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\S 1. Introduction
Throughout this paper we shall only be concerned with the piecewise

linear category of polyhedra and piecewise linear maps. In this paper we
investigate the following problem; Let W_{1} and W_{2} be two PL manifolds
whose interiors and boundaries are PL homeomorphic each other. When
are W_{1} and W_{2}PL homeomorphic ?

We obtain th^{Je} result that such homeomorphism problem is closely
related to the h-cobordism near the boundary (see THEOREM 2).

\partial M and Int M stand for the boundary and the interior of the mani-
fold M. \cong means PL homeomorphic. I=[0,1] is a closed unit interval.
\# X means the order of a set X.

\S 2.

DEFINITION 1. Let W_{i}(i=1,2) be bounded manifolds. When \partial W_{1}\cong

\partial W_{2} and Int W_{1}\cong Int W_{2} , we say W_{1} is almost homeomorphic to W_{2} .
And we define \mathscr{A}’(W)=set of PL homeomorphism classes of PL manifolds
which are almost homeomorphic to W.

PROPOSITION 1. ([2. Th. 2, 4]) Let W_{j}^{n}(j=1,2) be compact bounded
n-manifolds (n\geqq 6) . Then Int W_{1}^{n}\cong IntW_{2}^{n} if and only if W_{1} and W_{2} are
boundary h-cobordant i.e. there are h-cobordisms (U^{(i)} ; \partial W_{2}^{(i)}, M^{(i)}) such
that

Fig. 1.
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(W_{1}, \partial W_{2})\cong(W_{2}\bigcup_{\partial W_{2}^{(1)}}U^{(1)}\cup\cdots\bigcup_{\partial W5^{p)}}U^{(p)}, M^{(1)}\cup\cdots\cup M^{(p)})

where p is the number of the componmts of \partial W_{i} .
LEMMA 1. Let W_{i}(i=1,2) be compact bounded n-manifolds such that

Int W_{1}\cong IntW_{2} and g : Int W_{1}arrow Int W_{2} be a given PL homeomorphism.
Let c_{1} : \partial W_{1}\cross Iarrow W_{1} be an PL embedding such that c_{1}(x, 0)=x for x\in\partial W_{1}

i.e. c_{1} is a boundar.y collar and let U_{g} be a region bounded by \partial W_{2} and
gc_{1}(\partial W_{1}\cross\{1\}) in W_{2} . If U_{g}\cong\partial W_{1}\cross I , there is a PL homeomorphism h :
W_{1}arrow W_{2} such that

h|W_{1}-c_{1}(\partial W_{1}\cross[0,1])=g|W_{1}-c_{1}(\partial W_{1}\cross[0,1])

PROOF. Let \phi:\partial W_{1}\cross I-U_{g} be a PL homeomorphism such that \phi(\partial W_{1}

\cross\{0\})=\partial W_{2} and \phi(\partial W_{1}\cross\{1\})=gc_{1}(\partial W_{1}\cross\{1\}) . Then we may define a PL
homeomorphism h:W_{1}arrow W_{2} by

h(x)=\{
g(x) on x\in W_{1}-c_{1}(\partial W_{1}|\cross[0,1])

\phi(u, \alpha) on x\in c_{1}(\partial W_{1}\cross[0,1])

where u and \alpha are decided as follows; since x\in c_{1}(\partial W_{1}\cross[0,1]), it can
be written x=c_{1}(y, \alpha)(0\leqq\alpha\leqq 1) and since \phi(\partial W_{1}\cross\{1\})=gc_{1}(\partial W_{1}\cross\{1\}), we
can write \phi^{-1}gc_{1}(y, 1)=(u, 1)(u\in\partial W_{1}) . Since g=\phi on c_{1}(\partial W_{1}\cross\{1\}) by defini-
tion, h is well defined.

DEFINITION 2. Let U_{g} be a region defined by LEMMA 1, then U_{g} is
an h-cobordism by PROPOSITION 1. We define \tau(g_{\infty})=\tau(U_{g}, gc_{1}(\partial W_{1}\cross\{1\}))

\in Wh(\pi_{1}(\partial W_{1})), Whitehead torsion near the boundary with respect to g .
PROPOSITION 2. Let W_{i}(i=1,2) be compact bounded manifolds and

f: Int W_{1}arrow IntW_{2} be a PL homeomorphism with \tau(f_{\infty})\neq 0, then there is
no PL homeomorphism \overline{f} : W_{1}arrow W_{2} such that

\overline{f}|W_{1}-c_{1}(\partial W_{1}\cross[0,1])=f|W_{1}-c_{1}(\partial W_{1}\cross[0,1]) .
(See also [5. chap. IX] ).

PROOF. If there is a PL homeomorphism \overline{f} as above,

\tau(f_{\infty})=\tau(U_{f}, fc_{1}(\partial W_{1}\cross\{1\}))=\tau(U_{f},\overline{f}c_{1}(\partial W_{1}\cross\langle 1\}))

=\tau ( \partial W_{1}\cross I , \partial W_{1}\cross\{1\})=0 .

This is a contradiction.
THEOREM 1. Let W^{n}(n\geqq 6) be a connected cmpact bounded PL n-

manifold with a connected boundary \partial W. If Wh(\pi_{1}(\partial W))=(0), \#\mathscr{A}(W)=1 .
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PROOF. For any W_{1} , W_{2}\in \mathscr{A}(W) , we will show W_{1}\cong W_{2} . Let f:
Int W_{1}arrow Int W_{2} be a PL homeomorphism and U_{f} be a region bounded by
\partial W_{2} and fc_{1}(\partial W_{1}\cross\{1\}) . Then U_{f} is an h-cobordism by PROPOSITION 1 and
\tau(f_{\infty})=\tau(U_{f}, fc_{1}(\partial W_{1}\cross\{1\}))=(-1)^{n-1}\tau(U_{f}, \partial W_{2})\in Wh(\pi_{1}(\partial W_{2}))\cong Wh(\pi_{1}(\partial W))

=(0) ( [4, p. 394]). Hence by s-cobordism Theorem [6], U_{f}\cong\partial W_{2}\cross I\cong\partial W_{1}

\cross I and so there is a PL homeomorphism \overline{f}:W_{1}arrow W_{2} such that \overline{f}|W_{1}-

c_{1}(\partial W_{1}\cross[0,1])=f|W_{1}-c_{1}(\partial W_{1}\cross[0,1]) by LEMMA 1.
PROPOSITION 3. Let W_{i}^{n}(i=1,2) be compact bounded manifolds (n\geqq 6)

with connected boundaries \partial W_{i} and Int W_{1}\cong Int W_{2} . If n is evm and
\pi_{1}(\partial W_{1}) is finite abelian, D_{\alpha}W_{1}\cong DW_{2} where DW_{2} is the double of W_{2} and
D_{\alpha}W_{1}=W_{1}\cup W_{1} by some identification homeomorphism \alpha:\partial W_{1}arrow\partial W_{1} . Fur-

\alpha

thermore if \alpha is isotopic to identity, D_{\alpha}W_{1}\cong DW_{1} .
PROOF. Let W^{+} and W^{-} be the copy of W and DW=W^{+} \bigcup_{i\iota l}W_{\sim}^{-}

Let f_{\pm}: Int W_{1}^{\pm}arrow Int W_{2}^{\pm} be homeomorphisms and U_{f\pm} be regions bounded
by \partial W_{2}^{\pm} and f_{\pm}c_{1}^{\pm}(\partial W_{1}^{\pm}\cross\{1\})i.e . (U_{f+} ; f_{+}c_{1}^{+}(\partial W_{1}^{+}\cross\{1\rangle), \partial W_{2}^{+}) and U_{f-}:

f_{-}c_{1}^{-}(\partial W_{1}^{-}\cross\{1\}) , \partial W_{2}^{-}) . If \tau=\tau(U_{f+}, f_{+}c_{1}^{+}(\partial W_{1}^{+}\cross\{1\})) , \tau(U_{f-}, \partial W_{2}^{-})=

(-1)^{n-1}\overline{\tau} [4. p. 394] and so \tau(U_{f+}\cup U_{f-}, f_{+}c_{1}^{+}(\partial W_{1}^{+}\cross\{1\}))=\tau+(-1)^{n-1}\overline{\tau}\in

\partial W_{2}

Wh(\pi_{1}(\partial W_{1})) [4. Th. 3. 2] where (U_{f+}\cup U_{f-} ; f_{+}c_{1}^{+}(\partial W_{1}^{+}\cross\{1\rangle)), f_{-}c_{1}^{-}(\partial W_{1}^{-}\cross

\{1\})) is an h-cobordism obtained from U_{f+}\cup U_{f-} by \partial W_{2} identiffied. Since
\pi_{1}(\partial W) is finite abelian, \tau=\overline{\tau}[4] and so \tau(U_{f+}\cup U_{f-}, f_{+}c_{1}^{+}(\partial W_{1}^{+}\cross\{1\rangle))=0 if
n is even. Hence U_{f+} \bigcup_{\partial W_{2}}U_{f-}\cong\partial W_{1}\cross I by s-cobordism Theorem. Similarly
if

U_{f-}’=(U_{f-:}’\partial W_{2}^{-}, f_{-}c_{1}^{-}( \partial W_{1}^{-}\cross \mathfrak{l}\frac{1}{2}\})) and

U_{f-}’=(U_{f-:}’f_{-}c_{1}^{-}(\partial W_{1}^{-}\cross \mathfrak{l}\frac{1}{2}\}) , f_{-}c_{1}^{-}(\partial W_{1}^{-}\cross\{1\})) ,

U_{f+}\cup U_{f-}’\cong\partial W_{1}\cross I and U_{f-}’\cong\partial W_{1}\cross I1

Let \phi_{1} : \partial W_{1}\cross I- U_{f+}\cup U_{f}’
- be a homeomorphism such that \phi_{1}(\partial W_{1}\cross\{0\rangle)=

f_{+}c_{1}(\partial W_{1}^{+}\cross\{1\})

\phi_{1}(\partial W_{1}\cross\{1\})=f_{-}c_{1}^{-}(\partial W_{1}^{-}\cross\{\frac{1}{2}\})

and let

h : (\partial W_{1}^{+}\cross[0,1])\cup(\partial W_{1}^{-}\cross[0, \frac{1}{2}])arrow\partial W_{1}\cross I

be a homeomorphism defined by
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\phi_{2}(y^{+}, 1-t)=(z^{+}(y^{+}), \frac{t}{2}) , 0\leqq t\leqq 1

\phi_{2}(y^{-}, t)=(z^{+}(y^{+}), \frac{1}{2}+t) , 0 \leqq t\leqq\frac{1}{2}

where

y^{+}\in\partial W_{1}^{+},\cdot y^{-}\in\partial W_{1}^{-} and \phi_{1}^{-1}f_{+}c_{1}^{+}(y^{+}, 1)=(z^{+}(y^{+}), 0) .

And we define a homeomorphism \mathcal{T} : DW_{1}arrow DW_{1} by

\gamma|(W_{1}^{+}-c_{1}^{+}(\partial W_{1}^{+}\cross[0,1)))\cup(W_{1}^{-}-c_{1}^{-}(\partial W_{1}^{-}\cross[0,1)))=id

\gamma c_{1}^{+}(y^{+}, t)=c_{1}^{+}(y^{+}, \frac{1}{2}(3t-1)) \frac{1}{3}\leqq t\leqq 1

\gamma c_{1}^{+}(y^{+}, t)=c_{1}^{-}(y^{-}, \frac{1}{2}(1-3t)) 0 \leqq t\leqq\frac{1}{3}

\gamma c_{1}^{-}(y^{-}, t)=c_{1}^{-}(y^{-}, \frac{1}{2}(1+t)) 0\leqq t\leqq 1,\cdot

and let \beta:c_{1}^{-}(\partial W_{1}^{-}\cross\{\frac{1}{2}\})arrow c_{1}^{-}( \partial W_{1}^{-}\cross\{\frac{1}{2}\}) be a homeomorphism de-

fined by

\beta c_{1}^{-}(y^{-} , \frac{1}{2})=(f_{-})^{-1}\phi_{1}\phi_{2}(y^{-}, \frac{1}{2}) .

We define a homeomorphism \alpha:\partial W_{1}arrow\partial W_{1} by

\alpha=\gamma^{-1}\beta(\gamma|c_{1}^{+}(\partial W_{1}\cross\{0\})) .

Then there is a well-defined homeomorphism h:D_{\alpha}W_{1}arrow DW_{2} defined by

h(x)=\{

f_{+}(x^{+}) x^{+}\in W_{1}^{+}-c_{1}^{+}(\partial W_{1}^{+}\cross[0,1))

\phi_{1}\phi_{2}(c_{1}^{-})^{-1}\gamma(x^{+}) x^{+}\in c_{1}^{+}(\partial W_{1}^{+}\cross[0, \frac{1}{3}])

\phi_{1}\phi_{2}(c_{1}^{+})^{-1}\gamma(x^{+}) x^{+} \in c_{1}^{+}(\partial W_{1}^{+}\cross[\frac{1}{3},1])

f_{-}\gamma(x^{-}) x^{-}\in W_{1}^{-}

Next we will show D_{\alpha}W_{1}\cong DW_{1} if \alpha is isotopic to identity. Since \alpha=id.,
there is a level preserving homeomorphism H:\partial W_{1}\cross Iarrow\partial W_{1}\cross I such that
H_{0}=\alpha and H_{1}=id. Let c_{1} : \partial W_{1}\cross Iarrow W_{1} be a collar (embedding) such that
c_{1}(y, 0)=y\in\partial W_{1} and c_{1}^{\alpha} : \partial W_{1}\cross Iarrow W_{1} be c_{1}^{a}(y, t)=c_{1}H(y, t) . Then we define
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a homeomorphism
F:DW_{1}arrow D_{\alpha}W_{1}

by

F(x^{+})=x^{+} x^{+}\in W_{1}^{+}

F(x^{-})=x^{-} x^{-}\in W_{1}^{-}-c_{1}^{-}(\partial W_{1}^{-}\cross[0,1))

F(x^{-})=F(c_{1}^{-}(y^{-}, t))=c_{1}^{\alpha}(y^{-}, t) x^{-}\in c_{1}^{-}(\partial W_{1}^{-}\cross[0,1])

Hence DW_{1}\cong D_{\alpha}W_{1} .
DEFINITION 3. Let W^{n}(n\geqq 6) be a compact bounded n-manifold. Then

I[W, \partial W] is the inertia group defined by [2] i.e.
I[W, \partial W]=\{\tau\in Wh(\pi_{1}(\partial W))|(W, \partial W)\circ\tau=(W, \partial W)\}

where (W, \partial W)\circ\tau=(W\cup U, \partial W’) and (U;\partial W, \partial W’) is an h-cobordism with
\tau(U, \partial W)=\tau . Similarly if M is a closed n-manifold (n\geqq 5) , I[M]=\{\tau\in

Wh(\pi_{1}(M))|M\circ\tau=M\} where M\circ\tau=M’ and (U;M, M’) is an h-cobordism
with \tau(U, M)=\tau .

Let \langle W, \partial W\rangle be a set of manifolds (W’. \partial W) such that (W, \partial W)\circ\tau=

\langle W’, \partial W), \tau\in Wh(\pi_{1}(\partial W)) and

\tilde{I}[W, \partial W]=\{\tau\in Wh(\pi_{1}(\partial W))[(W’,\partial W)\circ\tau=(W’, \partial W)

for any (W’, \partial W)\in\langle(W, \partial W)\rangle\}r

Then the following Lemma is obvious by definition.
LEMMA 2. \#\tilde{I}[W, \partial W]\leqq\# I[W, \partial W]\leqq\# I[\partial W]\leqq\# Wh(\pi_{1}(\partial W)) . Using

s-cobordism Theorem we obtain the. following.

PROPOSITION 4. Let W^{n} be a compact n-manifold (n\geqq 6) with \partial W=

M_{1}\cup M_{2} where M_{i}(i=1,2) are connected. If (W;M_{1}, M_{2}) is an h-cobordism,
\#\mathscr{A}(W)=\# I[M_{1}]=\# I[M_{2}] .

PROOF. CASE 1. M_{1}\cong M_{2} . We define a map \alpha:I[M_{1}] – \mathscr{A}(W) by
\alpha(\tau)=\overline{W} where W- is an h-cobordism from M_{1} with \tau(\acute{\overline{W}}, M_{1})=\tau . Then \overline{W}

is uniquely determined by \tau up to PL homeomorphism class [4. Th. 11. 3]

and \overline{W}\in \mathscr{A}(W) because Int \overline{W}\cong M_{1}\cross R\cong IntW and \partial\overline{W}=M_{1}\cup M_{1} since
\tau\in I[M_{1}] . And if \tau_{1}\neq\tau_{2}\in I[M_{1}],\overline{W}_{1}\neq\overline{W}_{2} by [4. Th. 11. 3] where \alpha(\tau_{i})=\overline{W}_{i}

\langlei=1,2). So \alpha is injective, clearly for any \overline{W}\in \mathscr{A}(W), \tau\in I[M_{1}] where
\tau=\tau(\overline{W}, M_{1}) . Hence \alpha is onto.

CASE 2. M_{1}\not\cong M_{2} . Let \tau=\tau(W, M_{1}) fix. And we define a map \alpha :
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J[M_{1}]arrow \mathscr{A}(W) by \alpha(\omega)=U\cup W where U is an h-cobordism from M_{1} with
\tau(U, M_{1})=\omega . Then \partial(Uu^{M_{1}}W)=M_{1}\cup M_{2} and Int (U\cup W)\cong M_{1}\cross R\cong IntW

M_{1}

by [1. vol. II]. So U \bigcup_{M_{1}}W\in \mathscr{A}(W) . If \tau_{1}\neq\tau_{2}\in I[M_{1}] , U_{1} \bigcup_{M_{1}}W\neq U_{2}\bigcup_{M}‘ W by
[4. 11. 3]. Hence \alpha is injective. Now we will
show \alpha surjective. For any \overline{W}\in \mathscr{A}(W) , since
\overline{W}-M_{1}\cong W-M_{1}\cong M_{2}\cross[0, \infty) . there is a PL
homeomorphism f:W-M_{1}arrow\overline{If’}-M_{1} . Let U_{f} be
a bounded region by M_{1} and fc_{1}(M_{1}\cross\{1\}) in \pi

where c_{1} : M_{1}\cross Iarrow\nu\nu^{7}v\tau is a boundary collar and
let \omega_{f}=\tau(U_{f}, M_{1}). Then \omega_{f}\in I[M_{1}] . Now \omega_{f} does Fig. 2.

not depend on f because if g:W-M_{1}arrow\overline{W}-M_{1} is another PL home0-
morphism,

\tau(U_{g}, M_{1})+\tau(g(W), g(M_{1}))

=\omega_{g}+\tau=\tau(\overline{W}, M_{1})

=\tau(U_{f}, M_{1})+\tau(f(W, f(M_{1}))=\mathfrak{c}v_{f}+\tau

and so \omega_{g}=\omega_{f} . Hence \alpha is onto and \# I[M_{1}]=\#\mathscr{A}(W) . Similarly \# I[M_{2}]

=\#\mathscr{A}(W).
COROLLARY. If W is the same as Proposition 4, \# \mathscr{A}(W)\geqq

\# d^{n}(Wh(\pi_{1}(M_{1}))) where d_{n} : Wh(\pi_{1}(M_{1})) - Wh(\pi_{1}(M_{1})) is an endomorphism
&fined by d_{n}(\tau)=\tau+(-1)^{n-1}\overline{\tau}.

Proof follows by the fact that d_{n}(Wh(\pi_{1}(M_{1})) is a subgroup of I[M_{1}] .
DEFINITION 4. Let W be a PL manifold and K be a subpolyhedron.

We say K homotopy spine of W if the polyhedral pair (W, K) is an ab-
stract h-neighborhood i.e. W, Ksatisf\dot{y} the following conditions (see [2]):

(1) K\subset IntW

(2) for some regular neighborhood N of K in W, (\overline{W-N};\partial W, \partial N)

is an h-cobordism.
DEFINITION 5. If \tau\in I[W, \partial W] , by the definition there exist an h-

cobordism (U;\partial W, \partial W) with \tau(U, \partial W)=\tau and PL homeomorphism
h:W \bigcup_{\partial W}Uarrow W. We define I[W, \partial W;id]=\{\tau\in I[W, \partial W]|h|K is homO-

topic to inclusion i:Karrow W for some homotopy spine K of W}.
LEMMA 3. Let W^{n} be a compact bounded n-manifold (n\geqq 6) with a

connected boundary. If i_{*}: Wh(\pi_{1}(\partial W))- Wh(\pi_{1}(W)) is a monomorphism,
I[W, \partial W;id]=0 .

PROOF. Let \tau\in I[W, \partial W;id] , (U;\partial W, \partial W) be an h-cobordism with
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\tau(U, \partial W)=\tau and h:W\cup U- W be a homeomorphism such that h|K\simeq i

for some homotopy spine K of W. Then by [4: 7. 6, 7. 7]

\tau ( W, h(K))=\tau(h)=\tau(i)=\tau(W, K)\in Wh(\pi_{1}(W)) .

And since h is a homeomorphism,

\tau ( W, h(K))=i_{*}\tau(U, \partial W)+\tau(W, K) .

Hence i_{*}\tau(U, \partial W)=i_{*}\tau=0 and \tau=0 .
THEOREM 2. If W^{n} is a compact bounded n-manifold (n\geqq 6) with a

connected boundary, then \#\mathscr{A}(W)=\#\langle(W, \partial W)\rangle\leqq\# I[\partial W] . Furthermore if
ker (i_{*} : Wh(\pi_{1}(\partial W))arrow Wh(\pi_{1}( W)))=0 and I[ W, \partial W:id]=I[W, \partial W] , \#\mathscr{A}(W)

=\# I[\partial W] .
PROOF. Let W_{1}\in \mathscr{A}(W) such that W_{1}\not\cong W and let f: Int W_{1}arrow IntW

be a homeomorphism. Let U_{f} be a region bounded by \partial W and fc_{1}(\partial W_{1}

\cross\{1\}) . Then (U_{f} ; \partial W, fc_{1}(\partial W_{1}\cross\{1\})) is an h-cobordism by PROPOSITION 1
and \tau(U_{f}, fc_{1}(\partial W_{1}\cross\{1\}))\neq 0 in I[\partial W_{1}]=I[\partial W] for any f because \partial W_{1}\cong\partial W

and W_{1}\not\cong W. Similarly if W_{1} , W_{2}\in \mathscr{A}(W) such that W_{1}\not\cong W\not\cong W_{2} , W_{1}\not\cong W_{2} ,

then \tau(U_{f}, fc_{1}(\partial W_{1}\cross\{1\}))\neq\tau(U_{g}, gc_{2}(\partial W_{2}\cross\{1\})) where g : Int W_{2}arrow Int W is
a homeomorphism. So \#\mathscr{A}(W)\leqq\# I[\partial W] .

Since Int (W \bigcup_{\partial W}U)\cong IntW where U is an h-cobordism from \partial W, W’\in

\mathscr{A}(W) if W’\in\langle(W, \partial W)\rangle . So \# \langle W, \partial W\rangle\leqq\#\mathscr{A}(W) . And if W_{1} , W_{2}\in

\mathscr{A}(W) , Int W_{1}\cong IntW_{2} so W_{1} is boundary h-cobordant to W_{2} by p_{ROPOSI-}

T1ON 1 and \partial W_{1}\cong\partial W_{2} . Hence W_{1} , W_{2}\in\langle W, \partial W\rangle and \mathscr{A}(W)=\langle(W, \partial W)\rangle .
Since \#\mathscr{A}(W)=\#(I[\partial W]/I[W, \partial W]), by LEMMA 3

\#\mathscr{A}(W)=\# I[\partial W] if keri_{*}=0

and I[W, \partial W:id]=I[W, \partial W] .
THEOREM 3. Let M^{n} be a closed n-manifold (n\geqq 5) and let G=\{\tau\in

Wh(\pi_{1}(M\cross S^{1}))| if A=(a_{if})\in GL(p, Z\pi_{1}(M\cross S^{1})) is a representative of \tau, a_{if}\in

Z\pi_{1}(M)\otimes\{1\}\} . Then there is a homomorphism \phi of I[M] onto G/(I[M\cross

S^{1}]\cap G) with ker\phi\supset\{\omega\in I[M]|\omega+(-1)^{n}\overline{\omega}=0\} .
COROLLARY. If M^{n} is a closed n-manifold (n\geqq 5 and odd) with \pi_{1}(M)

=finite abelian, G\subset I[M\cross S^{1}] .
PROOF. If M satisfies all conditions, for any \tau\in Wh(\pi_{1}(M))\tau+(-1)^{n}\overline{\tau}

=0 by [4]. So \{\tau\in I[M]|\tau+(-1)^{n}\overline{\tau}=0\}=I[M]\subset ker\phi . Hence G/(I[M\cross S^{1}]

\cap G)=0 by THEOREM 3.
PROOF OF THEOREM 3. Let U be an h-cobordism from M to itself.
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Then Int U\cong M\cross R and so U is boundary h-cobordant to M\cross I by PROPO-
S1T10N 1 i.e. (M \cross I;M, M)\cong(V_{1}\bigcup_{M}U\bigcup_{M}V_{2 };^{M} for some h-cobordisms
(V_{1} ; M, M), (V_{2} ; M, M) . Let (\overline{W};V_{1}\cup U\cup V_{2}, M\cross I) be a trivial h-cobord-
ism. Then (W;U, M\cross I) is an h-cobordism between U and M\cross I where

\check{|} U \check{2}

\tilde{w} arrow

M x I
Fig. 3.

\partial W\cong\partial\overline{W} . Let \omega_{1}=\tau(V_{1}, M), \omega_{2}=\tau(V_{2}, M) and let (V_{1}’ ; M, M), (V_{2}’ ; M, M)

be h-cobordisms with \tau( V_{1}’, M)=-\omega_{1} , \tau(V_{\acute{2}}, M)=-\omega_{2} . Then V_{1}\cup V_{1}’ and
V_{2}\cup V_{2}’ are both trivial h-cobordism and so there are trivial h-cobordisms
W_{1} , W_{2} between V_{1}\cup V_{1}’ , V_{2}\cup V_{2}’ and M\cross I . Theref\dot{o}re V_{1}’\cup U\cup V_{2}’ is h-
cobordant to M\cross I by the h-cobordism W_{1}\cup W\cup W_{2} such that

x

Fig. 4. Fig. 5.

\partial(V_{1}’\cup U\cup V_{2}’)\cong M\cross S^{0} is trivially h-cobordant to M\cross S^{0} by the same W_{1}\cup

W\cup W_{2} . Let X=(M\cross I\cross J)\cup(W_{1}\cup W\cup W_{2}) by identifying M\cross(0)\cross(t)\sim

M\cross(t)\subset “free” part of \partial W_{1} , M\cross\{1\}\cross\{t\}\sim M\cross\{t\}\subset “free” part of \partial W_{2} .
Then X is an h-cobordism from M\cross S^{1} . So there is a map

\phi:I[M]arrow Wh(\pi_{1}(M\cross S^{1}))

defined by

\phi(\tau)=\tau(X, M\cross S^{1}) where \tau=\tau(U, M) .
Let (\tilde{U};M, M) be an h-cobordism with \tau(\tilde{U};M)=\tilde{\tau}\neq\tau\in I[M] . Then
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U\not\cong\tilde{U} . And let \tilde{V}_{I}’,\tilde{V}_{2}’ be the corresponding h-cobordism for \tilde{U} as above.
If (\tilde{V}_{1}’\cup\tilde{U}\cup\tilde{V}_{2}’)\cup M\cross I_{\grave{J}}<\{1\}\neq(V_{1}’\cup U\cup V_{2}’)\cup(M\cross I\cross\{1\}), \tau(\tilde{X}, M\cross S^{1})\neq\tau(X,
M\cross S^{1}) . But if (\tilde{V}_{1}’\cup U\cup\tilde{V}_{2}’)\cup(M\cross I\cross\{1\})\cong(V_{1}’\cup U\cup V_{2}’)\cup(M\cross I\cross\{1\}) , I
don’t know whether \tau(\overline{X}, M\cross S^{1})=\tau(X, M\cross S^{1}) or not. So we define a
map \phi:I[M]arrow Wh(\pi_{1}(M\cross S^{1}))/I[M\cross S^{1}] by \phi(\tau)=[\tau(X, M\cross S^{1})] . Then \phi

is well defined. And since M\cross I\cross J\cup N(M\cross 3I, W_{1}\cup W\cup W_{2})\subset X is home0-
morphic to M\cross S^{1}\cross J where M\cross 3I=(M\cross I)\cup(M\cross I)\cup(M\cross I)\cup\partial(W_{1}\cup W

\cup W_{2}) and N(M\cross 3I, W_{1}\cup W\cup W_{2}) is a regular neighborhood of M\cross 3I in
W_{1}\cup W\cup W_{2} , we may consider that X is constructed from M\cross S^{1}\cross J by
attaching handles on M\cross I\cross\{1\}\subset M\cross S^{1}\cross\{1\} . So if A=(a_{if})\in GL(p ,
Z\pi_{1}(M\cross S^{1})) is a representation of \tau(X, M\cross S^{1}), a_{if}\in Z\pi_{1}(M)\otimes\{1\} . Hence
Im\phi\subset G/(I[M\cross S^{1}]\cap G) . Now we will show \phi surject1.ve. Let [\omega] be an
element of G/(I[M\cross S^{1}]\cap G) such that \omega=\tau(X, M\cross S^{1}) . Since a . representa-
tive A=(a_{if}) of \omega in GL(p, Z\pi_{1}(M\cross S^{1})) has a form a_{ij}\in Z\pi_{1}(M)\otimes\langle 1 }, we
may assume

X=(M\cross S^{1}\cross J)\cup\{handles\}

=(M\cross I_{1}\cross J)\cup(M\cross I_{2}\cross J)\cup\{handles\}

so that all handles do not attach one of M\cross I\cross J_{\acute{s}} , say M\cross I_{1}\cross J[4] . Let
U=\partial X-(M\cross S^{1}\cross\{0\}\cup M\cross I_{1}\cross\{1\}) . Then U is an h-cobordism between
M. So there is an element \tau(U, M)\in I[M] such that \phi(\tau(U, M))=[\omega] .
Now let \omega be an element of I[M] such that \omega+(-1)^{n}\overline{\omega}=0 . Then U\cup\overline{U}

\cong M\cross I where \tau(U, M)=\omega and \tau(\overline{U}, M)=(-1)^{n}\overline{a\backslash } . So ((U\cup\overline{U})\cross J)\cup(MM\cross\partial I\cross J

\cross I\cross J)\cong M\cross S^{1}\cross J. Hence \phi(\omega)=0 and so ker\phi\supset\{\omega\in I[M]|\omega+(-1)^{n}\overline{\omega}

=0\} .
Now, suppose R and R’ are rings which are also algebras over the

commutative ring A, and let C be a free R-complex with a preferred basis,
and C’ a free R’ complex with a preferred basis. Then C\otimes_{A}C’ is a free
R\otimes_{A}R’ compelx with a preferred basis.

We obtain the following proposition by [4. \S 3].
PROPOSITION 5. Let C be a free R-complex with a preferred basis,

and C’ a free R’-complex with a preferred basis. Thm if H_{*}(C) and
H_{*}(C’) are both free, so is H_{*}(C\otimes_{A}C’) and \tau(C\otimes_{A}C’)=\tau(C\otimes B)+\tau(C\otimes B’)

+\tau({?}) where B and B’ are R’\neg complexes such that

B : 0arrow C_{n}’arrow C_{n-1}’arrow\cdots- C_{p+1}’-0
B’ : 0arrow C_{p}’arrow C_{p-1}’arrow\cdotsarrow C_{\acute{0}}arrow 0

for any p when
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0arrow C_{n}’arrow C_{n-1}’arrow\cdotsarrow C_{p}’arrow C_{p-1}’arrow\cdotsarrow C_{0}arrow 0

is a chain complex C’ and where {?} is an R\otimes_{A}R’ complex H_{m}(C\otimes B)arrow

H_{m}(C\otimes C’) - H_{m}(C\otimes B’)- H_{m-1}(C\otimes B) - \ldotsarrow H_{0}(C\otimes B’)-0 induced by the
short exact sequmce

Oarrow C\otimes Barrow C\otimes C’arrow C\otimes B’ -0.

COROLLARY. If M is a manifold such that H_{*}(\overline{M}) is free Z\pi_{1}(M)-

module where \overline{M} is a universal covering space, \tau(M\cross S^{1})(=\tau(c(\overline{M\cross}S^{1})))\in
def

Wh(\pi_{1}(M\cross S^{1})) is equal to \tau(c(\overline{M}))+\tau(\mathscr{A}), where c\mathscr{K} is a Z\pi_{1}(M)\otimes_{Z}Z\pi_{1}(S^{1})

complex

H_{m}(c(\overline{M})\otimes c_{1}(\tilde{S}^{1}))-arrow H_{m}(c(\overline{\dot{M}})\otimes c(\tilde{S}^{1}))-H_{m}(c(\overline{M})\otimes c_{0}(\tilde{S}^{1}))

arrow\cdotsarrow H_{0}(c(\overline{M})\otimes c_{0}(S^{1}))arrow 0 .

PROOF. By PROPOSITION 5

\tau(c(\overline{M})\otimes c(\tilde{S}^{1}))

=\tau(c(\overline{M})\otimes c_{1}(S^{1}))+\tau(c(\overline{M})\otimes c_{0}(\tilde{S}^{1}))+\tau(\mathscr{B}’)

=\chi(c_{1}(S^{1}))\tau(c(\overline{M}))+\chi(c_{0}(\tilde{S}^{1}))\tau(c(\overline{M}))+\tau(\mathscr{F})

=\chi(C(S^{1}))\tau(C(\overline{M}))+\tau(_{-A’}^{c}.)

where \chi(c(\tilde{S}^{1})) is the euler characteristic as Z\pi_{1}(S^{1})-complex. Since S^{1}=\tilde{R}^{1} ,
\chi(c(\tilde{S}^{1}))=1 . Hence \tau(c(\overline{M})\otimes c(\tilde{S}^{1}))=\tau(c(\overline{M}))+\tau(\mathscr{F}) . And since M\overline{\cross S}=

\overline{M}\cross S^{1}, we obtain the result.
Hokkaido University
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