A characterization of A_{7} and M_{11}, I

Dedicated to Professor Yataro Matsushima on his 60th birthday

By Hiroshi Kimura

1. Introduction

In this paper we shall prove the following theorem.
Theorem. Let G be a doubly transitive group on the set $\Omega=\{1,2, \cdots, n\}$ containing no regular normal subgroup. If the stabilizer $G_{1,2}$ of points 1 and 2 is isomosphic to a simple group PSL $\left(2,2^{m}\right)$, then one of the following holds:
(1) $n=7$ and G is the alternating group A_{7} of degree seven,
(2) $n=12$ and G is the Mathieu group M_{11} of degree eleven.

In [12] Yamaki proved Theorem in the case $m=2$. Therefore we may assume $m>2$. A proof of Theorem is similar to that of [7].

Let X be a subset of a permutation group. Let $F(X)$ denote the set of all fixed points of X and $\alpha(X)$ be the number of points in $F(X) . \quad N_{G}(X)$ acts on $F(X)$. Let $\chi_{1}(X)$ and $\chi(X)$ be the kernel of this representation and its image, respectively. The other notation is standard.

2. Preliminaries

Let $G_{1,2}$ be $\operatorname{PSL}\left(2,2^{m}\right)$ with $m>2$. Let K be a Sylow 2 -subgroup of $G_{1,2}$. Then $N_{G_{1,2}}(K)$ is a complete Frobenius group with complement H. Let I be an involution of G with the cycle structure $(1,2) \cdots$. Then I normalizes $G_{1,2}$.

Lemma 1. It may be assumed that the action of I on $G_{1,2}$ is trivial or the field automorphism.

Proof. Let ϕ be a homomorphism of $\left\langle I, G_{1,2}\right\rangle$ into Aut $\operatorname{PSL}\left(2,2^{m}\right)$. If $\operatorname{ker} \phi \neq 1$ and $\phi(I) \neq 1$, then we can replace I by an element $(\neq 1)$ of ker ϕ. If ker $\phi=1$, then I induces an outer automorphism. Since $\left\langle I, G_{1,2}\right\rangle$ has two classes of involution, I is conjugate to the field automorphism.

By Lemma $1 I$ is contained in $N_{G}(H) \cap N_{G}(K)$. Let τ be an involution of $C_{K}(I)$. Let τ fix i points of Ω, say $1,2, \cdots, i$. By a theorem of Witt [11, Th. 9. 4] $\chi(\tau)$ is doubly transitive on $F(\tau)$.

Lemma 2. $n=i(\beta i-\beta+\gamma) / r$, where β is the number of involutions with
the cycle structures $(1,2) \cdots$ which are conjugate to τ and $\gamma=\left[G_{1,2}: C_{G}(\tau) \cap G_{1,2}\right]$ $=2^{2 m}-1$.

Proof. See [4], [5] or [7].
Lemma 3. (1) $\left|C_{K}(I)\right|=|K|$ or $\sqrt{\mid \overline{K \mid}}$ and every involution of $C_{K}(I)$ is $C_{H}(I)$-conjugate to τ.
(2) Every involution of G is conjuate to I or $I \tau$.

Proof. The property (1) is trivial from Lemma 1. Every involution of G is conjugate to an involution of $\langle K, I\rangle-K$. By (1) every involution of $\langle I, K\rangle-K$ is $C_{H}(I)$-conjugate to I or $I \tau$. This proves the lemma.

Lemma 4. If G has one class of involutions, then $\beta=\left[G_{1,2}: C_{G_{1,2}}(I)\right]$ ro $2^{2 m}$. If G has two classes of involutions, then $\beta=1$ and $\alpha(I)=i$ or $\beta=2^{2 m}-1$ and $\alpha(I \tau)=i$, and I contralizes $G_{1,2}$.

Proof. If $C_{K}(I) \neq K$, then I is conjugate to $I \tau$ by Lemma 1. Therefore if G has two classes of involutions, $C_{K}(I)=K$, and hence I centralizes $G_{1,2}$ and $\left|C_{G_{1,2}}(I \tau)\right|=|\mathrm{K}|$. This proves the lemma.

Lemma 5. $\chi(\tau)$ contains a regular normal subgroup, or the following hold:

$$
\begin{aligned}
& \chi(\tau)=\operatorname{PSL}(3,2), \quad i=7,|K|=16,\left|C_{K}(I)\right|=4 \\
& \alpha(H K)=\alpha(K)=3 \text { and }<I, K>\text { is indecomposable. }
\end{aligned}
$$

Proof. See [7, Lem. 4].
Lemma 6. $\quad C_{K}(I) \neq K$ if every involution is conjugate to τ.
Proof. See [7, Lem. 5].
Lemma 7. If $C_{K}(I) \neq K$, then K has no orbit of length 2.
Proof. See [7, Lem. 6].
3. The case n is odd

If $\chi(\tau)$ contains a regular normal subgroup, then let i be a power of a prime p.

Let $g_{1}^{*}(2)$ be the number of involutions in G_{1} which fix only the point 1.
Lemma 8. $g_{1}^{*}(2)$ is the number of involutions with the cycle structure $(1,2) \cdots$ which are not conjugate to τ.

Proof. See [7, Lem. 1].
Lemma 9. $\alpha(H K)$ is odd if G has two classes of involutions.
Proof. See [7, Lem. 8].
Lemma 10. $\alpha\left(G_{1,2}\right)$ is odd if G has two classes of involutions.

Proof. By Lemma 4 $C_{\theta}(I)$ contains $G_{1,2}$. By Lemma $9 F(\langle I, H K\rangle)$ contains unique point a. If a is a point of $F\left(G_{1,2}\right)$, then $\alpha\left(G_{1,2}\right)$ is odd. Assume a is not a point of $F\left(G_{1,2}\right)$. Let Δ be an orbit of $G_{1,2}$ containing a. Since I centralizes $G_{1,2}, F(I)$ contains Δ. Since $H K$ is a maximal subgroup of $G_{1,2}, G_{1,2, a}=H K$ and H fixes two point of Δ. Thus $\alpha(\langle I, H\rangle) \geq 2$ and $\langle I, H\rangle$ is isomorphic to a subgroup of $G_{1,2}$. This is a contradiction.

Lemma 11. $g_{1}^{*}(2)=0$.
Proof. The proof is similar to that of [7, Lem. 9]. Assume $g_{1}^{*}(2) \neq 0$. By Lemma $4 I$ centralizes $G_{1,2}$. By Lemma $10 \alpha\left(G_{1,2}\right)$ is odd. Let a be the point of $\left.F\left(<I, G_{1,2}\right\rangle\right)$. Every involution of $\left\langle I, G_{1,2}\right\rangle$ fixes the point a and by Lemma $8<I, G_{1,2}>$ contains every involution which fixes only the point a. If $\alpha(I)=1$, then $g_{1}^{*}(2)=1$ and G has a regular normal subgroup by Z^{*}-theorem [3]. Thus $\alpha(I)=i$ and $\alpha(I \tau)=1$. The subgroup generated by all involutions which fix only a is a characteristic subgroup of G_{a} and it is $\left\langle G_{1,2}, I\right\rangle$. Thus it is half-transitive on $\Omega-\{a\}$. Since $\{1,2\}$ is an orbit of $\left\langle I, G_{1,2}\right\rangle, G_{1,2}$ must be $a 2$-group. This is a contradiction.

By this lemma it may be assumed that every involution is conjugate to τ. Thus a Sylow 2 -subgroup of $C_{G}(\tau)$ is also that of G.

Lemma 12. $\quad \chi(\tau)$ contains a regular normal subgroup, $\alpha(\tau)>\alpha(K)$ and K has an orbit of length 2.

Proof. See [7, Lem. 10~Lem. 12].
Since $C_{K}(I) \neq K$ by Lemma 6, Lemma 12 contradicts Lemma 7.

4. The case \mathbf{n} is even

By Lemma $5 \chi(\tau)$ contains a regular normal subgroup. By [1] $\chi(\tau)$ is either a group of semi-linear transformations over $G F(q), q$ even, or $\operatorname{PSL}(2, q) . V$, where V is a 2-dimensional vector space over $G F(q)$.

Case (I). $\alpha(\tau)=\alpha(K)$. Sylow 2 -subgroups of G_{1} are independent. By [9] G_{1} contains a normal subgroup G_{1}^{\prime} of odd index such that $G_{1}^{\prime} / 0\left(G_{1}\right)$ is isomorphic to $\operatorname{PSL}\left(2,2^{m}\right) \cong G_{1,2}$ and $0\left(G_{1}\right)$ is contained in $Z\left(G_{1}\right)$. Thus $G_{1}^{\prime}=$ $0\left(G_{1}\right) G_{1,2}$ and $G_{1,2}$ is normal in G_{1}, which is a contradiction.

Case (II). $\alpha(\tau)>\alpha(K)$.
Lemma 13. $\chi(\tau)=\operatorname{PSL}(2, q) V$.
Proof. See [7, Lem. 23].
Lemma 14. $|K| \neq 8$.
Proof. Assume $|K|=8$. By Lemma 3 I centralizes $H K$ and hence $G_{1,2}$. By Lemma 4 and $6 G$ has two classes of involutions and $\beta=1$ or
63. Since $\chi(\tau)_{1}=\operatorname{PSL}(2,4), i=|V|=16$. Since $n=i(\beta(i-1+) \gamma) / \gamma, \beta=63$, and $n=16^{2}$. Thus H is a Sylow 7 -subgroup of G. Since $\alpha(I)=0, j=\alpha(H)$ is even. By the theorem of Witt $\left|N_{G}(H)\right|=2 j(j-1)|H|$. Since $\left|\chi(H)_{1.2}\right|=1$ or $2, j$ is a factor of 16^{2} by [4]. Since $j-1$ is a factor of $9(n-1)=3^{3} \cdot 5 \cdot 17$ and $n-j$ is divisible by $7, j=4$. Let P be a subgroup of $G_{1.2}$ of order 3 . Since I centralizes $P, \alpha(P)=j^{\prime}$ is even. By the theorem of Witt $\left|N_{G}(P)\right|=$ $2 \cdot 9 j^{\prime}\left(j^{\prime}-1\right)$ and $j^{\prime}-1$ is divisible by 3 since a Sylow 3 -subgroup of $G_{1.2}$ is cyclic. $\left|\chi(P)_{1.2}\right|=1,2$ or 6 . By [4] and [6] $j^{\prime}=6,28$ or j^{\prime} is a power of 2 . Since $j^{\prime}-1$ is a factor of $15 \cdot 17 \cdot 7$ and $n-j^{\prime}$ is divisible by $3, j^{\prime}=4$ or 16 . Let Q be a Sylow 17 -subgroup of G_{1}. If $N_{G_{1}}(Q)=C_{G_{1}}(Q)$, it may be assumed by the Frattini argument that Q normalizes K. Since $\left|N_{G}(K)\right|=$ $|K H| \alpha(K)(\alpha(K)-1)$ and $\alpha(K) \leq i$, this is a contradiction. Thus $\left|N_{G_{1}}(Q)\right|$ is even and $\left|C_{G_{1}}(Q)\right|$ is odd. $\left[G_{1}: N_{G_{1}}(Q)\right]$ is a multiple of 4.7 .9 and a factor of $\cdot 4 \cdot 7 \cdot 9 \cdot 15$. This contradicts the theorem of Sylow. This completes the proof.

Since $\chi(\tau)_{1}=P L S(2, q), C_{G_{1}}(\tau)$ is nonsolvable. Since G_{1} has one class of involutions, so is $G_{1} / 0\left(G_{1}\right)$. By [10] G_{1} has a normal subgroup G_{1}^{\prime} of odd index such that $G_{1}^{\prime} / 0\left(G_{1}\right)$ is isomorphic to $\operatorname{PSL}\left(2,2^{m}\right)$. Thus $C_{G_{1}}(\tau)$ is solvable, which is a contradiction.

Thus the proof of Theorem is complete.
Department of Mathematics
Faculty of Science Hokkaido University

Sapporo, Japan

References

[1] M. Aschbacher: Doubly transitive groups in which the stabilizer of two points is abelian, J. Algebra 18, 114-136 (1971).
[2] W. Feit and J. G. Thompson: Solvability of groups of odd order, Pacific J. Math., 13, 775-1029 (1963).
[3] G. Glauberman: Central elements in core-free groups, J. Algebra 4, 403-420 (1966).
[4] N. Ito: On doubly transitive groups of degree n and order $2(n-1) n$, Nagoya Math. J. 27, 409-417 (1966).
[5] H. Kimura: On some doubly transitive permutation groups of degree n and order $2^{l}(n-1) n$, J. Math. Soc. Japan 22, 263-277 (1970).
[6] H. Kimura: On doubly transitive permutation groups of degree n and order $2 p(n-1) n$, Osaka J. Math. 7, 275-290 (1970).
[7] H. Kimura: A characterization of simple groups A_{6} and A_{7} (to appear).
[8] H. LÜNEBURG: Charakterisierungen der endlichen desargusschen projektiven

Ebenen, Math. Z. 85, 419-450 (1964).
[9] M. Suzuki: Finite groups of even order in which Sylow 2-subgroups are independent, Ann. Math. 80, 58-77 (1964).
[10] J. H. Walter: The characterization of finite groups with abelian Sylow 2subgroups, Ann. Math. 89, 405-514 (1969).
[11] H. Wielandt: Finite permutation groups, Academic press, New York, 1964.
[12] H. Yamaki: A characterization of the simple groups of A_{7} and M_{11}, J. Math. Soc. Japan 23, 130-136 (1971).
(Received October 29, 1973)

