A characterization of A_7 and M_{11} , I

Dedicated to Professor Yataro Matsushima on his 60th birthday

By Hiroshi KIMURA

1. Introduction

In this paper we shall prove the following theorem.

THEOREM. Let G be a doubly transitive group on the set $\Omega = \{1, 2, \dots, n\}$ containing no regular normal subgroup. If the stabilizer $G_{1,2}$ of points 1 and 2 is isomosphic to a simple group $PSL(2, 2^m)$, then one of the following holds:

(1) n=7 and G is the alternating group A_7 of degree seven,

(2) n=12 and G is the Mathieu group M_{11} of degree eleven.

In [12] Yamaki proved Theorem in the case m=2. Therefore we may assume m>2. A proof of Theorem is similar to that of [7].

Let X be a subset of a permutation group. Let F(X) denote the set of all fixed points of X and $\alpha(X)$ be the number of points in F(X). $N_{\sigma}(X)$ acts on F(X). Let $\chi_1(X)$ and $\chi(X)$ be the kernel of this representation and its image, respectively. The other notation is standard.

2. Preliminaries

Let $G_{1,2}$ be $PSL(2, 2^m)$ with m > 2. Let K be a Sylow 2-subgroup of $G_{1,2}$. Then $N_{G_{1,2}}(K)$ is a complete Frobenius group with complement H. Let I be an involution of G with the cycle structure $(1, 2) \cdots$. Then I normalizes $G_{1,2}$.

LEMMA 1. It may be assumed that the action of I on $G_{1,2}$ is trivial or the field automorphism.

PROOF. Let ϕ be a homomorphism of $\langle I, G_{1,2} \rangle$ into Aut $PSL(2, 2^m)$. If ker $\phi \neq 1$ and $\phi(I) \neq 1$, then we can replace I by an element $(\neq 1)$ of ker ϕ . If ker $\phi = 1$, then I induces an outer automorphism. Since $\langle I, G_{1,2} \rangle$ has two classes of involution, I is conjugate to the field automorphism.

By Lemma 1 *I* is contained in $N_G(H) \cap N_G(K)$. Let τ be an involution of $C_{\kappa}(I)$. Let τ fix *i* points of Ω , say $1, 2, \dots, i$. By a theorem of Witt [11, Th. 9.4] $\chi(\tau)$ is doubly transitive on $F(\tau)$.

LEMMA 2. $n=i(\beta i-\beta+\gamma)/\gamma$, where β is the number of involutions with

H. Kimura

the cycle structures (1, 2) ··· which are conjugate to τ and $\tilde{\tau} = [G_{1,2}: C_G(\tau) \cap G_{1,2}] = 2^{2m} - 1$.

PROOF. See [4], [5] or [7].

LEMMA 3. (1) $|C_{\kappa}(I)| = |K|$ or $\sqrt{|K|}$ and every involution of $C_{\kappa}(I)$ is $C_{\mu}(I)$ -conjugate to τ .

(2) Every involution of G is conjust to I or $I\tau$.

PROOF. The property (1) is trivial from Lemma 1. Every involution of G is conjugate to an involution of $\langle K, I \rangle - K$. By (1) every involution of $\langle I, K \rangle - K$ is $C_{\mathcal{H}}(I)$ -conjugate to I or $I\tau$. This proves the lemma.

LEMMA 4. If G has one class of involutions, then $\beta = [G_{1,2}: C_{G_{1,2}}(I)]$ ro 2^{2m} . If G has two classes of involutions, then $\beta = 1$ and $\alpha(I) = i$ or $\beta = 2^{2m} - 1$ and $\alpha(I_{\tau}) = i$, and I contralizes $G_{1,2}$.

PROOF. If $C_K(I) \neq K$, then *I* is conjugate to $I\tau$ by Lemma 1. Therefore if *G* has two classes of involutions, $C_K(I) = K$, and hence *I* centralizes $G_{1,2}$ and $|C_{G_{1,2}}(I\tau)| = |K|$. This proves the lemma.

LEMMA 5. $\chi(\tau)$ contains a regular normal subgroup, or the following hold:

 $\chi(\tau) = PSL(3, 2), \ i = 7, \ |K| = 16, \ |C_K(I)| = 4,$

 $\alpha(HK) = \alpha(K) = 3$ and $\langle I, K \rangle$ is indecomposable.

PROOF. See [7, Lem. 4].

LEMMA 6. $C_{\mathbb{R}}(I) \neq K$ if every involution is conjugate to τ . PROOF. See [7, Lem. 5].

LEMMA 7. If $C_{\kappa}(I) \neq K$, then K has no orbit of length 2.

PROOF. See [7, Lem. 6].

3. The case n is odd

If $\chi(\tau)$ contains a regular normal subgroup, then let *i* be a power of a prime p.

Let $g_1^*(2)$ be the number of involutions in G_1 which fix only the point 1. LEMMA 8. $g_1^*(2)$ is the number of involutions with the cycle structure (1, 2)... which are not conjugate to τ .

PROOF. See [7, Lem. 1].

LEMMA 9. $\alpha(HK)$ is odd if G has two classes of involutions.

PROOF. See [7, Lem. 8].

LEMMA 10. $\alpha(G_{1,2})$ is odd if G has two classes of involutions.

PROOF. By Lemma 4 $C_{\mathcal{G}}(I)$ contains $G_{1,2}$. By Lemma 9 $F(\langle I,HK \rangle)$ contains unique point a. If a is a point of $F(G_{1,2})$, then $\alpha(G_{1,2})$ is odd. Assume a is not a point of $F(G_{1,2})$. Let Δ be an orbit of $G_{1,2}$ containing a. Since I centralizes $G_{1,2}$, F(I) contains Δ . Since HK is a maximal subgroup of $G_{1,2}$, $G_{1,2,a}=HK$ and H fixes two point of Δ . Thus $\alpha(\langle I,H \rangle) \geq 2$ and $\langle I,H \rangle$ is isomorphic to a subgroup of $G_{1,2}$. This is a contradiction.

LEMMA 11. $g_1^*(2) = 0$.

PROOF. The proof is similar to that of [7, Lem. 9]. Assume $g_1^*(2) \neq 0$. By Lemma 4 *I* centralizes $G_{1,2}$. By Lemma 10 $\alpha(G_{1,2})$ is odd. Let *a* be the point of $F(\langle I, G_{1,2} \rangle)$. Every involution of $\langle I, G_{1,2} \rangle$ fixes the point *a* and by Lemma 8 $\langle I, G_{1,2} \rangle$ contains every involution which fixes only the point *a*. If $\alpha(I)=1$, then $g_1^*(2)=1$ and *G* has *a* regular normal subgroup by Z*-theorem [3]. Thus $\alpha(I)=i$ and $\alpha(I\tau)=1$. The subgroup generated by all involutions which fix only *a* is *a* characteristic subgroup of G_a and it is $\langle G_{1,2}, I \rangle$. Thus it is half-transitive on $\Omega - \{a\}$. Since $\{1, 2\}$ is an orbit of $\langle I, G_{1,2} \rangle$, $G_{1,2}$ must be *a* 2-group. This is a contradiction.

By this lemma it may be assumed that every involution is conjugate to τ . Thus a Sylow 2-subgroup of $C_{G}(\tau)$ is also that of G.

LEMMA 12. $\chi(\tau)$ contains a regular normal subgroup, $\alpha(\tau) > \alpha(K)$ and K has an orbit of length 2.

PROOF. See [7, Lem. 10~Lem. 12].

Since $C_{\kappa}(I) \neq K$ by Lemma 6, Lemma 12 contradicts Lemma 7.

4. The case n is even

By Lemma 5 $\chi(\tau)$ contains a regular normal subgroup. By [1] $\chi(\tau)$ is either a group of semi-linear transformations over GF(q), q even, or PSL(2, q)V, where V is a 2-dimensional vector space over GF(q).

Case (I). $\alpha(\tau) = \alpha(K)$. Sylow 2-subgroups of G_1 are independent. By [9] G_1 contains a normal subgroup G'_1 of odd index such that $G'_1/0(G_1)$ is isomorphic to $PSL(2, 2^m) \cong G_{1,2}$ and $0(G_1)$ is contained in $Z(G_1)$. Thus $G'_1 = 0(G_1)G_{1,2}$ and $G_{1,2}$ is normal in G_1 , which is a contradiction.

Case (II). $\alpha(\tau) > \alpha(K)$.

LEMMA 13. $\chi(\tau) = PSL(2, q) V.$

PROOF. See [7, Lem. 23].

LEMMA 14. $|K| \neq 8$.

PROOF. Assume |K|=8. By Lemma 3 I centralizes HK and hence $G_{1,2}$. By Lemma 4 and 6 G has two classes of involutions and $\beta=1$ or

63. Since $\chi(\tau)_1 = PSL(2, 4)$, i = |V| = 16. Since $n = i(\beta(i-1+)\gamma)/\gamma$, $\beta = 63$, and $n=16^2$. Thus H is a Sylow 7-subgroup of G. Since $\alpha(I)=0, j=\alpha(H)$ is By the theorem of Witt $|N_{g}(H)| = 2j(j-1)|H|$. Since $|\chi(H)_{1,2}| = 1$ even. or 2, j is a factor of 16² by [4]. Since j-1 is a factor of $9(n-1)=3^3\cdot 5\cdot 17$ and n-j is divisible by 7, j=4. Let P be a subgroup of $G_{1,2}$ of order 3. Since I centralizes P, $\alpha(P) = j'$ is even. By the theorem of Witt $|N_{\sigma}(P)| =$ $2 \cdot 9j'(j'-1)$ and j'-1 is divisible by 3 since a Sylow 3-subgroup of $G_{1,2}$ is cyclic. $|\chi(P)_{1,2}| = 1,2$ or 6. By [4] and [6] j'=6, 28 or j' is a power of 2. Since j'-1 is a factor of $15 \cdot 17 \cdot 7$ and n-j' is divisible by 3, j'=4 or 16. Let Q be a Sylow 17-subgroup of G_1 . If $N_{G_1}(Q) = C_{G_1}(Q)$, it may be assumed by the Frattini argument that Q normalizes K. Since $|N_{G}(K)| =$ $|KH|\alpha(K)(\alpha(K)-1)$ and $\alpha(K) \leq i$, this is a contradiction. Thus $|N_{\alpha_i}(Q)|$ is even and $|C_{G_1}(Q)|$ is odd. $[G_1: N_{G_1}(Q)]$ is a multiple of $4 \cdot 7 \cdot 9$ and a factor of $\cdot 4 \cdot 7 \cdot 9 \cdot 15$. This contradicts the theorem of Sylow. This completes the proof.

Since $\chi(\tau)_1 = PLS(2, q)$, $C_{G_1}(\tau)$ is nonsolvable. Since G_1 has one class of involutions, so is $G_1/O(G_1)$. By [10] G_1 has a normal subgroup G'_1 of odd index such that $G'_1/O(G_1)$ is isomorphic to $PSL(2, 2^m)$. Thus $C_{G_1}(\tau)$ is solvable, which is a contradiction.

Thus the proof of Theorem is complete.

Department of Mathematics Faculty of Science Hokkaido University Sapporo, Japan

References

- [1] M. ASCHBACHER: Doubly transitive groups in which the stabilizer of two points is abelian, J. Algebra 18, 114-136 (1971).
- [2] W. FEIT and J. G. THOMPSON: Solvability of groups of odd order, Pacific J. Math., 13, 775-1029 (1963).
- [3] G. GLAUBERMAN: Central elements in core-free groups, J. Algebra 4, 403-420 (1966).
- [4] N. ITO: On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J. 27, 409-417 (1966).
- [5] H. KIMURA: On some doubly transitive permutation groups of degree n and order $2^{l}(n-1)n$, J. Math. Soc. Japan 22, 263-277 (1970).
- [6] H. KIMURA: On doubly transitive permutation groups of degree n and order 2p(n-1)n, Osaka J. Math. 7, 275-290 (1970).
- [7] H. KIMURA: A characterization of simple groups A_6 and A_7 (to appear).
- [8] H. LÜNEBURG: Charakterisierungen der endlichen desargusschen projektiven

Ebenen, Math. Z. 85, 419-450 (1964).

- [9] M. SUZUKI: Finite groups of even order in which Sylow 2-subgroups are independent, Ann. Math. 80, 58-77 (1964).
- [10] J. H. WALTER: The characterization of finite groups with abelian Sylow 2subgroups, Ann. Math. 89, 405-514 (1969).
- [11] H. WIELANDT: Finite permutation groups, Academic press, New York, 1964.
- [12] H. YAMAKI: A characterization of the simple groups of A₇ and M₁₁, J. Math. Soc. Japan 23, 130-136 (1971).

(Received October 29, 1973)