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1. Introduction
In this paper we shall prove the following theorem.
THEOREM. Let G be a doubly transitive group on the set \Omega=\{1,2, \cdots, n\}

containing no regular normal subgroup. If the stabilizer G_{1,2} of points 1
and 2 is isomosphic to a simple group PSL(2,2^{m}), then one of the following
holds:

(1) n=7 and G is the alternating group A7 of degree seven,
(2) n=12 and G is the Mathieu group M_{11} of degree elevm.
In [12] Yamaki 0\perproved Theorem in the case m=2. Therefore we may

assume m>2 . A proof of Theorem is similar to that of [7].
Let X be a subset of a permutation group. Let F(X) denote the set

of all fixed points of X and \alpha(X) be the number of points in F(X). N_{G}(X)

acts on F(X). Let \chi_{1}(X) and \chi(X) be the kernel of this representation
and its image, respectively. The other notation is standard.

2. Preliminaries

Let G_{1.2} be PSL(2,2^{m}) with m>2 . Let K be a Sylow 2-subgroup of
G_{1,2} . Then N_{G_{12}}.(K) is a complete Frobenius group with complement H.
Let I be an involution of G with the cycle structure (1, 2) \cdots . Then I
normalizes G_{1,2} .

LEMMA 1. It may be assumed that the action of I on G_{1,2} is trivid
or the field autmorphism.

PROOF. Let \phi be a homomorphism of <I , G_{1,2}>into Aut PSL(2,2^{m}).
If ker \phi\neq 1 and \phi(I)\neq 1 , then we can replace I by an element (\neq 1) of ker
\phi . If ker \phi=1 , then I induces an outer automorphism. Since <I , G_{1.2}>

has two classes of involution, I is conjugate to the field automorphism.
By Lmma 1 I is contained in N_{G}(H)\cap N_{G}(K) . Let \tau be an involution

of C_{K}(I) . Let \tau fix i points of \Omega, say 1, 2, \cdots , i. By a theorem of Witt
[11, Th. 9. 4] \chi(\tau) is doubly transitive on F(\tau) .

LEMMA 2. n=i(\beta i-\beta+\gamma)/\gamma, where \beta is the number of involutions with
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the cycle structures (1, 2) \cdots which are conjugate to \tau and \mathcal{T}=[G_{1,2} : C_{G}(\tau)\cap G_{1,2}]

=2^{2m}-1 .
PROOF. See [4], [5] or [7].

LEMMA 3. (1) |C_{K}(I)|=|K| or \sqrt\overline{|K|} and every involution of C_{K}(I)

is C_{E}(I)-conjugate to \tau .
(2) Every involution of G is conjuate to I or I\tau .
PROOF. The property (1) is trivial from Lemma 1. Every involution

of G is conjugate to an involution of <K, I>-K. By (1) every involution
of <I , K>-K is C_{H}(I)-conjugate to I or I\tau . This proves th.e lemma.

LEMMA 4. If G has one class of involutions, then \beta=[G_{1,2} : C_{G_{1,2}}(I)]

ro2^{2m} . If G has two classes of involutions, then \beta=1 and \alpha(I)=i or
\beta=2^{2m}-1 and \alpha\langle I\tau) =i , and I contralizes G_{1,2} .

PROOF. If C_{K}(I)\neq K, then I is conjugate to I\tau by Lemma 1. There-
fore if G has two classes of involutions, C_{K}(I)=K, and hence I centralizes
G_{1,2} and |C_{G_{1,2}}(I\tau)|=|K| . This proves the lemma.

LEMMA 5. \chi(\tau) contains a regular normal subgroup, or the following
hold:

\chi(\tau)=PSL(3,2) , i=7:|K|=16 , |C_{K}(I)|=4 ,

\alpha(HK)=\alpha(K)=3 and <I , K> is indecomposable.
PROOF. See [7, Lem. 4].

LEMMA 6. C_{K}(I)\neq K if every involution is conjugate to \tau .
PROOF. See [7, Lem. 5].

LEMMA 7. If C_{K}(I)\neq K, then K has no orbit of length 2.
PROOF. See [7, Lem. 6].

3. The case n is odd

If \chi(\tau) contains a regular normal subgroup, then let i be a power of
a prime p.

Let g_{1}^{*}(2) be the number of involutions in G_{1} which fix only the point 1.
LEMMA 8. g_{1}^{*}(2) is the number of involutions with the cycle structure

(1, 2) \cdots which are not conjugate to \tau .
PROOF. See [7, Lem. 1].

LEMMA 9. \alpha(HK) is odd if G has two classes of involutions.
PROOF. See [7, Lem. 8].

LEMMA 10. \alpha(G_{1,2}) is odd if G has two classes of involutions.
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PROOF. By Lemma 4 C_{G}(I) contains G_{1,2} . By Lemma 9 F(<I,HK>)
contains unique point a. If a is a point of F(G_{1,2}) , then \alpha(G_{1,2}) is odd.
Assume a is not a point of F(G_{1,2}) . Let \Delta be an orbit of G_{1,2} containing a.
Since I centralizes G_{1,2} , F(I) contains \Delta . Since HK is a maximal subgroup
of G_{1,2} , G_{1,2,a}=HK and H fixes two point of \Delta . Thus \alpha(<I, H>)\geq 2 and
<I, H>is isomorphic to a subgroup of G_{1,2} . This is a contradiction.

LEMMA 11. g_{1}^{*}(2)=0 .
PROOF. The proof is similar to that of [7, Lem. 9]. Assume g_{1}^{*}(2)\neq 0 .

By Lemma 4 I centralizes G_{1,2} . By Lemma 10 \alpha(G_{1,2}) is odd. Let a be
the point of F(<I, G_{1,2}>) . Every involution of <I , G_{1,2}> fixes the point
a and by Lemma 8 <I , G_{1,2}> contains every involution which fixes only
the point a. If \alpha(I)=1 , then q_{1}^{*}(2)=1 and G has a regular normal sub-
group by Z^{*}-theorem [3]. Thus \alpha(I)=i and \alpha(I\tau)=1 . The subgroup gener-
ated by all involutions which fix only a is a characteristic subgroup of G_{a}

and it is <G_{1,2} , I> . Thus it is half-transitive on \Omega-\{a\} . Since {1, 2} \’is

an orbit of <I, G_{1,2}> , G_{1,2} must be a 2-group. This is a contradiction.
By this lemma it may be assumed that every involution is conjugate

to \tau . Thus a Sylow 2-subgroup of C_{G}(\tau) is also that of G.
LEMMA 12. \chi(\tau) contains a regular normal subgroup, \alpha(\tau)>\alpha(K) and

K has an orbit of length 2.
PROOF. See [7, Lem. 10\sim Lem . 12].

Since C_{K}(I)\neq K by Lemma 6, Lemma 12 contradicts Lemma 7.

4. The case n is even
By Lemma 5 \chi(\tau) contains a regular normal subgroup. By [1] \chi(\tau) is

either a group of semi-linear transformations over GF(q) , q even, or
PSL(2, q).V, where V is a 2-dimensional vector space over GF(q).

Case (I). \alpha(\tau)=\alpha(K) . Sylow 2-subgroups of G_{1} are independent. By
[9] G_{1} contains a normal subgroup G_{1}’ of odd index such that G_{1}’/0(G_{1}) is
isomorphic to PSL(2,2^{m})\cong G_{1,2} and 0(G_{1}) is contained in Z(G_{1}) . Thus G_{1}’=

0(G_{1})G_{1,2} and G_{1,2} is normal in G_{1} , which is a contradiction.
Case (II). \alpha(\tau)>\alpha(K) .
LEMMA 13. \chi(\tau)=PSL(2, q)V.
PROOF. See [7, Lem. 23].

LEMMA 14. |K|\neq 8 .
PROOF. Assume |K|=8 . By Lemma 3 I centralizes HK and hence

G_{1,2} . By Lemma 4 and 6 G has two classes of involutions and \beta=1 or
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63. Since \chi(\tau)_{1}=PSL(2,4), i=|V|=16 . Since n=i(\beta(i-1+)\gamma)/\gamma, \beta=63 , and
n=16^{2} . Thus H is a Sylow 7-subgroup of G. Since \alpha(I)=0 , j=\alpha(H) is
even. By the theorem of Witt |N_{G}(H)|=2j(j-1)|H| . Since |\chi(H)_{1.2}|=1

or 2, j is a factor of 16^{2} by [4]. Since j-1 is a factor of 9(n-1)=3^{3}\cdot 5\cdot 17

and n-j is divisible by 7, j=4. Let P be a subgroup of G_{1.2} of order 3.
Since I centralizes P, \alpha(P)=j’ is even. By the theorem of Witt |N_{G}(P)|=

2\cdot 9j’(j’-1) and j’-1 is divisible by 3 since a Sylow 3-subgroup of G_{1.2} is
cyclic. |\chi(P)_{1.2}|=1,2 or 6. By [4] and [6] j’=6,28 or j’ is a power of 2.
Since j’-1 is a factor of 15 \cdot 17\cdot 7 and n–j’ is divisible by 3, j’=4 or 16.
Let Q be a Sylow 17-subgroup of G_{1} . If N_{G_{1}}(Q)=C_{G_{1}}(Q), it may be as-
sumed by the Frattini argument that Q normalizes K. Since |N_{G}(K)|=

|KH|\alpha(K)(\alpha(K)-1) and \alpha(K)\leq i , this is a contradiction. Thus |N_{G_{1}}(Q)| is
even and |C_{G_{1}}(Q)| is odd. [G_{1} : N_{G_{1}}(Q)] is a multiple of 4\cdot 7\cdot 9 and a factor
of \cdot 4\cdot 7\cdot 9\cdot 15 . This contradicts the theorem of Sylow. This completes the
proof.

Since \chi(\tau)_{1}=PLS(2, q), C_{G_{1}}(\tau) is nonsolvable. Since G_{1} has one class
of involutions, so is G_{1}/0(G_{1}) . By [10] G_{1} has a normal subgroup G_{1}’ of
odd index such that G_{1}’/0(G_{1}) is isomorphic to PSL(2,2^{m}) . Thus C_{G}‘(\tau) is
solvable, which is a contradiction.

Thus the proof of Theorem is complete.
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