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In this note we shall prove the fo11o_{1}wing : Let \backslash \overline{M}^{n+p} be a Riemannian
manifold of \infty nstant curvature \overline{c}, and let M^{n} be a minimal submanifold in
\overline{M} of constant curvature c. Then either M is totally geodesic, i.e.\overline{c}=c ,

or c-\geqq(2p-n+1)c/(p-n+1), in the latter case the equality arising only
when \overline{c}>0 . Our method is based on the Simons’ type formula which has
been given by Simons [4].

On the other hand, we shall study the Laplacian of the Ricci operator

of a minimal submanifold of codimension 1 in a Riemannian manifold of
constant curvature and give some inequality. And combing the theorems
of Lawson [2], we shall prove some theorems for compact minimal hyper-
surfaces in a unit sphere.

1. Preliminaries

In this section we shall summarize the basic formulas for submanifolds
in Riemannian manifolds.

Let \overline{M} be a Riemannian manifold of dimension n+p, and let M be a
submanifold of \overline{M} of dimension n. Let \langle , \rangle be the metric tensor field of
\overline{M} as well as the metric induced on M. We denote by \overline{\nabla}

. the covariant
differentiation in \overline{M} and by \nabla the covariant differentiation in M determined
by the induced metric on M. Then the Gauss-Weingarten formulas are
given by

\overline{\nabla}_{X}Y=\nabla_{X}Y+B(X, Y) , X, Y\in \mathfrak{X}(M) ,
\overline{\nabla}_{X}N=-A^{N}(X)+D_{X}N , X\in \mathfrak{X}(M)j -N\in \mathfrak{X}(M)^{L}

Where D is the linear connection in the normal bundle T(M)^{\perp} . We call
A and B the second fundamental form of M and they satisfy <B(X, Y) ,

N>=<A^{N}(X), Y> . The Riemannian curvature tensors of \overline{M} and M will
be denoted by \overline{\overline{R}} and R respectively. From the Gauss-Weingarten formulas,
we have

\overline{\overline{R}}_{X,Y}Z=R_{X,Y}Z-A^{B(Y,Z)}(X)+A^{B(X,Z)}(Y)+(\tilde{\nabla}_{X}B)(Y, Z)-(\tilde{\nabla}_{Y}B)(X, Z) ,

where \overline{\nabla} denotes the covariant differentiation for B. And we obtain the
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Gauss-equation

(1. 1) <\overline{R}_{X,Y}Z, W>=<R_{X,Y}Z, W>-<B(Y, Z), B(X, W)>

+<B(X, Z), B(Y, W)>

If \overline{M} is of constant curvature, the Codazzi-equation is satisfied, that is
(\tilde{\nabla}_{X}B)(Y,Z)=(\nabla_{Y}B)(X, Z), and we have
(1. 2) \overline{R}_{X,Y}Z=R_{X,Y}Z-A^{B(Y,Z)}(X)+A^{B(X,Z)}(Y) .

Let e_{1} , \cdots , e_{n} be a frame for T_{m}(M) . Then the mean curvature K of

M is defined by K= \sum_{i=1}^{n}B(e_{i}, e_{i}) . If K=0, a submanifold M is said to be

minimal in \overline{M} Let v_{1}, \cdots , v_{p} be a frame for T_{m}(M)^{\perp} . Here we assume
that \overline{M} is of constant curvature \overline{c} , and M is minimal in \overline{M} Then the
Ricci tensor S of M is given by

(1. 3) S(x, y)=(n-1)\overline{c}<x, y>- \sum_{i=1}^{p}<A^{i}A^{i}(x) , y>

where x, y\in T_{m}(M) and we denote A^{i} instead of A^{v_{i}} to simplify. From
this the scalar curvature Sc of M is represented by

(1. 4) Sc=n(n-1)\vec{c}-||A||^{2}

where ||A|| is the length of the second fundamental form. If the second
fundamental form is identically zero, M is said to be totally geodesic in M.

2. Minimal submanifolds of constant curvature

In this section we prove the following.

THEOREM 2. 1. Let \overline{M} be a Rimannian manifold of dimension n+p
and constant curvature \overline{\dot{c}} , and let M be a minimal submanifold of \overline{M} of
dimension n and constant curvature c. Ifp>n-1 , then either M is totally
geodesic, i.e.\overline{c}=c , or \overline{c}\geqq(2p-n+1)c/(p-n+1), in the latter case the equality
arising only when \overline{c}>0 . If p=n-1, then M is fiat.

PROOF. Since M is minimal, the second f.undamental form A of M
satisfies (cf. [5], p93)

\nabla^{2}A=-A\circ\tilde{A}-\sim A\circ A+n\overline{c}A

where the operators A and A\sim are defined by setting

\tilde{A}={}^{t}A\circ A and A= \sum_{\dot{\iota}=1}^{p}\sim adA^{i}adA^{i}

If \overline{M} and J^{\gamma}I are both of constant curvature, then the length of the second
fundamental form is constant and we obtain
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\langle2. 1) <\nabla A , \nabla A>=<A\circ\tilde{A}, A>+<A,\circ A\sim
’

A>-n\overline{c}||A||^{2}

Let x, y\in T_{m}(M) and w\in T_{m}(M)^{\perp} . From (1. 2), we have

<A^{jI(w)}(x), y>= \sum_{f=1}^{p}<A^{f}A^{w}A^{f}(x), y>+(\overline{c}-c)<A^{w}(x), y>,,

which implies

(2. 2) <A\circ\tilde{A}, A>= \sum_{t=1i}^{n},\sum_{f=1}^{p}<A^{f}A^{i}A^{f}(e_{t}), A^{i}(e_{t})>+(\overline{c}-c)||A||^{2}

On the other hand, we can see

(2. 3) <A\circ A\sim
’

A>= \sum_{i,j=1}^{p}||[A^{i}, A^{j}]||^{2}

=2 \sum_{t=1i}^{n},\sum_{f=1}^{p}(<A^{f}A^{f}A^{i}(e_{t}), A^{i}(e_{t})>-<A^{f}A^{i}A^{j}(e_{t}) , A^{i}(e_{t})>) .

By (1. 3), the first term of the right hand side of (2. 3) becomes 2 (n –1)

(\overline{c}-c)||A||^{2} and consequently (2. 1), (2. 2) and (2. 3) imply

(2. 4) <\nabla A, \nabla A>=(\overline{c}-2c)n||A||^{2}-<A\cdot\tilde{A}, A>
Since \tilde{A} is symmetric, positive semi-definite operator, we can choose a frame
v_{1}\cdots v_{p} in T_{m}(M)^{\perp} such that

\tilde{A}(v_{i})=\lambda_{i}^{2}v_{i} and ||A||^{2}= \sum_{i=1}^{p}\lambda_{i}^{2} .
Then we have the following

<A\circ\tilde{A} , A>= \sum_{i=1}^{p}\lambda_{i}^{4}\geqq\frac{1}{p}(\sum_{i=1}^{p}\lambda_{i}^{2})^{2}=\frac{1}{p}||A||^{4}

Noticing that <A\circ A\sim
’

A>\geqq 0, we have <A\circ\tilde{A}, A> \leqq\frac{1}{n-1}||A||^{4} by (2. 2)

and (2. 3). Therefore if p<n-1 , <A\circ\tilde{A} , A>=0, which shows that M is
totally geodesic in \overline{M} . If p=n-1, then <A\circ A\sim

’ A>=0 and M has trivial
normal connection and moreover M is flat (see Cartan, Oeuvres Completes,
partie III, vol. 1, p. 417 and John Moore’s Berkeley Thesis).

Let p>n-1 . Then the equation (2. 4) implies the following

(2. 5) <\nabla A , \nabla A>\leqq.\frac{n}{p}((p-n+1)\overline{c}-(2p-n+1)c)||A||^{2}

Suppese \overline{c}\leqq(2p-n+1)c/(p-n+1) . Then the right hand side of this in-
equality is zero. Therefore M is totally geodesic, i.e.\overline{c}=c, or \overline{c}=(2p-n

+1)c/(p-n+1). Since \overline{c}\geqq c always, the latter case arising only when \overline{c}>0 .
Except for these posibilities, we obtain \overline{c}>(2p-n+1)c/(p-n+1) . This
completes our assertion.

COROLLARY 2. 2. Under the same assumption as in Theorem 2. 1, if
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p=n, then M is totally geodesic, or \overline{c}\geqq(n+1)c , in the latter case the equality
arising only when \overline{c}>0 .

REMARK: Len M^{n} be a compact minimal submanifold in a unit sphere
S^{n+p} of constant curvature c satisfyisg c=(p-n+1)/(2p-n+1). If n=2,

then by the main theorem of Chern, do Carmo and Kobayashi [1], M is
the Veronese surface and c=1/3.

3. Minimal hypersurfaces

First we prepare some lemmas for latter use.
Let \overline{M}^{n+1} be a Riemannian manifold of constant curvature \overline{c} , and let

M^{n} be a minimal hypersurface of \overline{M} We denote by Q the Ricci operator

of M, which satisfies S(x, y)=<Qx, y> . Generally we have the following

LEMMA 3. 1 (Nomizu [3]). If the Ricci operator Q satisfifies the Codazzi-
equation

(3. 1) (\nabla_{X}Q)Y=(\nabla_{Y}Q)X , X, Y\in \mathfrak{X}(M)
,\cdot

then the scalar curvature Sc is constant.
REMARK: The Ricci operator Q satisfies the Codazzi-equation if and

only if (\nabla_{X}S)(Y, Z)=(\nabla_{I}\cdot S)(X, Z) for any X, Y, Z\in \mathfrak{X}(M) .
LEMMA 3. 2. Let x, y\in T_{m}(M), and let e_{1} , \cdots , e_{n} be a frame for T_{m}(M).

If the Ricci operator Q satisfifies the Codazzi-equation, then.we have

(3. 2) \nabla^{2}(S)(x, y)=\sum_{i=1}^{n}R_{e_{i},x}(S)(e_{i}, y) .

PROOF. Let E_{1} , \cdots , E_{r\iota} be local, orthonormal vector fields which extend
e_{1} , \cdots , e_{n} , and which are covariant constant with respect to \nabla at m\in M . Let
X, Y be local extensions of x, y which are also covariant constant with
respect to, \nabla . Using (3. 1) and Lemma 3. 1, we have

\nabla^{2}(S)(x, y)=\sum_{i=1}^{n}\nabla_{E_{}}.\nabla_{E_{i}}(S)(x, y)=\sum_{i=1}^{n}\nabla_{E_{\nu}}\nabla_{X}(S)(e_{i}, y)

= \sum_{i=1}^{n}(R_{e_{i},x}(S)(e_{i}, y)+\nabla_{X}(\nabla_{Y}(S)(E_{i}, E_{i})))

= \sum_{i=1}^{n}R_{e_{i’}x}(S)(e_{i}, y) .

Let v be a unit normal. Hereafter we denote A^{v} by A to simplify.
First we have the following

\sum_{i=1}^{n}R_{e_{i},x}(S)(e_{i}, y)=-\sum_{t=1}^{n}(S(R_{e_{i},x}e_{i}, y)+S(e_{i}, R_{e_{i},x}y)) ,
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and (1. 2) implies

(3. 3) \nabla^{2}(S)(x, y)=-\sum_{i=1}^{n}

\{\begin{array}{l}S(R_{e_{i},x}e_{\dot{l}},y)+S(A^{B(x_{\prime}e_{i})}(e_{i}),y)+S(\overline{\overline{R}}_{e_{i},x}y,e_{i})+S(A^{B(x,y)}(e_{i}),e_{i})-S(A^{B(e_{i},y)}(x),e_{i})\end{array}\}-

On the other hand, QA=(n-1)\dot{\overline{c}}A-A^{3}=AQ by (1.3), and hence

- \sum_{i=1}^{n}(S(A^{B(x,e_{i})}(e_{i}), y)-S(A^{B(e_{i},y)}(x), e_{i})

=-<QA^{2}(x) , y>+<AQA(x), y>=0 .
From (1. 3), we obtain

- \sum_{i=1}^{n}S ( A^{B(x,y)}(e_{i}) , e_{i})=TrA^{3}<A(x), y>,\cdot

and we have also

- \sum_{i=1}^{n}(S(\overline{R}_{e_{i},x}e_{i}, y)+S(\overline{R}_{e_{i},x}y, e_{i}))=\overline{c}n<Qx, y>-\overline{c}Sc<x, y>

On the other hand, we can see easily \nabla^{2}(S)(x, y)=<\nabla^{2}(Q)x,y> for any
x, y\in T_{m}(M) . Consequently (3. 3) implies

\nabla^{2}Q=\overline{c}(nQ-ScI)+(TrA^{3})A

Here we assume that M is cempact and \overline{c}>0 . Then we have

(3. 4) 0 \leqq\int_{M}<\nabla Q , \nabla Q>=-\int_{M}<\nabla^{2}Q, Q>= \int_{M}\{\overline{c}(_{L}^{Q}c^{2}-n||Q||^{2})+(TrA^{3})^{2}\} .

Using (1. 3) and (1. 4), this becomes

(3. 5) \int_{M}<\nabla Q, \nabla Q>=\int_{M}\{\overline{c}((TrA^{2})^{2}-nTrA^{4})+(TrA^{3})^{2}\} .

Therefore we have the following
THEOREM 3. 1. Let \overline{M}^{n+1} be a Riemannian manifold of constant curva-

ture \overline{c}>0, and let M^{n} be a compact minimal hypersuface of \overline{M} . If the
Ricci operator Q of M satisfifies the Codazzi-equation, and if the second
fundamental form A of M satisfifies \overline{\dot{c}}(TrA^{2})^{2}+(TrA^{3})^{2}\leqq\overline{c}nTrA^{4}, then the
Ricci operator Q of M is covariariant constant.

From this and Theorem 2 of Lawson [2], we obtain the following
COROLLARY 3. 2. Let M^{n} be a compact minimal hypersurface in a

unit sphere S^{n+1} . If the Ricci operator Q of M satisfifies the Codazzi-
equation, and if (TrA^{2})^{2}+(TrA^{3})^{2}\leqq nTrA^{4}, then, up to rotations of S^{n+1}, M^{n}

is one of the minimal products of spheres
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S^{k}(\sqrt{\frac{k}{n}})\cross S^{n-k}(\sqrt{\frac{n-k}{n}}) : k=0 , \cdots , [ \frac{n}{2}] .

THEOREM 3. 3. Let \overline{M} and M be as in Theorem 3. 1. If the Ricci
operator Q of M satisfifies the Codazzi-equation, and if TrA^{3}=0, then M
is an Einstein manifold.

PROOF. By (3. 4), we have

0 \leqq\int_{M}<\nabla Q , \nabla Q>=\overline{c}\int_{M}(Sc^{2}-n||Q||^{2}) .

But we have always Sc^{2}\leqq n||Q||^{2} , hance we get Sc^{2}=n||Q||^{2}, which shows
that M is Einstein.

COROLLARY 3. 4. Let M^{n} be a compact minimal hypersurface in a
unit sphere S^{n+1} . If Q satisfifies the Codazzi-equation, and if TrA^{3}=0,
thm M is totally geodesic, or n=2k, and it is

S^{k}( \frac{1}{\sqrt\overline{2}})\cross S^{k}(\frac{1}{\sqrt\overline{2}})

If the sealar curvature Sc of M is constant, and if the Weyl conformal
tensor field satisfies the 2nd Bianchi’s identity, then the Ricci operator
satisfies the Codazzi-equation ([3], p. 344). From this we have the following

COROLLARY 3. 5. Let M^{n}(n\geqq 3) be a compact minimal hypersurface
with constant scalar curvature in a Riemannian manifold \overline{M}^{n+1} of constant
cumature \overline{c} . If M is conformally fiat and TrA^{3}=0, then M is totally
geodesic.

PROOF. If TrA^{3}=0 , then M is Einstein and hence M is of constant
curvature. Hence by the condition of codimension, M is totally geodesic.

PROPOSITION 3. 6. Let \overline{M}^{n+1} be a Riemannian manifold of constant
curvature \overline{c}<0, and let M^{n} be a minimal hypersurface in \overline{M} with parallel
Ricci tensor. Thm M is Einstein.

PRCOF. If the Ricci tensor of M is parallel, then we get

0=<\nabla Q , \nabla Q>=\overline{c}(Sc^{2}-n||Q||^{2})+(TrA^{3})^{2} ,

therefore we obtain
0\geqq\overline{c}(n||Q||^{2}-Sc^{2})=(TrA^{3})^{2}\geqq 0 ,

which shows that n||Q||^{2}=Sc^{2} and M is Einstein.
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