_{1}
$$

by

$$
\begin{array}{ll}
F\left(x^{+}\right)=x^{+} & x^{+} \in W_{1}^{+} \\
F\left(x^{-}\right)=x^{-} & x^{-} \in W_{1}^{-}-c_{1}^{-}\left(\partial W_{1}^{-} \times[0,1)\right) \\
F\left(x^{-}\right)=F\left(c_{1}^{-}\left(y^{-}, t\right)\right)=c_{1}^{\alpha}\left(y^{-}, t\right) & x^{-} \in c_{1}^{-}\left(\partial W_{1}^{-} \times[0,1]\right) .
\end{array}
$$

Hence $D W_{1} \cong D_{\alpha} W_{1}$.
Definition 3. Let $W^{n}(n \geqq 6)$ be a compact bounded n-manifold. Then $I[W, \partial W]$ is the inertia group defined by [2] i.e.

$$
I[W, \partial W]=\left\{\tau \in W h\left(\pi_{1}(\partial W)\right) \mid(W, \partial W) \circ \tau=(W, \partial W)\right\}
$$

where $(W, \partial W) \circ \tau=\left(W \cup U, \partial W^{\prime}\right)$ and $\left(U ; \partial W, \partial W^{\prime}\right)$ is an h-cobordism with $\tau(U, \partial W)=\tau$. Similarly if M is a closed n-manifold $(n \geqq 5), I[M]=\{\tau \epsilon$ $\left.W h\left(\pi_{1}(M)\right) \mid M \circ \tau=M\right\}$ where $M \circ \tau=M^{\prime}$ and $\left(U ; M, M^{\prime}\right)$ is an h-cobordism with $\tau(U, M)=\tau$.

Let $\langle W, \partial W\rangle$ be a set of manifolds $\left(W^{\prime}, \partial W\right)$ such that $(W, \partial W) \cdot \tau=$ ($\left.W^{\prime}, \partial W\right), \tau \in W h\left(\pi_{1}(\partial W)\right)$ and

$$
\begin{array}{r}
\tilde{I}[W, \partial W]=\left\{\tau \in W h\left(\pi_{1}(\partial W)\right) \mid\left(W^{\prime}, \partial W\right) \circ \tau=\left(W^{\prime}, \partial W\right)\right. \\
\text { for any } \left.\left(W^{\prime}, \partial W\right) \in\langle(W, \partial W)\rangle\right\} .
\end{array}
$$

Then the following Lemma is obvious by definition.
Lemma 2. \# $\tilde{I}[W, \partial W] \leqq \# I[W, \partial W] \leqq \# I[\partial W] \leqq \# W h\left(\pi_{1}(\partial W)\right)$. Using s-cobordism Theorem we obtain the following.

Proposition 4. Let W^{n} be a compact n-manifold ($n \geqq 6$) with $\partial W=$ $M_{1} \cup M_{2}$ where $M_{i}(i=1,2)$ are connected. If $\left(W ; M_{1}, M_{2}\right)$ is an h-cobordism, $\# \mathscr{A}(W)=\# I\left[M_{1}\right]=\# I\left[M_{2}\right]$.

Proof. Case 1. $M_{1} \cong M_{2}$. We define a map $\alpha: I\left[M_{1}\right] \rightarrow \mathscr{A}(W)$ by $\alpha(\tau)=\widetilde{W}$ where \widetilde{W} is an h-cobordism from M_{1} with $\tau\left(\widetilde{W}, M_{1}\right)=\tau$. Then \widetilde{W} is uniquely determined by τ up to $P L$ homeomorphism class [4. Th. 11. 3] and $\widetilde{W} \in \mathscr{A}(W)$ because Int $\widetilde{W} \cong M_{1} \times R \cong$ Int W and $\partial \widetilde{W}=M_{1} \cup M_{1}$ since $\tau \in I\left[M_{1}\right]$. And if $\tau_{1} \neq \tau_{2} \in I\left[M_{1}\right], \widetilde{W}_{1} \neq \widetilde{W}_{2}$ by [4. Th. 11. 3] where $\alpha\left(\tau_{i}\right)=\widetilde{W}_{i}$ $(i=1,2)$. So α is injective, clearly for any $\widetilde{W} \in \mathscr{A}(W), \tau \in I\left[M_{1}\right]$ where $\tau=\tau\left(\bar{W}, M_{1}\right)$. Hence α is onto.

CASE 2. $\quad M_{1} \not \approx M_{2}$. Let $\tau=\tau\left(W, M_{1}\right)$ fix. And we define a map α :
$I\left[M_{1}\right] \rightarrow \mathscr{A}(W)$ by $\alpha(\omega)=U \bigcup_{M_{1}} W$ where U is an h-cobordism from M_{1} with $\tau\left(U, M_{1}\right)=\omega$. Then $\partial\left(U \bigcup_{M_{1}} W\right)=M_{1} \cup M_{2}$ and Int $(U \cup W) \cong M_{1} \times R \cong \operatorname{Int} W$ by [1. vol. II]. So $U \bigcup_{M_{1}} W \in \mathscr{A}(W)$. If $\tau_{1} \neq \tau_{2} \in I\left[M_{1}\right], U_{M_{1}} \cup \underset{M_{1}}{ } W \neq U_{M_{1}} \cup W$ by [4. 11.3]. Hence α is injective. Now we will show α surjective. For any $\widetilde{W} \in \mathscr{A}(W)$, since $\widetilde{W}-M_{1} \cong W-M_{1} \cong M_{2} \times[0, \infty)$. there is a $P L$ homeomorphism $f: W-M_{1} \rightarrow \widetilde{W}-M_{1}$. Let U_{f} be a bounded region by M_{1} and $f c_{1}\left(M_{1} \times\{1\}\right)$ in \widetilde{W} where $c_{1}: M_{1} \times I \rightarrow W$ is a boundary collar and let $\omega_{f}=\tau\left(U_{f}, M_{1}\right)$. Then $\omega_{f} \in I\left[M_{1}\right]$. Now ω_{f} does

Fig. 2. not depend on f because if $g: W-M_{1} \rightarrow \widetilde{W}-M_{1}$ is another PL homeomorphism,

$$
\begin{aligned}
& \tau\left(U_{g}, M_{1}\right)+\tau\left(g(W), g\left(M_{1}\right)\right) \\
& \quad=\omega_{g}+\tau=\tau\left(\widetilde{W}, M_{1}\right) \\
& \quad=\tau\left(U_{f}, M_{1}\right)+\tau\left(f\left(W, f\left(M_{1}\right)\right)=\omega_{f}+\tau\right.
\end{aligned}
$$

and so $\omega_{g}=\omega_{f}$. Hence α is onto and $\# I\left[M_{1}\right]=\# \mathscr{A}(W)$. Similarly $\# I\left[M_{2}\right]$ $=\# \mathscr{A}(W)$.

Corollary. If W is the same as Proposition 4, \# $\mathscr{A}(W) \geqq$ \# $d^{n}\left(W h\left(\pi_{1}\left(M_{1}\right)\right)\right.$ where $d_{n}: W h\left(\pi_{1}\left(M_{1}\right)\right) \rightarrow W h\left(\pi_{1}\left(M_{1}\right)\right)$ is an endomorphism defined by $d_{n}(\tau)=\tau+(-1)^{n-1} \bar{\tau}$.

Proof follows by the fact that $d_{n}\left(W h\left(\pi_{1}\left(M_{1}\right)\right)\right.$ is a subgroup of $I\left[M_{1}\right]$.
Definition 4. Let W be a $P L$ manifold and K be a subpolyhedron. We say K homotopy spine of W if the polyhedral pair (W, K) is an abstract h-neighborhood i.e. W, K satisfy the following conditions (see [2]):
(1) $K \subset$ Int W
(2) for some regular neighborhood N of K in $W,(\overline{W-N} ; \partial W, \partial N)$ is an h-cobordism.

Definition 5. If $\tau \in I[W, \partial W]$, by the definition there exist an h cobordism $(U ; \partial W, \partial W)$ with $\tau(U, \partial W)=\tau$ and $P L$ homeomorphism
$h: W \bigcup U(W)$. We define $I[W, \partial W ; i d]=\{\tau \in I[W, \partial W]|h| K$ is homotopic to inclusion $i: K \rightarrow W$ for some homotopy spine K of $W\}$.

Lemma 3. Let W^{n} be a compact bounded n-manifold ($n \geqq 6$) with a connected boundary. If $i_{*}: W h\left(\pi_{1}(\partial W)\right) \rightarrow W h\left(\pi_{1}(W)\right)$ is a monomorphism, $I[W, \partial W ; i d]=0$.

Proof. Let $\tau \in I[W, \partial W ; i d],(U ; \partial W, \partial W)$ be an h-cobordism with
$\tau(U, \partial W)=\tau$ and $h: W \cup U \rightarrow W$ be a homeomorphism such that $h \mid K \simeq i$ for some homotopy spine K of W. Then by [4:7.6, 7.7]

$$
\tau(W, h(K))=\tau(h)=\tau(i)=\tau(W, K) \in W h\left(\pi_{1}(W)\right) .
$$

And since h is a homeomorphism,

$$
\tau(W, h(K))=i_{*} \tau(U, \partial W)+\tau(W, K) .
$$

Hence $i_{*} \tau(U, \partial W)=i_{*} \tau=0$ and $\tau=0$.
Theorem 2. If W^{n} is a compact bounded n-manifold ($n \geqq 6$) with a connected boundary, then $\# \mathscr{A}(W)=\#\langle(W, \partial W)\rangle \leqq \# I[\partial W]$. Furthermore if $k e r\left(i_{*}: W h\left(\pi_{1}(\partial W)\right) \rightarrow W h\left(\pi_{1}(W)\right)\right)=0$ and $I[W, \partial W: i d]=I[W, \partial W], \# \mathscr{A}(W)$ $=\# I[\partial W]$.

Proof. Let $W_{1} \in \mathscr{A}(W)$ such that $W_{1} \neq W$ and let f : Int $W_{1} \rightarrow$ Int W be a homeomorphism. Let U_{f} be a region bounded by ∂W and $f c_{1}\left(\partial W_{1}\right.$ $\times\{1\})$. Then ($U_{f} ; \partial W, f c_{1}\left(\partial W_{1} \times\{1\}\right)$) is an h-cobordism by Proposition 1 and $\tau\left(U_{f}, f c_{1}\left(\partial W_{1} \times\{1\}\right)\right) \neq 0$ in $I\left[\partial W_{1}\right]=I[\partial W]$ for any f because $\partial W_{1} \cong \partial W$ and $W_{1} \neq W$. Similarly if $W_{1}, W_{2} \in \mathscr{A}(W)$ such that $W_{1} \neq W \neq W_{2}, W_{1} \neq W_{2}$, then $\tau\left(U_{f}, f c_{1}\left(\partial W_{1} \times\{1\}\right)\right) \neq \tau\left(U_{g}, g c_{2}\left(\partial W_{2} \times\{1\}\right)\right)$ where $g:$ Int $W_{2} \rightarrow$ Int W is a homeomorphism. So \# $\mathscr{A}(W) \leqq \# I[\partial W]$.

Since $\operatorname{Int}(W \bigcup U W) \cong \operatorname{Int} W$ where U is an h-cobordism from $\partial W, W^{\prime} \epsilon$ $\mathscr{A}(W)$ if $W^{\prime} \in\langle\langle W, \partial W)\rangle$. So \# $\langle W, \partial W\rangle \leqq \# \mathscr{A}(W)$. And if $W_{1}, W_{2} \in$ $\mathscr{A}(W)$, Int $W_{1} \cong$ Int W_{2} so W_{1} is boundary h-cobordant to W_{2} by ProposiTION 1 and $\partial W_{1} \cong \partial W_{2}$. Hence $W_{1}, W_{2} \in\langle W, \partial W\rangle$ and $\mathscr{A}(W)=\langle(W, \partial W)\rangle$. Since $\# \mathscr{A}(W)=\#(I[\partial W] / I[W, \partial W])$, by Lemma 3

$$
\# \mathscr{A}(W)=\# I[\partial W] \quad \text { if } k e r \quad i_{*}=0
$$

and $I[W, \partial W: i d]=I[W, \partial W]$.
Theorem 3. Let M^{n} be a closed n-manifold ($n \geqq 5$) and let $G=\{\tau \in$ $W h\left(\pi_{1}\left(M \times S^{1}\right)\right) \mid$ if $A=\left(a_{i j}\right) \in G L\left(p, Z \pi_{1}\left(M \times S^{1}\right)\right)$ is a representative of $\tau, a_{i j} \in$ $\left.Z_{\pi_{1}}(M) \otimes\{1\}\right\}$. Then there is a homomorphism ϕ of $I[M]$ onto $G /(I[M \times$ $\left.\left.S^{1}\right] \cap G\right)$ with $\operatorname{ker} \phi \supset\left\{\omega \in I[M] \mid \omega+(-1)^{n} \bar{\omega}=0\right\}$.

Corollary. If M^{n} is a closed n-manifold ($n \geqq 5$ and odd) with $\pi_{1}(M)$ $=$ finite abelian, $G \subset I\left[M \times S^{1}\right]$.

Proof. If M satisfies all conditions, for any $\tau \in W h\left(\pi_{1}(M)\right) \tau+(-1)^{n} \bar{\tau}$ $=0$ by [4]. So $\left\{\tau \in I[M] \mid \tau+(-1)^{n} \tau=0\right\}=I[M] \subset$ ker ϕ. Hence $G /\left(I\left[M \times S^{1}\right]\right.$ $\cap G)=0$ by Theorem 3 .

Proof of Theorem 3. Let U be an h-cobordism from M to itself.

Then Int $U \cong M \times R$ and so U is boundary h-cobordant to $M \times I$ by PropoSition 1 i.e. $(M \times I ; M, M) \cong\left(V_{1} \bigcup_{M} U \bigcup_{M} V_{2} ; M, M\right)$ for some h-cobordisms $\left(V_{1} ; M, M\right),\left(V_{2} ; M, M\right)$. Let $\left(\widetilde{W} ; V_{1} \cup U \cup V_{2}, M \times I\right)$ be a trivial h-cobordism. Then ($W ; U, M \times I$) is an h-cobordism between U and $M \times I$ where

Fig. 3.
$\partial W \cong \partial \widetilde{W}$. Let $\omega_{1}=\tau\left(V_{1}, M\right), \omega_{2}=\tau\left(V_{2}, M\right)$ and let $\left(V_{1}^{\prime} ; M, M\right),\left(V_{2}^{\prime} ; M, M\right)$ be h-cobordisms with $\tau\left(V_{1}^{\prime}, M\right)=-\omega_{1}, \tau\left(V_{2}^{\prime}, M\right)=-\omega_{2}$. Then $V_{1} \cup V_{1}^{\prime}$ and $V_{2} \cup V_{2}^{\prime}$ are both trivial h-cobordism and so there are trivial h-cobordisms W_{1}, W_{2} between $V_{1} \cup V_{1}^{\prime}, V_{2} \cup V_{2}^{\prime}$ and $M \times I$. Thereföre $V_{1}^{\prime} \cup U \cup V_{2}^{\prime}$ is h cobordant to $M \times I$ by the h-cobordism $W_{1} \cup W \cup W_{2}$ such that

Fig. 4.

Fig. 5.
$\partial\left(V_{1}^{\prime} \cup U \cup V_{2}^{\prime}\right) \cong M \times S^{0}$ is trivially h-cobordant to $M \times S^{0}$ by the same $W_{1} \cup$ $W \cup W_{2}$. Let $X=(M \times I \times J) \cup\left(W_{1} \cup W \cup W_{2}\right)$ by identifying $M \times(0) \times(t) \sim$ $M \times(t) \subset$ "free" part of $\partial W_{1}, M \times\{1\} \times\{t\} \sim M \times\{t\} \subset$ "free" part of ∂W_{2}. Then X is an h-cobordism from $M \times S^{1}$. So there is a map

$$
\bar{\Phi}: I[M] \rightarrow W h\left(\pi_{1}\left(M \times S^{1}\right)\right)
$$

defined by

$$
\bar{\phi}(\tau)=\tau\left(X, M \times S^{1}\right) \quad \text { where } \tau=\tau(U, M) .
$$

Let $(\widetilde{U} ; M, M)$ be an h-cobordism with $\tau(\widetilde{U} ; M)=\tilde{\tau} \neq \tau \in I[M]$. Then
$U \not \approx \widetilde{U}$. And let $\widetilde{V}_{1}^{\prime}, \widetilde{V}_{2}^{\prime}$ be the corresponding h-cobordism for \widetilde{U} as above. If $\left(\widetilde{V}_{1}^{\prime} \cup \widetilde{U} \cup \widetilde{V}_{2}^{\prime}\right) \cup M \times I \times\{1\} \neq\left(V_{1}^{\prime} \cup U \cup V_{2}^{\prime}\right) \cup(M \times I \times\{1\}), \tau\left(\widetilde{X}, M \times S^{1}\right) \neq \tau(X$, $M \times S^{1}$). But if $\left(\widetilde{V}_{1}^{\prime} \cup U \cup \widetilde{V}_{2}^{\prime}\right) \cup(M \times I \times\{1\}) \cong\left(V_{1}^{\prime} \cup U \cup V_{2}^{\prime}\right) \cup(M \times I \times\{1\})$, I don't know whether $\tau\left(\widetilde{X}, M \times S^{1}\right)=\tau\left(X, M \times S^{1}\right)$ or not. So we define a $\operatorname{map} \phi: I[M] \rightarrow W h\left(\pi_{1}\left(M \times S^{1}\right)\right) / I\left[M \times S^{1}\right]$ by $\phi(\tau)=\left[\tau\left(X, M \times S^{1}\right)\right]$. Then ϕ is well defined. And since $M \times I \times J \cup N\left(M \times 3 I, W_{1} \cup W \cup W_{2}\right) \subset X$ is homeomorphic to $M \times S^{1} \times J$ where $M \times 3 I=(M \times I) \cup(M \times I) \cup(M \times I) \cup \partial\left(W_{1} \cup W\right.$ $\left.\cup W_{2}\right)$ and $N\left(M \times 3 I, W_{1} \cup W \cup W_{2}\right)$ is a regular neighborhood of $M \times 3 I$ in $W_{1} \cup W \cup W_{2}$, we may consider that X is constructed from $M \times S^{1} \times J$ by attaching handles on $M \times I \times\{1\} \subset M \times S^{1} \times\{1\}$. So if $A=\left(a_{i j}\right) \in G L(p$, $Z \pi_{1}\left(M \times S^{1}\right)$) is a representation of $\tau\left(X, M \times S^{1}\right), a_{i j} \in Z \pi_{1}(M) \otimes\{1\}$. Hence Im $\phi \subset G /\left(I\left[M \times S^{1}\right] \cap G\right)$. Now we will show ϕ surject!̣e. Let [ω] be an element of $G /\left(I\left[M \times S^{1}\right] \cap G\right)$ such that $\omega=\tau\left(X, M \times S^{1}\right)$. Since a. representative $A=\left(a_{i j}\right)$ of ω in $G L\left(p, Z \pi_{1}\left(M \times S^{1}\right)\right)$ has a form $a_{i j} \in Z \pi_{1}(M) \otimes\{1\}$, we may assume

$$
\begin{aligned}
X & =\left(M \times S^{1} \times J\right) \cup\{\text { handles }\} \\
& =\left(M \times I_{1} \times J\right) \cup\left(M \times I_{2} \times J\right) \cup\{\text { handles }\}
\end{aligned}
$$

so that all handles do not attach one of $M \times I \times J_{s}^{\prime}$, say $M \times I_{1} \times J$ [4]. Let $U=\partial X-\left(M \times S^{1} \times\{0\} \cup M \times I_{1} \times\{1\}\right)$. Then U is an h-cobordism between M. So there is an element $\tau(U, M) \in I[M]$ such that $\phi(\tau(U, M))=[\omega]$. Now let ω be an element of $I[M]$ such that $\omega+(-1)^{n} \bar{\omega}=0$. Then $U \cup \bar{U}$ $\cong M \times I$ where $\tau(U, M)=\omega$ and $\tau(\bar{U}, M)=(-1)^{n} \bar{a}$. So $((U \cup \bar{U}) \times J) \cup_{M \times \partial I \times J}(M$ $\times I \times J) \cong M \times S^{1} \times J$. Hence $\phi(\omega)=0$ and so $\operatorname{ker} \phi \supset\left\{\omega \in I[M] \mid \omega+(-1)^{n} \bar{\omega}\right.$ $=0\}$.

Now, suppose R and R^{\prime} are rings which are also algebras over the commutative ring A, and let C be a free R-complex with a preferred basis, and C^{\prime} a free R^{\prime} complex with a preferred basis. Then $C \otimes{ }_{A} C^{\prime}$ is a free $R \otimes{ }_{A} R^{\prime}$ compelx with a preferred basis.

We obtain the following proposition by [4. §3].
Proposition 5. Let C be a free R-complex with a preferred basis, and C^{\prime} a free R^{\prime}-complex with a preferred basis. Then if $H_{*}(C)$ and $H_{*}\left(C^{\prime}\right)$ are both free, so is $H_{*}\left(C \otimes_{A} C^{\prime}\right)$ and $\tau\left(C \otimes_{A} C^{\prime}\right)=\tau(C \otimes B)+\tau\left(C \otimes B^{\prime}\right)$ $+\tau(\mathscr{H})$ where B and B^{\prime} are R^{\prime}-complexes such that

$$
\begin{array}{ll}
B: & 0 \rightarrow C_{n}^{\prime} \rightarrow C_{n-1}^{\prime} \rightarrow \cdots \rightarrow C_{p+1}^{\prime} \rightarrow 0 \\
B^{\prime}: & 0 \rightarrow C_{p}^{\prime} \rightarrow C_{p-1}^{\prime} \rightarrow \cdots \rightarrow C_{0}^{\prime} \rightarrow 0
\end{array}
$$

for any p when

$$
0 \rightarrow C_{n}^{\prime} \rightarrow C_{n-1}^{\prime} \rightarrow \cdots \rightarrow C_{p}^{\prime} \rightarrow C_{p-1}^{\prime} \rightarrow \cdots \rightarrow C_{0}^{\prime} \rightarrow 0
$$

is a chain complex C^{\prime} and where \mathscr{H} is an $R \otimes_{A} R^{\prime}$ complex $H_{m}(C \otimes B) \rightarrow$ $H_{m}\left(C \otimes C^{\prime}\right) \rightarrow H_{m}\left(C \otimes B^{\prime}\right) \rightarrow H_{m-1}(C \otimes B) \rightarrow \cdots \rightarrow H_{0}\left(C \otimes B^{\prime}\right) \rightarrow 0$ induced by the short exact sequence

$$
0 \rightarrow C \otimes B \rightarrow C \otimes C^{\prime} \rightarrow C \otimes B^{\prime} \rightarrow 0 .
$$

Corollary. If M is a manifold such that $H_{*}(\widetilde{\mathbb{M}})$ is free $Z_{\pi_{1}}(M)$ module where \widetilde{M} is a universal covering space, $\tau\left(M \times S^{1}\right)\left(\stackrel{\text { def }}{=} \tau\left(c\left(\widetilde{M \times S^{1}}\right)\right)\right) \in$ $W h\left(\pi_{1}\left(M \times S^{1}\right)\right)$ is equal to $\tau(c(\widetilde{M}))+\tau(\mathscr{H})$, where \mathscr{H} is a $Z_{\pi_{1}}(M) \otimes_{z} Z_{\pi_{1}}\left(S^{1}\right)$ complex

$$
\begin{aligned}
H_{m}\left(c(\widetilde{\boldsymbol{M}}) \otimes c_{1}\left(\tilde{S}^{1}\right)\right) & \rightarrow H_{m}\left(c(\widetilde{\boldsymbol{M}}) \otimes c\left(\tilde{S}^{1}\right)\right) \rightarrow H_{m}\left(c(\widetilde{\boldsymbol{M}}) \otimes c_{0}\left(\tilde{S}^{1}\right)\right) \\
& \rightarrow \cdots \rightarrow H_{0}\left(c(\widetilde{\boldsymbol{M}}) \otimes c_{0}\left(\tilde{S}^{1}\right)\right) \rightarrow 0 .
\end{aligned}
$$

Proof. By Proposition 5

$$
\begin{aligned}
& \tau\left(c(\widetilde{M}) \otimes c\left(\tilde{S}^{1}\right)\right) \\
&=\tau\left(c(\widetilde{M}) \otimes c_{1}\left(S^{1}\right)\right)+\tau\left(c(\widetilde{M}) \otimes c_{0}\left(\widetilde{S}^{1}\right)\right)+\tau(\mathscr{\mathscr { H }}) \\
&=\chi\left(c_{1}\left(\widetilde{S}^{1}\right)\right) \tau(c(\widetilde{M}))+\chi\left(c_{0}\left(\widetilde{S}^{1}\right)\right) \tau(c(\widetilde{M}))+\tau(\mathscr{H}) \\
&=\chi\left(c\left(\tilde{S}^{1}\right)\right) \tau(c(\widetilde{M}))+\tau(\mathscr{H})
\end{aligned}
$$

where $\chi\left(c\left(\tilde{S}^{1}\right)\right)$ is the euler characteristic as $Z \pi_{1}\left(S^{1}\right)$-complex. Since $\widetilde{S}^{1}=\widetilde{R}^{1}$, $\chi\left(c\left(\tilde{S}^{1}\right)\right)=1$. Hence $\tau\left(c(\widetilde{M}) \otimes c\left(\tilde{S}^{1}\right)\right)=\tau(c(\widetilde{M}))+\tau(\mathscr{H})$. And since $\widetilde{M \times S}=$ $\widetilde{M} \times \widehat{S}^{1}$, we obtain the result.

Hokkaido University

References

[1] L. C. Glaser: Geometrical combinatorial topology Vol. II. van Nostrand Reinhold Math. Studies.
[2] M. Kato: Geometrical operation of Whitehead groups, J. Math. Soc. Japan, Vol. 21 (4) 1969 pp 523-542.
[3] Kyung Whan Kwun and R. H. Szczarba: Product and sum theorems for Whitehead torsion, Ann. Math., Vol. 82 (1965)pp 183-190.
[4] J. Milnor: Whitehead torsion, Bull. Amer. Math. Soc., Vol. 72 (3) 1966 pp 358426.
[5] L. C. Siebenmann: The obstruction to finding a boundary for an open mani-
fold of dimension greater than five. ph. D. Thesis, Princeton Univ. (1965).
[6] J. R. Stallings: Lectures on polyhedral topology, Tata Inst. Fund. Research, Bombay (1968).
(Received February 9, 1974)
(Revised March 25, 1974)

