A note on minimal submanifolds

in Riemannian manifolds

By Masahiro Kon

In this note we shall prove the following: Let \bar{M}^{n+p} be a Riemannian manifold of constant curvature \bar{c}, and let M^{n} be a minimal submanifold in \bar{M} of constant curvature c. Then either M is totally geodesic, i.e. $\bar{c}=c$, or $\bar{c} \geqq(2 p-n+1) c /(p-n+1)$, in the latter case the equality arising only when $\vec{c}>0$. Our method is based on the Simons' type formula which has been given by Simons [4].

On the other hand, we shall study the Laplacian of the Ricci operator of a minimal submanifold of codimension 1 in a Riemannian manifold of constant curvature and give some inequality. And combing the theorems of Lawson [2], we shall prove some theorems for compact minimal hypersurfaces in a unit sphere.

1. Preliminaries

In this section we shall summarize the basic formulas for submanifolds in Riemannian manifolds.

Let \bar{M} be a Riemannian manifold of dimension $n+p$, and let M be a submanifold of \bar{M} of dimension n. Let \langle,$\rangle be the metric tensor field of$ \bar{M} as well as the metric induced on M. We denote by $\bar{\nabla}$ the covariant differentiation in \bar{M} and by V the covariant differentiation in M determined by the induced metric on M. Then the Gauss-Weingarten formulas are given by

$$
\begin{array}{ll}
\bar{V}_{X} Y=\nabla_{X} Y+B(X, Y), & X, Y \in \mathfrak{X}(M), \\
\bar{\nabla}_{X} N=-A^{N}(X)+D_{X} N, & X \in \mathfrak{X}(M), \quad N \in \mathfrak{X}(M)^{\perp}
\end{array}
$$

Where D is the linear connection in the normal bundle $T(M)^{\perp}$. We call A and B the second fundamental form of M and they satisfy $<B(X, Y)$, $N\rangle=\left\langle A^{N}(X), \mathrm{Y}\right\rangle$. The Riemannian curvature tensors of \bar{M} and M will be denoted by \tilde{R} and R respectively. From the Gauss-Weingarten formulas, we have

$$
\bar{R}_{X, Y} Z=R_{X, Y} Z-A^{B(Y, Z)}(X)+A^{B(X, Z)}(Y)+\left(\tilde{V}_{X} B\right)(Y, Z)-\left(\tilde{\nabla}_{Y} B\right)(X, Z),
$$

where $\tilde{\nabla}$ denotes the covariant differentiation for B. And we obtain the

Gauss-equation

$$
\begin{align*}
<\bar{R}_{X, Y} Z, W>= & <R_{X, Y} Z, W>-<B(Y, Z), B(X, W)> \tag{1.1}\\
& +<B(X, Z), B(Y, W)>
\end{align*}
$$

If \bar{M} is of constant curvature, the Codazzi-equation is satisfied, that is $\left(\tilde{\nabla}_{X} B\right)(Y, Z)=\left(\bar{\nabla}_{Y} B\right)(X, Z)$, and we have

$$
\begin{equation*}
\bar{R}_{X, Y} Z=R_{X, Y} Z-A^{B(Y, Z)}(X)+A^{B(X, Z)}(Y) \tag{1.2}
\end{equation*}
$$

Let e_{1}, \cdots, e_{n} be a frame for $T_{m}(M)$. Then the mean curvature K of M is defined by $K=\sum_{i=1}^{n} B\left(e_{i}, e_{i}\right)$. If $K=0$, a submanifold M is said to be minimal in \bar{M}. Let v_{1}, \cdots, v_{p} be a frame for $T_{m}(M)^{\perp}$. Here we assume that \bar{M} is of constant curvature \bar{c}, and M is minimal in \bar{M}. Then the Ricci tensor S of M is given by

$$
\begin{equation*}
S(x, y)=(n-1) \bar{c}<x, y>-\sum_{i=1}^{p}<A^{i} A^{i}(x), y> \tag{1.3}
\end{equation*}
$$

where $x, y \in T_{m}(M)$ and we denote A^{i} instead of $A^{v_{i}}$ to simplify. From this the scalar curvature $S c$ of M is represented by

$$
\begin{equation*}
S c=n(n-1) \vec{c}-\|A\|^{2} \tag{1.4}
\end{equation*}
$$

where $\|A\|$ is the length of the second fundamental form. If the second fundamental form is identically zero, M is said to be totally geodesic in M.

2. Minimal submanifolds of constant curvature

In this section we prove the following.
ThEOREM 2.1. Let \bar{M} be a Riemannian manifold of dimension $n+p$ and constant curvature \bar{c}, and let M be a minimal submanifold of \bar{M} of dimension n and constant curvature c. If $p>n-1$, then either M is totally geodesic, i.e. $\bar{c}=c$, or $\bar{c} \geqq(2 p-n+1) c /(p-n+1)$, in the latter case the equality arising only when $\bar{c}>0$. If $p=n-1$, then M is flat.

Proof. Since M is minimal, the second fundamental form A of M satisfies (cf. [5], p 93)

$$
\nabla^{2} A=-A \circ \tilde{A}-\underset{\sim}{A} \circ A+n \bar{c} A
$$

where the operators \tilde{A} and $\underset{\sim}{A}$ are defined by setting

$$
\tilde{A}={ }^{t} A \circ A \quad \text { and } \quad \underset{\sim}{A}=\sum_{i=1}^{p} a d A^{i} a d A^{i}
$$

If \bar{M} and M are both of constant curvature, then the length of the second fundamental form is constant and we obtain

$$
\begin{equation*}
<\nabla A, \nabla A>=<A \circ \tilde{A}, A>+<\underset{\sim}{A}, \circ A, A>-n \bar{c}\|A\|^{2} . \tag{2.1}
\end{equation*}
$$

Let $x, y \in T_{m}(M)$ and $w \in T_{m}(M)^{\perp}$. From (1.2), we have

$$
<A^{\tilde{A}(w)}(x), y>=\sum_{j=1}^{p}<A^{j} A^{w} A^{j}(x), y>+(\bar{c}-c)<A^{w}(x), y>
$$

which implies

$$
\begin{equation*}
<A \circ \tilde{A}, A>=\sum_{t=1}^{n} \sum_{i, j=1}^{p}<A^{j} A^{i} A^{j}\left(e_{t}\right), A^{i}\left(e_{t}\right)>+(\bar{c}-c)\|A\|^{2} \tag{2.2}
\end{equation*}
$$

On the other hand, we can see

$$
\begin{align*}
& <\underset{\sim}{A} \circ A, A>=\sum_{i, j=1}^{p}\left\|\left[A^{i}, A^{j}\right]\right\|^{2} \tag{2.3}\\
& \quad=2 \sum_{t=1 i, j=1}^{n} \sum_{j=1}^{p}\left(<A^{j} A^{j} A^{i}\left(e_{t}\right), A^{i}\left(e_{t}\right)>-<A^{j} A^{i} A^{j}\left(e_{t}\right), A^{i}\left(e_{t}\right)>\right)
\end{align*}
$$

By (1.3), the first term of the right hand side of (2.3) becomes $2(n-1)$ $(\bar{c}-c)\|A\|^{2}$ and consequently (2.1), (2.2) and (2.3) imply

$$
\begin{equation*}
<\nabla A, \nabla A>=(\bar{c}-2 c) n\|A\|^{2}-<A \cdot \tilde{A}, A> \tag{2.4}
\end{equation*}
$$

Since \tilde{A} is symmetric, positive semi-definite operator, we can choose a frame $v_{1} \cdots v_{p}$ in $T_{m}(M)^{\perp}$ such that

$$
\tilde{A}\left(v_{i}\right)=\lambda_{i}^{2} v_{i} \quad \text { and } \quad\|A\|^{2}=\sum_{i=1}^{p} \lambda_{i}^{2}
$$

Then we have the following

$$
<A \circ \tilde{A}, A>=\sum_{i=1}^{n} \lambda_{i}^{4} \geqq \frac{1}{p}\left(\sum_{i=1}^{p} \lambda_{i}^{2}\right)^{2}=\frac{1}{p}\|A\|^{4}
$$

Noticing that $<\underset{\sim}{A} \circ A, A>\geqq 0$, we have $<A \circ \tilde{A}, A>\leqq \frac{1}{n-1}\|A\|^{4}$ by (2.2) and (2.3). Therefore if $p<n-1,<A \circ \tilde{A}, A>=0$, which shows that M is totally geodesic in \bar{M}. If $p=n-1$, then $<\underset{\sim}{A} \circ A, A>=0$ and M has trivial normal connection and moreover M is flat (see Cartan, Oeuvres Completes, partie III, vol. 1, p. 417 and John Moore's Berkeley Thesis).

Let $p>n-1$. Then the equation (2.4) implies the following

$$
\begin{equation*}
<\nabla A, \nabla A>\leqq \frac{n}{p}((p-n+1) \bar{c}-(2 p-n+1) c)\|A\|^{2} \tag{2.5}
\end{equation*}
$$

Suppese $\bar{c} \leqq(2 p-n+1) c /(p-n+1)$. Then the right hand side of this inequality is zero. Therefore M is totally geodesic, i.e. $\bar{c}=c$, or $\bar{c}=(2 p-n$ $+1) c /(p-n+1)$. Since $\bar{c} \geqq c$ always, the latter case arising only when $\bar{c}>0$. Except for these posibilities, we obtain $\bar{c}>(2 p-n+1) c /(p-n+1)$. This completes our assertion.

Corollary 2.2. Under the same assumption as in Theorem 2.1, if
$p=n$, then M is totally geodesic, or $\bar{c} \geqq(n+1) c$, in the latter case the equality arising only when $\bar{c}>0$.

Remark : Len M^{n} be a compact minimal submanifold in a unit sphere S^{n+p} of constant curvature c satisfyisg $c=(p-n+1) /(2 p-n+1)$. If $n=2$, then by the main theorem of Chern, do Carmo and Kobayashi [1], M is the Veronese surface and $c=1 / 3$.

3. Minimal hypersurfaces

First we prepare some lemmas for latter use.
Let \bar{M}^{n+1} be a Riemannian manifold of constant curvature \bar{c}, and let M^{n} be a minimal hypersurface of \bar{M}. We denote by Q the Ricci operator of M, which satisfies $S(x, y)=<Q x, y>$. Generally we have the following

Lemma 3.1 (Nomizu [3]). If the Ricci operator Q satisfies the Codazziequation

$$
\begin{equation*}
\left(\nabla_{X} Q\right) Y=\left(\nabla_{Y} Q\right) X, \quad X, Y \in \mathfrak{X}(M) \tag{3.1}
\end{equation*}
$$

then the scalar curvature $S c$ is constant.
Remark: The Ricci operator Q satisfies the Codazzi-equation if and only if $\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)$ for any $X, Y, Z \in \mathfrak{X}(M)$.

Lemma 3.2. Let $x, y \in T_{m}(M)$, and let e_{1}, \cdots, e_{n} be a frame for $T_{m}(M)$. If the Ricci operator Q satisfies the Codazzi-equation, then we have

$$
\begin{equation*}
\nabla^{2}(S)(x, y)=\sum_{i=1}^{n} R_{e_{i}, x}(S)\left(e_{i}, y\right) \tag{3.2}
\end{equation*}
$$

Proof. Let E_{1}, \cdots, E_{n} be local, orthonormal vector fields which extend e_{1}, \cdots, e_{n}, and which are covariant constant with respect to ∇ at $m \in M$. Let X, Y be local extensions of x, y which are also covariant constant with respect to ∇. Using (3.1) and Lemma 3.1, we have

$$
\begin{aligned}
\nabla^{2}(S)(x, y) & =\sum_{i=1}^{n} \nabla_{E_{i}} \nabla_{E_{i}}(S)(x, y)=\sum_{i=1}^{n} \nabla_{E_{i}} \nabla_{X}(S)\left(e_{i}, y\right) \\
& =\sum_{i=1}^{n}\left(R_{e_{i}, x}(S)\left(e_{i}, y\right)+\nabla_{X}\left(\nabla_{Y}(S)\left(E_{i}, E_{i}\right)\right)\right) \\
& =\sum_{i=1}^{n} R_{e_{i}, x}(S)\left(e_{i}, y\right) .
\end{aligned}
$$

Let v be a unit normal. Hereafter we denote A^{v} by A to simplify. First we have the following

$$
\sum_{i=1}^{n} R_{e_{i}, x}(S)\left(e_{i}, y\right)=-\sum_{i=1}^{n}\left(S\left(R_{e_{i}, x} e_{i}, y\right)+S\left(e_{i}, R_{e_{i}, x} y\right)\right)
$$

and (1.2) implies

$$
\nabla^{2}(S)(x, y)=-\sum_{i=1}^{n}\left\{\begin{array}{r}
S\left(\bar{R}_{e_{i}, x} e_{i}, y\right)+S\left(A^{B\left(x, e_{i}\right)}\left(e_{i}\right), y\right) \tag{3.3}\\
+S\left(\bar{R}_{e_{i}, x} y, e_{i}\right)+S\left(A^{B(x, y)}\left(e_{i}\right), e_{i}\right) \\
-S\left(A^{B\left(e_{i}, y\right)}(x), e_{i}\right)
\end{array}\right\}
$$

On the other hand, $Q A=(n-1) \bar{c} A-A^{3}=A Q$ by (1.3), and hence

$$
\begin{aligned}
& -\sum_{i=1}^{n}\left(S\left(A^{B\left(x, e_{i}\right)}\left(e_{i}\right), y\right)-S\left(A^{B\left(e_{i}, y\right)}(x), e_{i}\right)\right. \\
& \quad=-<Q A^{2}(x), y>+<A Q A(x), y>=0
\end{aligned}
$$

From (1.3), we obtain

$$
-\sum_{i=1}^{n} S\left(A^{B(x, y)}\left(e_{i}\right), e_{i}\right)=\operatorname{Tr} A^{3}<A(x), y>
$$

and we have also

$$
-\sum_{i=1}^{n}\left(S\left(\bar{R}_{e_{i}, x} e_{i}, y\right)+S\left(\bar{R}_{e_{i}, x} y, e_{i}\right)\right)=\bar{c} n<Q x, y>-\bar{c} S c<x, y>
$$

On the other hand, we can see easily $\nabla^{2}(S)(x, y)=\left\langle\nabla^{2}(Q) x, y\right\rangle$ for any $x, y \in T_{m}(M)$. Consequently (3.3) implies

$$
\nabla^{2} Q=\bar{c}(n Q-S c I)+\left(\operatorname{Tr} A^{3}\right) A
$$

Here we assume that M is cempact and $\bar{c}>0$. Then we have

$$
\begin{equation*}
0 \leqq \int_{M}<\nabla Q, \nabla Q>=-\int_{M}\left\langle\nabla^{2} Q, Q>=\int_{M}\left\{\bar{c}\left(S c^{2}-n\|Q\|^{2}\right)+\left(\operatorname{Tr} A^{3}\right)^{2}\right\}\right. \tag{3.4}
\end{equation*}
$$

Using (1.3) and (1.4), this becomes

$$
\begin{equation*}
\int_{M}<\nabla Q, \nabla Q>=\int_{M}\left\{\bar{c}\left(\left(\operatorname{Tr} A^{2}\right)^{2}-n \operatorname{Tr} A^{4}\right)+\left(\operatorname{Tr} A^{3}\right)^{2}\right\} . \tag{3.5}
\end{equation*}
$$

Therefore we have the following
Theorem 3.1. Let \bar{M}^{n+1} be a Riemannian manifold of constant curvature $\bar{c}>0$, and let M^{n} be a compact minimal hypersuface of \bar{M}. If the Ricci operator Q of M satisfies the Codazzi-equation, and if the second fundamental form A of M satisfies $\bar{c}\left(\operatorname{Tr} A^{2}\right)^{2}+\left(\operatorname{Tr} A^{3}\right)^{2} \leqq \bar{c} n \operatorname{Tr} A^{4}$, then the Ricci operator Q of M is covariariant constant.

From this and Theorem 2 of Lawson [2], we obtain the following
Corollary 3.2. Let M^{n} be a compact minimal hypersurface in a unit sphere S^{n+1}. If the Ricci operator Q of M satisfies the Codazziequation, and if $\left(\operatorname{Tr} A^{2}\right)^{2}+\left(\operatorname{Tr} A^{3}\right)^{2} \leqq n \operatorname{Tr} A^{4}$, then, up to rotations of S^{n+1}, M^{n} is one of the minimal products of spheres

$$
S^{k}\left(\sqrt{\frac{k}{n}}\right) \times S^{n-k}\left(\sqrt{\frac{n-k}{n}}\right): \quad k=0, \cdots,\left[\frac{n}{2}\right]
$$

Theorem 3.3. Let \bar{M} and M be as in Theorem 3.1. If the Ricci operator Q of M satisfies the Codazzi-equation, and if $\operatorname{Tr} A^{3}=0$, then M is an Einstein manifold.

Proof. By (3.4), we have

$$
0 \leqq \int_{M}<\nabla Q, \nabla Q>=\bar{c} \int_{M}\left(S c^{2}-n\|Q\|^{2}\right)
$$

But we have always $S c^{2} \leqq n\|Q\|^{2}$, hance we get $S c^{2}=n\|Q\|^{2}$, which shows that M is Einstein.

Corollary 3.4. Let M^{n} be a compact minimal hypersurface in a unit sphere S^{n+1}. If Q satisfies the Codazzi-equation, and if $\operatorname{Tr} A^{3}=0$, then M is totally geodesic, or $n=2 k$, and it is

$$
S^{k}\left(\frac{1}{\sqrt{2}}\right) \times S^{k}\left(\frac{1}{\sqrt{2}}\right)
$$

If the sealar curvature $S c$ of M is constant, and if the Weyl conformal tensor field satisfies the 2nd Bianchi's identity, then the Ricci operator satisfies the Codazzi-equation ([3], p. 344). From this we have the following

Corollary 3.5. Let $M^{n}(n \geqq 3)$ be a compact minimal hypersurface with constant scalar curvature in a Riemannian manifold \bar{M}^{n+1} of constant curvature \bar{c}. If M is conformally flat and $\operatorname{Tr} A^{3}=0$, then M is totally geodesic.

Proof. If $\operatorname{Tr} A^{3}=0$, then M is Einstein and hence M is of constant curvature. Hence by the condition of codimension, M is totally geodesic.

Proposition 3.6. Let \bar{M}^{n+1} be a Riemannian manifold of constant curvature $\bar{c}<0$, and let M^{n} be a minimal hypersurface in \bar{M} with parallel Ricci tensor. Then M is Einstein.

Proof. If the Ricci tensor of M is parallel, then we get

$$
0=<\nabla Q, \nabla Q>=\bar{c}\left(S c^{2}-n\|Q\|^{2}\right)+\left(\operatorname{Tr} A^{3}\right)^{2}
$$

therefore we obtain

$$
0 \geqq \bar{c}\left(n\|Q\|^{2}-S c^{2}\right)=\left(\operatorname{Tr} A^{3}\right)^{2} \geqq 0
$$

which shows that $n\|Q\|^{2}=S c^{2}$ and M is Einstein.

Bibilography

[1] S. Chern, M. Do Carmo and S. Kobayashi: Minimal submanifolds of spheres with second fundamental form of constant length, Functional analysis and related fields, Proc. Conf. in Honor of Marshall Stone, Springer, 1970.
[2] H. B. Lawson: Local rigidity theorems for minimal hypersurfaces, Ann. of Math. 89 (1969), 187-197.
[3] K. Nomizu: On the decomposition of generalized curvature tensor fields, Differential Geometry, in Honor of K. Yano, Kinokuniya, Tokyo, (1972), 335-345.
[4] J. Simons: A note on minimal varieties, Bull. Amer. Math. Soc. 73 (1967), 491-495.
[5] J. Simons: Minimal varieties in riemannian manifolds, Ann of Math. 88 (1968), 62-105.
(Received May 31, 1973)

