On structures of certain L2well-posed mixed problems
for hyperbolic systems of first order

By Toshio OHKUBO and Taira SHIROTA

§1. Introduction and results.

Let P be an x,-strictly hyperbolic 2m x 2m-system of differential opera-
tors of first order defined over a C*-cylinder R'x 2C R™™. Let B be an
m X 2m-system of functions defined on the boundary I' of R'xQ. We
consider the following mixed problem :

Pz, D)u(x)=f(r) zeR'xQ2 (2>0),

(P, B) {B(x) u(x) =g () zel (o >0),
u(x)= h(x) reR'xQ (x,=0),
where x=(x,, x,, -+, x,.), D; 1 9 1 0 and D=(D,, --, D,). We

zli“la—xj i ox;
consider L*well-posedness of (P, B) in the follwing sense:
DeFINITION 1. 1. The problem (P, B) is said to be L’~well-posed if there
exist positive constants C, T such that for every fe€ H,((—oo, T)x Q) with
=0(x,<0), g=0 and h=0, there exists a unique solution u€H,((—oo, T)
x Q) with u=0(x,<0) which satisfies the inequality :

[ hltode= {110z,

where H,(G) is the Sobolev space with its norm ||-|z,q-

The aim of the present article is, under somewhat strong but general
restriction on the operator P, to describe, in terms of the cotangent space
of R'x02=1I, the relations among the coefficients of boundary operator
B for L*well-posed problem (P, B). These relations are useful for the
investigation of the propagation of singularities of solutions for our pro-
blems. For example they determine whether there exist lateral waves or
not. Applying the relations we prove the existance of the solution of our
problem. But in contrast with the recent development of the Cauchy pro-
blems, we must essentially use the energy estimate, because of the existance
of glancing rays with the associated non-vanishing reflection coefficients in
these cases.
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Put C.={r€C"; Im =0} respectively and let P°(z,, o, A) be the prin-
cipal part of P(x,1, g, 1), where (, 0, 2) is a covector of z=(x,, 2", z,). By
virture of localization and certain coordinate transformations, we may re-
strict ourselves to the case where

Q=R:= {(x”, xz,); ,>0,x"€ R"“l} , n=2,
R'xQ=R'= {(xo, x' x,); 2,20, (x,, 2') € R”} ,
I'= R"={2'€ R*; x,,=0}.

Then our assumptions are the following :
(I) a) The coefficients of P* and B are real, belong to C*(R'x %)
and are constant outside some compact set of R'x 2.

8) The multiplicity of the real roots A(x/, z, o) of the characteristic
equation det P°(x’,z,0,2)=0 is at most double and there is at most one
real double root, for every (x, 7, o) € I' x (R"\{0)).

7) (P, B) is normal, that is, (i) det P°(z’, 0, ¢, )#0 for every (z,
0, )€ x (R*\{0}), (ii) rank B(z')=m for every x'€T.

(II) Let R(2',7,0) be the Lopatinskii determinant of (P°, B) (for defini-
tion, see §4.)

a) If R(x% 7% 6°)=0 for a point (z° 7°, 6°) € I' x (R*\{0}) such that there
are no real double roots 2 of det P°(x ° ¢° 2)=0, it holds for small 7>0
that

|R(x°, '—17, 0°)| >Cr,

with some constant C=C(z", " ¢°)>0. Furthermore if there is at least
one real simple root A(z’ ° ¢°), R(x',r, ¢) vanishes only for Im r=0 in
some neighborhood U(2’, 7°, ¢)CI'x C* x R™.

B) If R(z' <% ¢°)=0 for a point (2 7°, ¢°) € I' x (R*\{0}) such that there
is a real double root 1 of det P°(z’ 7° ¢°, A)=0, for small 7>0

|R(2*, 2*—ir, )| > Cr

with some constant C=C(x’ 7% ¢")>0. Furthermore if there is at least
one real simple root 4, the rank of Hess R(x', 8(x', 0), ¢) at the zeros of

(a’,0)

R(z', 8(x' 0), 0) in some neighborhood U(x", 7% ¢°) is equal to

codim of {(«’,¢); R(z, 8(x', g), 6)=0} in R,
where #(x’, )€ C* denotes a real valued function such that P°(x/, z, 5, )=0
has only a real double root 2 on the surface t=6(z’, ¢) with °=0(x°, ")
(see Corollary 3.1.) Here the zero set {(«', 0); R(2', 6(z, 6), 5)=0} in some
Uz’ 7% d°) is preassumed to be a regular submanifold of R*'.
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7) In the point (z° 7% ¢") satisfying the first condition of B), if there
is at least one non-real root 1 of det P°(x", z° ¢°, ))=0, then the reflection
coefficient by (', 7, 6) is real in some U(x’ 7’ ¢") whenever 7, i%(z, 7, o)
are real and R(2', 7, 0)#0 (for definitions of 2%(x’, z, o) and reflection coef-
ficients see §3 and §4, respectively).

(IIT) Any constant coefficients problems (P, B),, resulting from freezing
the coefficients at boundary points x’' are L*-well-posed.

The main result in this article is the following

MAIN THEOREM. Assume the conditions (I), (II) and (III), then the
variable coefficients problem (P, B) is also L’-well-posed.
To prove Main theorem, we use the following

TueoreM 1.1. Under the conditions (I), (II) and (III) the following
a priori estimate holds with some constants C,,7,>0 :

(1. 1) | Pullz,r+ | Bte|rz.r = CiT |l

for every 1>7, u€ H, ,(R%") and integer k>0 (the norms used here are
defined in §2.)

Our method deriving Main theorem is applicable to the case where the
boundary operator B(z') is complex. Main theorem is also valid if we
assume the following conditions (II) ) and 7’) instead of the conditions (II)
B) and 7): ,

(ID) B) If R(x' 7, ¢")=0 for a point (27, ¢°) € I' x (R"\{0}) such that
there is a double root A of det P°(x’, °, ¢°, )=0, for small 7>0

|R(, =i, d")| > Cr

(S

with some come constant C=C(x", z°, ¢°)>0. Let us consider R as a func-
tion of (x',¥t—0(x', 0),d). Then by the implicit function theorem we can
decompose R as

R, 0)=r(2', e =0(z’, 0, o) (Vr—0(z’, ) = D(’, 0))

where Y1 =—1 and (%, 0, 6"#0 and D(z", 0")=0. Now we assume that
for some constant C=C(z’, 7% ¢°)>0 '

Re D(z',0)>C <Im D(x', a)>2 in the case (a),
(1.2) or

—Im D(,e)>C (Re D(x', a)>2 in the case ()

in some neighborhood U(z’) x U(¢®), according to the case (a) or (f) in Lem-
ma 3.1 respectively.
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(II) 77) In the point satisfying the first condition of f'), if there is at
least one real simple root 2, the zero set of Re D(x', ) (or Im D(x/, 0)) in

some U(x', 6°) is preassumed to be a regular submanifold of R*™' and the
rank of Hess Re D(x',0) (or Im D(x’, ¢)) at the zeros of Re D(x',g) (or

(z’,0)

Im D(x’, 0)) is equal to
codim of {(x’, 0); Re D(x',0)= 0}
or {(x’, 0); Im D(z', 0)= 0} in R>™!

in the case (a) or (b), respectively.

Here we remark that the conditions (II) 8) and 7) imply the conditions
(IT) B) and 7’) when we are restricted to the real case (see subsection 10.2),
and that the last condition of (II) 8) and (II) 7’) are omitted, if (6.5) and
(10. 6) are satisfied, respectively. It should also be noted that the conditions
(I), (I)- and (III) are invariant for certain coordinate transformations, hence
Main theorem is applicable to problems defined on any smooth R'x Q.

Throughout this article we assume the condition (I). Section 2 and
section 3 are a summary of elementary facts which are used in later sec-
tions. In section 4, a necessary and sufficient condition for L?-well-posedness
of the constant coefficients problem is shown in terms of ‘coupling’ coef-
ficients. Using it we investigate, in section 5 and 6, the structure of
variable coefficients problem under the condition (III). Section 7 is devoted
to the estimates of the problems for 2x2 first order systems. The ideas
used there play an essential role in the proof of Theorem 1.1 which is
shown in section 8. Section 9 is concerned with a dual problem to (P, B).
In subsection 10.1 an example showing the necessity of the condition (II) §)
is presented, and in subsection 10.2 the generalization to the case where
the boundary operator B(z') is complex valued is considered.

Second author lectured the outline about this theme ([12]) and first
author gave the proof in detail. Authors are indebted to Dr. R. Agemi
for a number of helpful discussion of these problems and for revises of
the manuscript.

§2. Preliminaries.

2.1. The following spaces are used in this paper. ([6], [8]) Let us
define for 7#0 and real numbers p, g the Hilbert spaces of functions:

Hp,q; r(—RnH) = {u €Y (R,1); €™ ue Hp,q(RnH)} s
H,,(B")={ve Z'(R"); e™ve H(R")

-
i
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with their norms defined by
T~
[alprres = | 02 G (P4 1€ P [ u@) e,

N
qle—r%.v

[olar= |07+ /1R @)

and their inner products (-, *)p.¢r.z7+1, <+, * D, Te€spectively, where H, ,(R"*"),

H (R™) are Sobolev spaces, é=(&, £,)=(r, g, )€ R™" is a covector of x=(x',
o~ o~ ]

z,)=(x,, 2", x,) € R'x 2, and e ™u(E), e ™ v(¢') are the Fourier transforms

of e™u, e™v respectively. Moreover, let H, ., (R%") be the set of all

ue Z'(R%) such that there exist distributions Ue H, ,,,(R"*") with U=u

in R**'. The norm of « is defined by

”qu,q;r,RTl = igf 1Ol p.g5 7,57+ -

From now on, for simplicity we denote by H, ,(R%"") the space H, (R,
by |||l the norm |- ||,,,%2+1 and by (-, -),, the inner product respectively.
Note that

H, (R ={u; e™ue H,(R;)

and ||u||;,, is equivalent to

% ||, 2

(j+l=/c 0

f,ralxn)2
if >0 is an integer.

2.92. We consider the following pseudo-differential operator with pa-
rameters 7>0 and x,. Let a(z/, z,,&, 7)€ C*(R* x (R"x R.)\{0}) be
a function which is independent of x outside some compact set of R™*!.

That a(x’, z.,&,7)€S% (k: real) means that for every a, § there exists
a constant C, ;>0 such that

Dg D a(x, x,, &, T)| < Ca,p(r2+ |5r12>%</c—m>

for every (x,&,7)e R%"'x R*x RY. Matrix functions in S are defined
similarly. With a matrix function A€ S% called a symbol we associate
a pseudo-differential operator A(x, D', 7) defined for any vector v € H, ,(R"),
which means that the components of v belong to H,.(R"), by the formula

Alx, D, 7)v(x’)
— (27[)—71.67105 ei’/xo+‘izr:c”A(x, 7, 0, T) ‘z’)(z_’ 0,) dﬂdo

Rn

where r=7—1 and &=(y, 0). Note that if
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Alx,p,0,7)=Alx,n—1il,0)= Alx, 1, 0)
then it holds that if A(x,r, ) is analytic with respect to r,
Alx, D', T)v(x')= Az, D) v(z')
where ve H, ,(R") and A(x, D') is a usual pseudo-differential operator.

The basic properties of usual pseudo-differential operators hold analo-
gously for this case:

Lemma 2.1, ([9], [5])

a) For every real s there exist positive constants T, and C, independent
of v such that for every 1>7, it holds that

(1) for real k, AeS%t and ve H,,, ,(R")
|A(z, D', 1)v|, < Clvlasir

(ii) for real k, A€ S, A*(x, &,7) the adjoint matrix, A* the formal
adjoint of A(x, D', T) with respect to {-,-),, and ve H,,, ,(R")
| |(4*(x, D, 1) — A*(z, D', 1)) 0], . < Cullusr,

s+1,r =

(i) for A,eS%, k;: real, i=1,2, A;(x, &,7)=A, A€ S8*% and ve
Ha+kl+k2,r(Rn)

|(As(a, D, 1)— As(=, DV, 1) Ayl, D', 7))

< Calv]s+/c,+kz,r .

s+1,7

(iv) Let A(x, &, 1\=A%(x,&,7)eS%, k: real. Then there exist C, 7,>0
such that for every ¥>7, and ve H, ,(R"

Im (A(z, I, T) v, v)0,, < Clvfis , -

B) Let A€S% and A(x, &,7)=A*(x, &,7)>0 for 1>7,>0. Then there
exist C, 1,>0 such that for 1>7,

Re (A(x, D', 1) v, v)o; = —Clv|2s,.

This is a Garding’s sharp form. From this the following hold.

(i) Let AeS% and A(x,&,1)=A*>C with C>0. Then there exists
a 1,>0 such that for 1>7,

Re (A(x, D', 1) v, v)y, = 27'Clv)3,.

(i) Let A€S% and |det A(z, &,7)|>C with C>0. Then for every
real s there exist C,, 1,>0 such that for 1>7,

lA(x, D,7) vL’T > C,lvls,; -
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(iii) Let Az, &,7)€8% and A™(x,&,1)€S%. Then for every real s
there exist C,, T,>0 such that for 1>7, A(x, D/, T) has an inverse A(z, D',
N'=A"Yx, D,7)+ T in H,, which satisfies

A x|, < Colvlss
lTvls,r < Cy|v]sry
for every ve H, (R".

(iv) Let A€S: and A(x,&,7)=A*>C,l for 1>=1,, where Cy, 7o>0.
Then there exist C,, ¥1>0 such that for 7>7,

Re (A(x, D', 1) v, v)o, = CiT|v]5, .

(v) Let A€S. and Az, &, 7)= Az, &, 1) +iAy(z, &, 7), where for some
C,, 7.0, A\(x, &, 7)=AF>Cy and A,(x,&,7)=A5 for every 727,. Then
there exist C,, 1,>0 such that for T>T,

Re (A(z, D', 1) v, v)o, > CiT |03, .

(vi) Let alx, &,7)€S% be a scalar function such that la(z, &, 7)|<Co—e
for 1>7,>0, where ¢>0. Then there exists a constant 1,>0 such that for
=7

|a(z, D', 1) 0|, < Cilolo -

In the present paper, our process of proofs of Main theorem are
carried somewhat long and classically, in order to use the Garging’s sharp
form directly and decompose the original problem into boundary value
problems well defined over R%™ and R” in which we are interested.

Furthermore for the sake of simplicity of description we denote by
a(z, p—ir, o) the symbols a(z, 7, ¢,7) and by operators a(x, D)) on H., the
corresponding pseudo-differential operators a(x, D', T) respectivevely.

2.3. We reduce the global estimate (1.1) into the micro-local one as
usual ([5]). Since lower order terms of the operator P do not affect the
validity of the estimate (1. 1), we have only to consider the boundary value

problem :

P*(z, D) u(a) = (ED,— Az, D)u=f, in R3",

B ) u(z', 0)=g(z'), in R*.

where the symbol of A(x, D') is A(x, 1, 0)=A(x)c+ :Z:,:':Ai(x) o; and IE is

the 2m x 2m identity matrix.
First, let KC R""' be the compact set outside which A;(x) =0, ---,
n—1 and B(2') are constant. Let us take a finite number of points

(P', B)
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{?}j-1,..5,-1CT" such that the spheres S, (z9)= {xe R"*"; |x—z?|<2¢,},
j=1,--,7,—1 are a covering of KNI, where ¢ >0 is sufficiently small.
Take a finite partition of unity {¢’},, .., such that

supp ¢jCS2t,,(xj) J= 1’ "‘,jo—l ’

Jq —
jZ=:0¢j (x)=1 on R},
¢jecw(R?~+1) j=0’ "'}jOy

1, for z,> 3¢,

()= $a) = |

&x)=0 for x,>3¢,

A,(x), i=0, ---,n—1 and B(x') are constant in supp ¢°(x).

0, for x,<¢,,

For 1<j<j,—1 we construct the corresponding operators B’(x') and P/(«z,
D)=ED,— A?(x, D') where the symbol of A/(x, D) is Al(x, 7, 06)=Aj(x)c+

n-1 .
31 A¥(x) g;, which have the following properties :
¢=1 .

(1) Af(x,z,0)€eS) and B/(x)e S,
(2.1) (i) Az, 1,0)= Alx, 1,0) and B’(z')= B(z') for every z€S,, (z7),
(iii) Az, 1,0)=A(x?, 1,0) and B?(z')=B(x?) for every x ¢ Ss,, (7).
The construction of P?, B’ is done as follows: Choose a function
Bi(£) € C*(RY) such that equals 1 for ¢<1, 0 for >3, 0<Bi(t)<1 for 1<
t<3. For xe R?*' put
(@) = 2+ By(|z— 27| [2e0) (x— 7)
and let '
Az, 7,0)= A(2(@) 7, 0)),

B!(2')= B(z(x")).
Then it is seen that these operators satisfy the required properties (2. 1).

Now we have the following

LEMMA 2.2. Suppose the condition (III) and that there are constants,
C, 7,>0 such that for every 1>7, and ueH, ,(R}*") the inequalities

2.2) PG ul,t+ B uly, > Crl¢ulley,  G=1, 51,

hold. Then the estimate (1.1) holds for k=0.

Proor. The strict hyperbolicity of P’(x, D) implies that there exist
constants 7;, C>0 such that for every 7>7, and u€ H, ,(R%™)
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2.2.1) -~ 7 o ||PYx, D) ¢ ully, = Cr ¢ ull,,
From property (2.1) (ii), it follows that for j=1,,5—1 |

Pl(pru)= P(u) = g Pou+ [P, ¢lu in BRI,

B (¢?u) = B(¢?u) = ¢’ Bu on I,
Furthermore from the condition (III), (1.1) holds for constant coefficients
problems. Hence it follows from (2.2) and (2. 2.1) that

Crl¢ ullo,, < l¢? PP u+[P°, ¢’} u |0+ |67 Buly,

< NP ullo+ |Buly , + o

for j=0, -+,j,. Summing up these, we have

Crllalor = CT| £ 8l
< C/(1Puly+ |Buly, + Nl

If 7 is taken sufficiently large we obtain (1.1).

Secondly, let 3_={/,0)eC_x R™; |¢')*+|¢'|*’=1} and 3_ be its
closure. Let us take a finite number of points {(t%, 0;)}s-1,..., C3_ such that
Im 1.'1:=0 for k_<_k0, Im T;:S_BSQ for ko"*‘lSkSkl and {Sg,o(T]:, 0'/2)}&-:1,...,,}:1
is a covering of 3_, where S.(z;, 0})={(t",0)€3_; |t'—1}]*+ |¢'—a;|? <.
Let {¢i(z', ¢")} be C*-functions on 3_ such that

kl JR—
N (gb,é(z", o')>2 =1 on X_
k=1
and supp ¢;CS,, (i, 0z). Put
dilr, 0) = ¢i4'r, A7%0) for (r,0)€ C_x R
where A2=|r|*+ |¢|?’=7*+|&'|%. Then we have ¢,€S.

For each j=1,:--,j,—1, it is possible to construct the corresponding
operators Pi(x, D)=ED,— Aj(x, D’) for k=1, ---, k;, such that the symbols
Ai(z, 7,0) of Aj(x, D’) fulfill the following properties :

2.3) (i) Al(z,7,0)€SY,
(ii) Af(x,7,0)=A'(x,1,0) for (z,74;", 04;")€ R % S,, (11, 1), and
hence Ai(x,r,0)=A(x,t,0) for (x, 47", 04;") € Sa. (27) X Si., (T4, 01).

The way of construction of Aji(x,, o) is as follows:

Case 1. k>ky+1.

For (¢, ¢")€X_ put
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@24) wl@o)=[a+ B (il + o —ail 26 (' —2D)] - 57
54(e', 0") = [oi+ Bi((le' =il + o' = ai PF)20) (o' — o) - 57

where 6(=6(¢/, ¢')) is chosen such that (z,,4,)€X_. Put

(2. 5) Alx, 7, 0) = Az, 2 (e, 0 A7), Beledi?, o A7Y)) 4y

for (r,0)€ C_x R** Then A fulfill (2.3), by virture of the homogeneity
of A7 of order 1 in (r, ). Remark that

(2.4) (i) (%, ;) mapps 2_ into Ss, (tx, 04) ,
(i) S, (o), 0)e3_; Im @' < —}ef,
(iii) (%4, ) = (7', 0") for every (7/,d")€S,, (vx, 02).

Case 2. kSko.
Let B,(1)€e C*(R.) be a function such that equals to # for <1, 1 for

t>2 and 1<B,()<2 for 1<t<2. For (¢/,¢')=(n'—ir",¢")€Z_ put
(2.6) pe= (7' —zil*+ o' —ai )R,
G, = [o,’b+ B1(01/2¢,) (a'—-—o')]ﬁ”l,

T = [+ Bu(0sf26) (7' — )],
T = 2g ﬁz(r,/ 230) s

where § is chosen to be (#,(¢', ¢"), #.(c’, ¢"))€3_. Define A} also by (2.5).
Then Aj] fulfill (2.3). Remark that
(2.6) (i) (%,d, mapps X_ into S, (Th> 1)
(i) 7r<A4e,,
(iii) To=7 for 7 <2, and 7,>2¢ for 7'>2¢,
(iv) (%4, 8) = (', d') for every (</,d’')€Ss, (ts,04).
The reasons of different constructions of (%, ;) according to % are

elucidated in §5 and §7. |
By Corollary 2.3 of (or c.f. (8.2)) we obtain the following

LEMMA 2.3. Suppose that there exist constants, C, 1,>0 such that for
every 1>7, and u€ H, (R*"") the inequalities

2.7) |PLgs (DY, +| B (D), = Cr e @],
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hold for k=1, ---, k.. Then the estimates (2. 2) are valid.

From Lemma 2.2 and 2.3 it is seen that in order to prove (l.1) for
k=0 we have only to obtain the estimate (2.7) for the localized operators
P{ and B’. Hereafter let (2 7% ¢)€'x 3_ be one of the points {(x?, },
a.)} and Uz x U(7’, 6°) be its sufficiently small neighborhood. If a(z,r,9)
is a smooth (C*(U(2°) x U(z% ¢")) function of homogeneous degree % in (z,
o), then we denote by a(x, D') the operator constructed as above, whose
symbol d(x,z, 6) is a(@, %, 6)- Ai=a(@(x), #(tA;", 64;Y), 6(cd;Y, a4;Y)- A€ SE.

§ 3. Decompositions of the problem (P, B).

In order to decompose the operators P}, B’ into more simple ones, we
consider the transformations of the operators P{, B’ by a non-singular and
smooth 2 m x 2m matrix. We denote by A(x, 7, ¢) the eigenvalues of A (x,
7,0) and by Af(x,t,0) (=1, :+,m) the ones with positive and negative
imaginary parts for (r, ¢)€ C_ x R*™', respectively.

Let us fix a point (2% ¢°, ¢®)€ 'x3_. Because of the condition (I), in
a neighborhood U(x2%) x U(z% ¢") we can rearrange the eigenvalues {if(z, r,
¢)} into the following three sets I=I, UI_,II and III=III, UIII_:

I, : A#(E=1,.--,l—1) are real and simple at (z°, 7°, ¢"),

II : 2f, A7 are real and double at (2 7° ¢°),

III.: Af(>[+1) are not real at (z° 7% ¢%).

Hereafter we will also identify I.,II and III, to the corresponding sets of
indeces C{l, 2, ---,m}. It should be noted that some of the sets I, II and
III may be empty according to the point (x°, °, ¢°)€ I' x 3_ being considered.
If the set Il is empty, we denote by / the number of elements of the set
I(I).

As is shown below, we can take a smooth and non-singular matrix
S(x, 0,7) defined in U(z") x U(¢", z°) which is homogeneous of degree O in
(6, 7) and satisfies

S*1P(x,7,0,) S=Ei—M(x,7,0),
where
(A 0
A
M= MII
My
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A 00
2% = ..’. >
0
My is a 2x2 matrix defined below in Lemma 3. 2 and M§; are (m—1[)x
m—I) matrices whose eigenvalues are {47}, , respectively.
Here we define the above matrix S. Let {Af, - -, hf }=hf(x, 1,0) be
the eigenvectors of A(x,z, s) which are homogeneous of degree O in (z, o)
and correspond to the eigenvalues {Af,---,Af,}, respectively. Then the
smooth 2m % (I—1) matrices Af are analytic in (r, g).
As for the set III,, first take all the generalized eigenvectors Af, ---,
h;, corresponding to an eigenvalue 1}(z’, ¢, ") with jelll,. Put

1

h}.(x, 7,0)= Smi

§q@hAMQMﬂﬁM,k=hgm

where ¢} is a small circle enclosing only 47 (z’, 7% ¢°). Rearrange the above
linearly independent vectors {h};};, and let them be {h}.., -+, At} =hiu(x,
7,0). By the same method as above we can choose vectors {A;i,, ***, hn}
=hiy for II.. Then the smooth 2mx(m—I) matrices hii(x,, o) are
homogeneous of degree O and analytic in (z, o).

For the set II, we take the smooth 2m-vectors (i.e. column vectors
with 2m components) h;, h; such that hy(x, 7, 6)=h; and hy(x, 7, 6)=h; are
homogeneous of degree O and analytic in (r, g), which is defined below in
Lemma 3. 2.

Put S(x, 7, 0)=(h{, hi, hir, hit, hin, hi). Then S(x, 7, o) has the required
properties, by virture of the linear independence of the column vectors.

Now we describe on the set II in detail.

LEmMA 3.1. Let (2% ", ") e I'x (3_—23_) and X be a double root in 2 of
det P’(x° 7% 0° A)=0. Then there exist a neighborhood U (x")x U (<’ ¢") and
Sfunctions A%(x, T, 0) continuous in U(x’) x (U(<% ¢")N(C- x R*™")) such that

(i) Im iz, 7,0)=0 if Imc<0
respectively, and

(i) det P'(x, 7,0, A5(x,7,0)=0 if Imt=<0.

Furthermore, they are represented by

(a) alx, 7, 0)=n(z, g, 6) Ny hlz, 1, 6) or

(b) iz, 7, 0)=4(z, 1, )F iV 4(, 1, 0)
according as the normal surface cut by x=x" and ¢=a" is convex or con-
cave with respect to v at (% 2), respectively. Here SO
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b= ﬂ(x’ 7, 0) = T—ﬂ(x, 0) ’
0(x, o) is S* in (x, 0), analytic and real for o contained in a conical
neighborhood of (x°, ¢°),
6(z’, 6°) = 7",
and
LESY A and XeS* in (z, ¢, @), analytic and real for (p, o) contained
in a conical neighborhood of (x° 0, ¢°) whenever p is real,
21 (xO’ 0’ 00) = '20 ’
ZZ(xO’ 09 0'0) > 0 ’
4(x" 0,0°) >0
and Vp denotes a branch with positive imaginary part when Im p<0 (.e.,
V1= —1)
CoROLLARY 3.1. In the small neighborhood of (z°,7° ") Afi(x,, 0)=
An(x, 7, 0) is equivalent to p=0, that is, r=0(xz, o).
ProofF oF LEMMA 3.1. The strict hyperbolicity implies that
2m
det P°(z, 7, 0, )= Ay() 11 (r—7,(x, 0, 2))
J=1

where ¢; is C* in (z, g, A)€ R*", analytic and real for (¢, )€ R* and 7,#
7, for every j#k and (x, 0, )€ R™*'. Without loss of generality we may
assume

To—™T1 (xo, 0'0, 20) .
Since 4, is a double root it holds that

ﬁl_ 0 0 70y _ azfl
(% 6% 2)=0 and FYe

= (2’ a®, )0,

Therefore from the implicit function theorem there exists a function A(z,

o) which is C* in (z, ¢) and real analytic in ¢ such that

%}<x’ 7 Az, ")> =0 and 2(z%¢%)=2.

Hence by Taylor’s expansion we have

iz, 0,2) =1, <x, a, Alx, 0)>

1 3271

+-2—-~3—2—2-(x, g, Az, a)) (2—2(3:, a))2 + .-

Since the equation in (y—2(x, 0)):
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T—17, (x, o, Az, a)>

= —;—%%—(.r, o, Az, a)> <y—2(x, a)>2 + e

has real coefficients, it has solutions of the following type :

Y=z, 0) = L +a\(z, 0) C +aylz, 0) & +

where a;(z, ¢) is C* in (x, ¢) and real analytic in o,
-1

= (r—rl(x, 0, A(x, a))) 2< g,az <a: o, A(x, a)>> .

Put p=r—1,(z, 0, A(x, 0) and let & be the positive square root of { when
£>0 and let YC be the negative one and its extension when Im £<0.
Then note that

2
(a) if %—;;(xo, O >0

+V0 =+ V?{Z(% (x, g, Az, a)>_l}§,

2
(b) if %(xf’, @ 1) <0

+4C = iNy{——Z(%(x, o, Az, a)) 1}5.
For Im <0 put

yE =2z, 0) + (V) +ay(x, o) (VT )2 +
Then

Im y* =Im (£V0)+ay(x, 0) Im (=VE P+ - =0
for small |{|, respectively. Hence we see
Pz, r,0)=y < g+a1x0C+...>
VT (1+ay(z, o) L+ )
fulfill (i) and (ii). Setting
0(x, 0)=r1, <x, 0, A(x, a)) ,
we obtain the desired representation of Af with

321‘1

-1)1
R(2, 0, %) = {2<a—zz‘ (2, ", 2")) } >0

or
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321'1

-1
i(2,0,0) = ~2( T @, ) >0

according to the case (a) or (b) respectively. Thus the proof is completed.

Hereafter, we will consider mainly only the case (@) of Lemma 3.1,
because in the case (b) we can treat by the analogous way. Furthermore
let ¢(x, 7, o) be a function defined in U(x’)x U(z’, ¢°), then we denote c(z,
p+0(x, 0), 0) also by c(z, p, o) with some definition domain U (z%) x U(0, ¢°).

LEMMA 3.2. Let (27 ¢ )eI'x(3_—23_). Then there exist a neigh-
borhood U(x®) x U(z", ¢°) and 2m-vectors hy(x,t,a), hu(x,t,0) and a 2x2
matriz My(z, t, 6) which are smooth in (x,t,6) and analytic in (t,a) such
that for every (x,t,0)€ U(x")x U(<", o°) the following hold :

(i) hulx, 0(x, 0),0) and hii(z, 0(x, o), 0) are the eigenvector and the
generalized eigenvector of M(x,0(x, a), o) corresponding to if(x, 8(zx, 0), 0)=
2in(x, 0(x, o), @), respectively.

(ii) A( ily ;I,)z(hib ;’I)MII-

(iii)

(3.1) My (z, p, o)
_ A(x, 0, o) 4,0, o) ) +#(P11 20
0 Az, 0, o) P P

where p;; are smooth in (z, p, ), analytic and real for real (g, o) and for
p=0

)(x, ¢, o)

(3.2) Ao = Xo(x, pt, 6 >0 in the case (a), or
Aipn = —2(x, p, 6 <O in the case (b).

Furthermore, let A(x, p, 0)=A(x, 0, 6)+ 2" (x, p, o) , then

(3' 3) 151)(1‘) ﬂ, U) = 2—1(P11 +P22) .

ProoF. Since det (EA—A(x, 7, 0)) is xy-strictly hyperbolic, there exist
a real eigenvector h,(x,fd(x, o), s) and a real generalized eigenvector h(z,
6 (x, o), 6) corresponding to the real double eigenvalue 2 (x, 0, ¢)= fi(z,
0(x, a), ) of A(x,0(x,a),s). Note that hy, h; are S° in (x, ¢) and analytic
in o, because so is A(x, 0,0). Put |

h'(z, z, o)

1

= 2m

§C (Ez——A(x, T, o))“ hy <x 0(x, o), g'> da

where ¢;; is a small circle enclosing only the eigenvalues A#(x, z,0). Then
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it holds that
I (x, 0(x, o), a> =N (x, 0(x, a), 0> .
Hence if we set
Ahis(, 7, 0) = (4(z, 0(x, 0), 0)— A(z, 7, 0)) hii(z, 7, 0)

(i) is fulfilled. Here we remark that {Aj;, hj;} are linearly independent
vectors which are smooth in (z, 7, ¢) and analytic in (z, ). Since hu(z, 7, 0)

' . . .. 1
and hy(x, 7, 06) are invariant by the projection operator 57 §C (EA—A(:C,
11

T, a)>_1d,2, we see that (ii) is valid.
From Lemma 3.1 i4(x, 7, 0) is real if 7>6(x,¢). Hence {hj, hi1} are real

124

if 7>0(x, 9). This together with the analyticity in = of {hy, Au}, implies
that they are always real when r is real and (z,7,0)e U(®)x U(7", o).
Therefore it follows from (ii) that My is real. Since (i) and (ii) implies

that defining A9 =/4,(0, 6)=(8(x, o)+ |o|3}
Az, 0, a) A” )
|

MII = (
0 21(.’13, 0, ag)l

on pg=t—f(x,06)=0, we see that (3.1) is valid. Hence noting that ij are
eigenvalues of M;; we have
2—21(-73, 0, U)—Puﬂ, _A(()o)_Plz!‘ )
—P21#9 2_21 (.13, 0’ 0) _Pzzﬂ
= (2_2;-1 (.’E, “, 0)) ('2_21—1 (xy Y, 0)) .

Put 2=4(x, O, ¢) in the above equation. Then (3. 2) follows from comparing
the coefficient of . Write 2—A;(x, 0, 6)=2—A(x, p, o)+ ¢ AV (x, 11, 9) in the
left hand side. Then (3. 3) follows from comparing the coefficient of
(Z—Zl (.ZC, 25 0))

Now let S(z, 7, 0)=S@(x), #(zA, 647, 7(cA;, 64;") be the extention

of S(z,7,s) such that S is non-singular and belongs to S%, which is ob-
tained by the method of §2. With fixed j and £ put

~

Pz, t, 0, ) =8, ) Pi(z,z, 0, 28,1, 0),
B.(x', z, 0) = B,(x") §(«/, 0, 7, o),
Flx)= 8"z, D) f(),
Ula)= 8", D) ula),
where S~ !(x, D') is the operator with its symbol Sz, z,0)€S2. Then

det (
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the problem (P°, B) is reduced to the problem

(P\(z, D) Ulx) = F(x) in R,

|B,(z', D) U(z', 0)=g(z")  on R". |

Noting that S, S-'€S?, we have from corollary 2.3 of and Lemma 2.1

(a) the following

LemMmA 3.3. Let ¢(z, 0) be ¢ in Lemma 2.3. If there exist constants
Cy, 1,>0 such that for every 1>71, and Ue€ H, (R

(3. 4) |pe U, +|Bo U, >Cr|e) U],

2T
then there exist C, 1,>0 such that (2.7) holds.

Let it (x, D), My (x, D') and Mg (x, D') be the operators of order 1 with
their symbols i (z, 7, ¢), My (z, 7, 6) and M3, (z, 7, o), respectiveﬂly‘. Then we
see from (P, B,) :

(P, By)

i (Af (x, D) 0 ]
i (x, D)
P\(x, D)U=|ED,— My (x, D) U=F.
Miy(z, D)
i \ 0 Mg (x, D) )]

Hence putting
U(x) = ("ui, 'ui, uir, wy, ‘ufy, ‘ui) ()
F(z) ="(f, 'fr, fu, fit, i, i) (2),
we have for xe R3*!
(Pt) Ptz D)ut = (E:Dy— 2 (& D)) ui () = f£ (),
(P)  Pul@, D)ty = (EuDu—Mulx, D)) (“”) — (f “ (x>>,
Uin 1 ()
(P&) P, D) utiy = (EwD,—Mii(z, D) uda = fia(a),
furthermore for '€ R™
(B) BU=B )80, D) U, 0)=g(x),

where E;, Ey, Ey; are the unit matrices of order /[—1, 2 and m—I, respec-
tively. For each above problem we show a priori estimates in §5 and
§7. Using them we show in §8 that the assumptions of Lemma 3.3 are

fulfilled.
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§ 4. Lopatinskii determinant, coupling coefficients
and reflection coefficients.

4.1. Let (2% 7% " eI'xX_ and S(z, r, 0) be the matrix defined it some
Ux®) x U(z% ¢°) which is defined in §3. Put
(VI+3 VIF—, VI/Iy I’Il> VI_‘I-Ia VI;I) (.’C’, 7, 0) = B(x’) S(x,’ 07 T? 0)

7

where Vi are m x(I—1) matrices, Vi, Vii are m-vectors and Vi are m x
(m—1I) matrices.

Let Su(x, p, 0)= ( 1 0) , where s, = (Ai(z, g, 6) — pu(z, 1, o) p—
Sa1 (x, #, 0') 1

Az, 0, 0)) (AP + pro(x, ¢, @) )™'. Then Sy is continuous in U(z?) x (U(z°, )N
(€_x R"Y), because so is Af;. Furthermore the first column of Sy is an
eigenvector of Mj; corresponding to Af;, hence we see that

(44

St My S —(Zﬁ
i Mo 0 i

)@md

with some a(z, ¢, o) which is real for £>0 and equal to A for #=0. Put
E, 0
Si(x, ¢, 0) = Su
0 E

where E;, E;; are the 2(I—1)x2(l—1), 2(m—1I)x 2(m—I) identity matrices,
respectively. Then we have from Lemma 3.2

(4 °
A
(4. 1) SS)y PSS)=Ea-| 0 ,
{0 A
M,
\ 0 M/

This means that the (2/—1)th column of SS, is the eigenvector hj
which corresponds to Af; and is homogeneous of degree O in (r,s). Hence
putting Vi =Bhj; we have

BSS, = (Vi Vi, Vi, Vi, Vi, Vi) -

DEFINITION 4.1. Let B*(x',7,0)=(V{, Vi, Viii) and R(x',t, o) =det
B*, then B*(x',r,0) and R(x',t,0) are called Lopatinskii matrix and
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Lopatinskii determinant of the problem (P, B) for (&', t, a)€ U(x") x (U(z’, ¢°)
N(C_x R™Y)) respectively. | '

REMARK 4.1. Bf(x',7,0) and R(z/, 7, 0) are S} in U(z’) x (U(z", ¢*)
(C-x R*), analytic in (r,s)€ C_x R™' and continuous in U(z’) x (U(7’,
@)N(C_x R™). Moreover, if the set II is empty they are S} in U(z2’) x
(U, )N (C-x R™Y) and analytic in (r, 0)€ U(z*, 6"\ N(C_ x B™™).

DEFINITION 4.2. When R+0 let us define a matrix

(bbj) = (Vi'-, VIT) ‘/I-{I)_l (Vfa I/I/7 VIEI)

and call the elements b;; coupling coefficients with respect to a matrix (SS;).

Let
1 a'(An—ah)

S )=<T;;,Ta>.

TII (x9 [,t, 0) = (
Then it holds that
At a) (2{3 0)
TS MuSuThu= T Tu= .
II II II~11 II II (0 Zi—l II 0 21_1
Hence putting
E; 0
Sz(x, #’ 0) = TH ’
O EIII

we have that (SS;S;)! P(SS,S;) is the matrix (4. 1) with a=0.

This means that the 2I-th column of SS,S, is the eigenvector hi which

corresponds to A and is homogeneous of degree O in (r,s). Hence if we
put Vi=Bhj it holds that

BSS,S, = (Vi, Vi, Vi, Va, Vi, Vi)

Let (b‘:j)= (Vi, Vi, Vi) (Vi, Vi, Vi) be the coupling coefficients with
respect to a matrix SS;S;. Then we have the

—

DEFINITION 4.3. b, is called (generalized) reflection coefficients with
respect to a matrix SS,S,, by which A is similar to a generalized diagonal
matrix such as (4.1) with a=0 ([3]).

The reflection coefficients depend, in general, on matrices S, S; and ;.
But since for fixed (x, 7, 6) the column vectors of SS;S; may be considered
as eigenvectors or generalised those of A(x,r,g), for another (generalized)
eigenvectors {h%} and corresponding {Vji}, there exist non-zero numbers
{a%} and a non-singular matrix 7" such that : :
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Vi=aiV% for jeIUIl and
(V?-+l9 Tty V';Ir—b): (V;+1, Ty V;'r;) Ta

where aj are real if V% and V% are real. Therefore the invariance of the
reflection coefficients in the following sense is derived from the definition.

—~—

LEMMA 4.1. For fixed i,j€eIUIl and (', 7, 0), b;(x,t,0) depends
only on the wvectors hi and hj, where SS,S,=(hi, hi, hit, hi1, hil1, Am).  In
particular, if for some point (x',t, a) the vectors {hf, ---, hf} are restricted
to be real, then by, (x',z,0) is determined except real factor for every i,j€
IUlIlL

REMARK 4.2. From the same consideration as in Lemma 4.1 we see
that the zeroes of Lopatinskii determinant are not depend on the choice
of S and S,.

Hereafter, taking account of Lemma 4.1 we choose real vectors {hf}
and consider only real hf whenever 1% are real, i.e., p=0.

4.2. In this subsection we give necessary conditions for the condition
(IIT) in terms of coupling coefficients. Note that these conditions are also
sufficient for the constant coefficients problem (P, B),» to be L*well-posed.

THEOREM 4.1. The condition (III) is equivalent to the following con-
ditions (a) and (B):

a) For any (27, "Y€ 'x(3_.—2X_) there exist a positive constant C
and a neighborhood U(7’, ¢°) such that for every (r,a)e U(z°% e N2_

(1) for i,5=1,---,1

|Bes(a®, 7, 0)| < C17|Im 2 (2%, 7, 0)- Tm 25 (2, 7, 0)

(ii) for i=1,---,l and jelll_

1
2
’

by (20, 7, o)l < CT“I‘Im A T, U)I%,

(iii) for i€lll, and j=1,---,1

1
2
’

|b¢j(x°, T, a)I < CT“lllm 25 (&% 1, 0)

(iv) for i€lll, and je Ill_
|b¢j(x°, T, a)| <Cr'.
B) for every (x',t,0)el'x C_x R"*
Rz, z,0)#0.

To show our assertion, first of all we recall a characterization of L*-
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well posedness for constant coefficients case [3], [4]. Let us consider the
constant coefficients problem resulting from freezing the coefficients of P(x,
D) and B(z') at boundary points x=2x":

n—1
(P(D) u(x) = (ED,— j;oAJDJ—C) u(x) = f(x)
(P, B), for xe R (x,>0),
Bu(x’,0)=0 for 2’ € R™*(x,>0),
u(0,x2", x,)=0 for (2, x,) € B" (x,=0),

and the associated problem by Fourier-Laplace transformation with respect
to (&, ) :
Pz, 0,D,) %(z, 0, x,)
n-1
P B | = (ED,— A,7— j}:]lAjo,) 4
= f(x,) for z,>0,
Bi(r,6,0)=0.

Then the problem (P, B),» is L*-well-posed, if and only if (P° B)» is so,
that is, there exists a constant C>0 such that for every (r,s)€ C_x B!
and f (z,)€ H,(x,>0),(P°, B), has a unique solution #(r. g, z,)€ H,(x,>0)
which satisfies

4.2 Jate. o, ) < cr] 7]

where
N 2 had BN 2
|ate, o))" = |26, 0, 2 dz.

Next to obtain its more concrete characterization, let (%, ¢°)€ 3_ be an
arbitrary point. For (r,0)€ U(z% ¢°)N2_ and the solution #(z, g, x,) of (P’
B),» set

W(z, 0, 2,) = (88,7 (z, 0) 4(z, 0, z,) ,

where
(SS)) (z, @) = (h{, ht, hi, hit, i, hin) (7, 0),
det SSi(r,0) =0 for (r,0)eU(% " N3_.
If we put

W(Ty 0', xn) = t(t Wiz th, Wﬁ’ ﬁ’ tWITI, tWI;I) s
F(z,) = (SS)'F =(ft, 1, fir, fil, ik, i),
(P°, B),» is reduced to problem as follows; for (zr,a)€ U(z" 6" )N2_
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[ (4 0\ ]
A
LA«
(P,W=\|ED,— ; § (z, 0)| W(z, g, x,)
L O An
4.3) M
L \ 0 M) J
= F(x,), z,>0,
\B,W = (BSS)W
= (Vi, Vi, Vi) (WY, Wi, *Wih) (z, o, O)
+(Vr, Vi, Vin)-"(Wr, Wi, "W (r,0,0)=0 .
Setting
Wz, g, x,)
= t(thL,I, th,I, Wfr,n, {fn, ’W1+,m, ‘me)
+(*Wi1, 0, Wiu, 0, Wi, O)
= (W1+ W))(z, 0, x,)
and
Wi (z, 0, 2,) =W, Win, " Wim),

Wiz, 0, x,)
Wiz, 0, x,)

(Wi, Wi, "Wim),
t(t W2+,I, W2+,11, tW‘ZIII) , Wy (T, g, x’n) =0,

we consider the following two problems :

f P,(z, 0, D,) Wi(z, 0, x,) = F(x,),

4.4 |z,>0, Wi(r,e0)=0,

and

(4.5 {Pz(z', o, D,) W,(z, 0, x,) =0, x,>0,
W3 (z, 6,0)+ (b)) (z,0) Wi(r,0,0)=0.

Then we see from the uniqueness of the solution of (4.3) that W+ W, is
the solution W of (4. 3) for (z, ¢) satisfying det (V+, Vi, Vifi) (z, 6)=R+#0.
From (4.4) we have
AT 0 ST
(4. 6) ED,— Ait (z, 0)| Wi (7,0, 2,)=| fu
0 My, S
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Since W;(z, g, x,)=0 we have from (4.5)
[T 0
ED,— Aft Wiz, 0, 2,)=0, x,>0,
@47 9 0 M
Wi+ bi)Wi)(z,0,0)=0.

From (4. 6) the problem (4.7) has a unique tempered solution for
Imz<0:

Wi (z, 0, )
4.9 — —exp (M* (7, 0),)+ (be) (e, 0)- Wi (5, 3, 0)
. = —exp IM*(z, 0)x,) (bs;) (z, @)
. rexp (—iM~(z, 0)x,) f" (x,) dzz,
where |

pe: 0 J1

Moo= w |, fr=|fu

0 M S

On the other hand, let us put

u71‘,11 = (Wil H) Su (Wl II) ( Wl " )
1,11 1,11 S21 Wl nt W1 11

gix = Sﬁlfn, fII = ( I ﬁ)
/z[[ a)

11

Then using the relation SH( Sit —MH, we see that the problem (4. 4)

becomes for z,>0,

(P ) PrWii=f1,

(Pr)ee PrWir=f1,

(Prr)es Pn't(w/?n, “72,,11) = 011,
( I-II-I)ac" PuWim = fitr,

(P Ifl)z° P, 11 Wl_,III = fﬁl,

and
Wii(z, 0, 0) = Winl(t, 6,0) = Wiml(r, 6,0)=0.

Hence from Corollary 5.1 and 7.1 (ii) described later we have
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IAIZCrIWanl, Il = Cr Wi,
lgul > CT | Wanl, i.e., [ full = Cr (IWial + 1 Wil),
| fill = Cr || Wil | fimll = Cr | Wil

and hence

Wi 0 < oo < e 70

for (r,0)e U(% d) N2_. Therefore from (4. 2) and W;+W,=SSr'2 it
follows that for (z, )€ U(z" ¢")N2_ such that R(r, ¢)#0,

(4.9) Wi, o, V| < Cr| 20|
We see from the proof that (4.9) is also sufficient for L’-well-posedness
of (P, B),.

Put

G,(x,y; 7,0) =™ =, ) (z, o) =0y
and note that |
ol sclrof
= C(|F O+ O+ + ARG
Then, from (4.8) and (4.9) we obtain the following

LEmMMmA 4.2. The problem (P, B),» is L*~well-posed if and only if the
Sfollowing a) and B) are fulfilled . |

a) For every (2° 1, 6" e I’ x (3_—23_) there exist a constant C>0 and
a neighborhood U(7°, ¢°) such that for every (r,e)€e U(z% 6" )N2_

[ 6w ys w0 frway

(-]
SO 0
le.,

(4. 10) |

oo
0

2 2
dr< CZT‘ZS /@) dz,

a)”,zuu’) <Cr.

B) It holds for every (r,s)€ C_x R"' that
R(z,0)#0.

G.(x,y; T,

Thus, in order to prove Theorem 4.1 we have only to show the
equivalence of the conditions a) and a). We use the same technique as

in [10].
First note that it holds that
(4.11) 1G] 2xzren NGl et < |Gl 0, -

Put
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1Im 2£| 0
N, = |Im Zﬁl_% ’
0 Efn
L, (x)= Ni'exp <i‘ (M) x) ,
L_(x)=N>'exp(—iM x),

S = L@ Lo dz,

S

I

(Lo Twa.

0

Then we have

S, N (b)) N_S.
- ([ T@ L. @W. o) N L-(0)- L) dxdy

04J0

o

= S L,(x)G.(z,v)-*L_(y)dzdy .

0

Hence
S, N (bes) N-S.|
(412 < sup | ("["( A2}, G.lz, ) o(w) dxay|

S C MG('H L(LEXI2,CY) »

where |-| denotes matrix norm and C>0. On the other hand it holds
that

S, = N:JS: exp {i ((M+)— ((M+)>*) x} dz N7
(2 Tm 4)"* 0
= N7 (2 Im )™

)N;‘.
0 So exp <;2 Im Mfﬁ-x) dx

Since we may assume that Im ‘(Mi)>C>0, there exist constants C,, C;>0
such that for (z,a)e U(z%, ¢’)N2_

\

C1S§+=S+$Cz,

4.13
413 G<S. <G,

where the lower inequalities follow from the same calculation. Combining
(4.12) and (4. 13) we obtain
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(4.14) | N2 (b0) N-| < ClIG.l wcztrn -

¥

On the other hand we have the estimates :

|G.(,v)

z,y

- Slexp (iM* 2) (b)) exp (—iM- )| dzdy

< Slexp (M z) N;llzd:c-ﬂN:‘ exp (—iM~y)|'dy| N, (be) N

2
’

< C|N, (b)) N

where the last inequality holds for every (z,0)e U(z’, ¢°)N3_. with some
C>0. Combining this with (4. 11) and (4. 14) we see that there exist con-
stants C;, C,>0 such that for every (r,0)e U(z°, 6N 2_

Co| N (b)) N-| < IGoll ey < Cof N (b)) N- ..
Hence (4. 10) is equivalent to | '
|N. (b)) N-| < Cr,

which is equivalent to a). Thus the theorem is proved.

§5. A Priori estimates for the case where the set II is empty.

In this section we discuss the decomposed problem (P, B;) in §3 in
the case where the set II is empty for the point (z° 7° ¢°) € I' x R™ being
considered. In subsection 5.1 a priori estimates for the problem (Pf) and
(Piri) are given and subsection 5.2 is devoted to that for the boundary
condition (B)).

5.1. For the sake of completeness of our proof of (3.4) we prove
the following usual

LemMmaA 5.1. There exist constants C,7,>0 such that for every 1>T7,
it holds that

(PH)  1PF it o4 7 uak |or = CTlletk s,
(Pr) 1Pt willos = C (7 fuat log+ 7l o).
(Prir) || Privaatillo,, +7 st -1, = Crlludillo,; »
(Pi)  |1Paxusillo, > C(Judly, + lurmllr),

Sfor every ui, ui € H,,(R%™).
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Now we define the norms ||u(-)|| and |«| for u(x,)e H(R}) by

Ju(l = | futaf

with their inner products denoted by (-,-) and (-, ), respectively. Then
we have the following estimates for constant coefficients problems, which
are direct consequences of the proof of Lemma 5.1. and will be used in
the proofs of Theorem 4.1 and Lemma 6. 3.

COROLLARY 5.1. There exist constants C,7,>0 and a neighborhood
U(°, 6°) such that for every (zA;', eA;)eU(% 6 ) NE_ and 17>7,

dz,, |u|=|u(0)|

PP |PHz, 0, D)k (|| + 14t > Crl|ai ()],

(Pr)e  ||Pi(a%, 7,0, D) ai ()| > C(r |ar | + 7| (4)]),
(Pidee | Piilat, 7 0, D) it )|+ 747 ] > Cr i (]|,
Pide || Pin(a®s 7, 0, D) ain()| = C( 42 ausiel + 4, ()]

for every 4f(x,), 4i(x,)€ H(R?).

Proor oF LEmMMA 5.1. First we prove the estimates (Pf). Let us
consider the bilinear form for je€I and u=us:

2Re ((D,,—Rf (x, D' )> u, ”»Piu)o’r
= Re {(Fu, u),,+2Re (iil?(x, Du, u)d’r.

There exists a constant C,>0 such that for any (z, 7', ¢')€ U(z®) x (U(z°,
”)NZ2.)
T Reidf(x,',d) > C1.
Hence from (2. 6) this is also valid for the symbol of Fii¥(z, D'):
T Re it (T, §—17, )- 4, > C,74,

[= CiT4;M) A4, = Cy1, for 17471 < 2,

l > C1 280 AT > 280 C1 T, for TA;I = 280 ’

>Cr

for every (,7,0)€ R?"'xC_x R*'. Using Lemma 2.1 B) (v) we have
(D25, D), Neclons = C (Tl + T3,

for large 7. Accordingly for any 6>0 we have
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(Dt D)l + i,
> C(F uls,+7l,).

Choosing § sufficiently small we obtain the inequalities (Pg).
Next we prove the estimates (P#;). Consider the bilinear form for

U=1uf
2 Re (P 1:%[ (x, D) u, ¥ iAu)(),r
= F Re (u, Auy,,+2Re(TiMi(z, D) u, Au)

0,7
where Au=(22)"( ¢%¥ |¢/l'4(¢, 2.)d¢' and the symbol FiM(z,<,0) of
R
FTiMi(z, D) is
q—-iMIiI-I(."Z', %, ;f) 'Ar .

Since Imz°<—3¢, or Im°=0, taking sufficiently small U(z,, 0,) we may -
assume

i Ms— (M) (z,7,0)>C  with C>0,
for every (z, 7', ¢')e Ux®) x (U(z% ¢®)N3_).
If we are considering such a point (z°, 7%, ¢") € I'x 3_ that Im 7,< —3e,,
then the Hermite part of FiMg(Z, 7,7) is

(6.1.1)  Fi(Ma—(M)*) (2(2), #c 47, 047, (e 477, 047) = C

for every (z,7,0)€ R2"'x . x R*", because from (2.4Y we have (%, 4)€
Ss,, (7 6")CU(z%, ¢°) and then Im#< —%¢,, which is one reason for dif-
ferent constructions of A in §2.

If a point (2% 7% 6%)€I'x3, with Im°=0 is being considered, then
(5.1.1) is also valid, because from (2. 6’) we have (%, )€ S;, (°, ) C U(z", o)
for small ¢,.

Since FiM:(Z, %,6)€.S) we obtain from Lemma 2.1 8) (i)
1 : )
gupﬁx ulls, > T uly ,+ Cll Aull5,; with C>0

if >0 is chosen sufficiently small. On the other hand

Dnu = Pﬁlu+Mf’ﬁu .
Hence it holds that

1D, el < C(| Picully  + [l Aul3,) -

Thus we obtain
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| Piscaelzr+ ul3, = Cllul,
and |
| Pricaclh, = C(llullt, + lulir) -

This proves (P).
Let us show the inequality (P;). Consider the bilinear form

2Re (Pii(z, D)u, Fid'u)

&7

= Re {u, TA'u),,+2Re <¢iMﬁ*I(x, D' u, A"‘u>0v

T

=Re (u, T A uy,+2Re (FiMi(z, D) A1, u)

0,7

+2Re ([xz'MffI, A7 u)

(N
Then by the same way as in the proof of (Py;), we see that
o'r? llPﬁIuH&ﬁ 57’2H/1"u113,r
| > F lul*y ,+Cllulli, with C<O0.
Since 7|47 u|?,<||«|lz, we obtain (Pff;) and complete the proof of Lemma
5. 1.

5.2. Let us consider a priori estimates for the boundary condition
(B,) in the case where the set II is empty. If we use the notations in §4
(B,) is rewritten by

(Bl) (Vi, Vi, Vi, Vﬁl) (x', D). t(tufr, ‘ur, "usin, ‘i) (x'; 0)

=g(z’) in R",

where the symbol of (V{, Vi, Vi, Vi) (&', D) is (V{, Vi, Vi, Vi) (&, %,
7). Note that in this case it holds that

B+ (x" 7, 0) = (Vi‘_, VI}_I)

R(x', 7, 0) = det (V{, Vih),
hence B*(x/,7,0) and R(x', 7, 6) are in S{(U(x’) x U(z’, ¢°)) and analytic in
(r,0)e Uc% ") N(C_-x R*™"). Then an a priori estimate for (B,) is given by
the following

THEOREM b. 1. Assume the conditions (II) «) and (III). If the set I
is empty, there exist constants C,71,>0 such that for every 1>71, and
vt (x)="("0f, ‘v € H%T(R")

(BY)  |Bt, D)vt(x)

37

> C(t |vf o, +7 |viti] _y,,) -
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Proor oF THEOREM 5.1. If R(z’ 7% ¢%)#0 the theorem is a direct
consequence of Lemma 2.1 8) (ii. Hence we may assume from the con-
dition (III) and Theorem 4.1 that R(z’ 7% ¢)=0 for (2% <° o" )€l x R"
Since R(x’ 7, 0) is analytic in 7, the condition (II) @) implies

(5.1) Cr <|R@, —ir, o')| < CT,

with some C, C’">0. Hence we have

(5. 2) -aaé{— (%% ") #0.
Since R(x',7,0) is C* in (2/,7,¢), analytic in (r,¢) and homogenous of
degree O in (r, ¢), we have from the implicit function theorem

(5. 3) R(@',7,0) = (c—v(, 0))-co(2’, , 0)

in some U(x®) x U(z% ¢°), where v=y,+1iy, and ¢, are smooth, c,(z°, 7°, ¢°) #
0, vi(2', 6) and v,(z’, ¢) are homogeneous of degree 1 in ¢ and ¢,(z’, 7, 0) is
homogeneous of degree —1 in (r,0). From Theorem 4.1 it holds that
R(x',7,0)#0 for Imz<0. Hence we have

(5. 4) v(x',e6)>0.

To complete the proof of the theorem we require the following two
lemmas.

LeMMA 5.2. Under the same conditions as in Theorem 5.1, there
exists a neighborhood U(x’)x U(z’, 6°) such that the following hold :

(1) There exist indeces j€ IIl. and ke Ill_ such that for any (x,t, o)
e U(x") x U(z" ¢°) the vectors {Vi, Vi, -, Vi, Vi, Vi, -, Vi) are line-
arly independent.

Let jelll, in (i) be I+ 1, for simplicity, and denote by L(-) the linear
space spaned by the vectors in the parenthesis. Then we have for (,o)€
Ux") x U(z" ¢°) such that t=v(2°, o) P

(ii) iz’ 7, 0)€ L(Vi, -+, V), and

(iii) V3(z%t,0)€ L(VY{, Vi, -, Vi) for every jel_.

Proor orF LEMMA 5. 2.

(i) First of all we remark that

“ + avj +)( 00 0 0
(521) "Z—:ldet AT o ’...,Vm (x,z',o')#:o,

for every j, kel  UIIL,
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J
(5. 2.2) det (VF, -, Vi, .-, VY (2% 7,0)=0 on 7=z’ ),
(5.2.3) rank (VY, Vi, Vi, Vi) (2, 7, 0) =
in some U(x®)x U(7" ¢"),
which follow from (5.2), (5.3) and (I) 7) (ii), respectively.
Suppose that there exists an index j€I, such that

;
(5. 2. 4) det< PREE 3;? ,---,V;,)(x°,z-,o)=#0.

Then we first show it contradicts (5. 2. 3) under the condition (III).
From Theorem 4.1 there exists a neighborhood U, (7’ ¢°) such that for

(', 6") e Uy(z% )N 2_
J
(6.2.5)  |det(Vi, -, Vi, -, V) (¢, o)
< C(z, 7° o°) -‘Im o )|%’

(&, ¢, a') |°(T')_1

for jel, and keI_UIII_. On the other hand, there exists a neighborhood
U(7% ¢°) such that for any (z,0)€ U(<% a®)N(C- x R*)

(e4;7Y 647 ) e Uiz )N 2.

Since V¥ and R are homogeneous of order O and 2j homogeneous of
order 1, we have from (5. 2. 5)

|det (V¥ -, V,;, e, Vi 7, 0)
< C(.g:", 0 a°)|Im 3z 7, o) '%
X lR(xO, T, a)|-7’"1-<|z'l2+ [a|2>%

for (r,0)e U(z" ¢°)N(C-x R*"). Note that |z|*+|¢|*<C in U(7" ¢°). Then
it is seen that for every (17, co)eU(% )N R* and small 7>0

(5. 2.6) |det (Vi -+ V,,, ., Vi) (', 9—iT, o)
< C-|Im 23 (2°, p—i, )|}

)|
with some C>0. Since 1} is a simple root we have
(5.2.7) |Im (2 (2, p—ir, )| < CT for jeL,

with some C>0. Take (% ¢° as (3, 0) in (5.2.6), (5.2.7) and make 7>0
converge to zero. Then it follows from (5. 1) that

)
(5. 2. 8) det (Vi, -+, Vi, o+, V) (2, 2, 0”) = O
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for every jel, and keI UII_.
On the other hand (5. 2. 4) implies

{Vi{—9 ) V,;_*l, V;+17 Ty V:r,} (x(), 7'-0, Uo)

are linearly independent. Hence from (5.2.8) there exist numbers {af}
such that

Vi(a', % ") = gjaf Vi for every kel_UIIL_.
This together with (5. 2. 2) contradicts (5. 2.3). Hence we see from (5. 2.1)
that there exists an index je€lIIl, satistying (5. 2. 4). |

Secondly, by the same method deriving (5.2.8) from (5.2.5), we see
from Theorem 4.1 (iii) that (5.2.8) is valid for every jelIll, and kel..
This together with (5. 2.2) and (5. 2. 3) implies (i).

(ii) If the set I is empty, the lemma follows immediately, because
from (i) {V}., -+, Vi) (2,7, 0) are linearly independent and from (5. 3)
{(Via, =, Vi} (2, 7, 0) are linearly dependent on r=v(z’,¢). Hence we
assume that the set I is not empty and show that {V},, -+, V} are line-
arly dependent on r=y(2° o).

Here we use again (5.2.6). Take (3, 0)€ U(<, ¢")N R™ such that =
v, (2% o), then it follows from (5.3) and the condition (II) a) that

(5.2.9) lR(x", n—1il, 0)|
< C|u1(x°, o)—1il —y(2°, a)l =Cr.

Making 7>0 converge to zero we obtain from (5.2.6), (5.2.7) and (5. 2.9)

Y .
(5. 2. 10) det (VY, -+, Vi, -+, V(2% 1,0)=0
for jel., keI_UIIL. and (5, 0)eU(<", ") N R* such that y=u (2", 6)=v(z’, 9).
In view of (5.2.3) we see from (5.2.10) and (5.2.2) that for every
det (vy, *+, vs, Vi) =0 on t=yv(x’ 0)e R.
This means that {Vi;} are linearly dependent on z=v(z°, ¢) and proves (ii).
(ili) As in (5. 2.10) we see from Theorem 4.1 (iii)

(5.2.11) det (Vi, Vi, Vi, =, Vi) (@, t,0)=0, i€l

for (¢, 0)€ U(°, )N R™ such that r=y(z’, ). Since from (i) {V{, Vi, -,

V%) are linearly independent, the statement (iii) follows from (5.2.11)

directly. : ‘ :
LEMMA 5.3. Under the same conditions as in Theorem 5.1 the fol-
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lowing hold :

(1) There exist smooth scalar functions a;(x’,t,6) and a smooth vec-
tor function a(x', t, o) which are homogeneous of order O and —1 in (z,0),
respectively, and satisfy

Vii—ain V= - —an Vi = (r=5(a',0)) -a

in Ux®)x U o°).
(i) There exists a smooth mxl matrix Ci(x',t, ) of homogeneous
order O in (t,0) such that

Vi, r,e)=B*-C; in U )xU(d".

Proor orF LEMMA 5. 3. Before proving it should be noted that Lemma
5.2 (i), (iii) are valid if r=v(z2" o) is replaced r=v(x', ¢), because in their
proofs we can take x° as an arbitrary point such that the condition (II) a)
holds for some (z° ¢°).

(i) From Lemma 5.2 (i) and (ii) it holds that

(5.3.1) rank (Vi1, Vi, -, Vi) =m—I[—1 on t=y(x )
and
(5.3.2) rank (Vi -, Vi) =m—I—1  in U@@)x U« o).
To determine a;(x/, 7, 6) we consider the system of equations :
(5.3.3) (Via, ) V) (a’> = Viu(@, 7, 0).

149
Since there is such a minor of order m—I/—1 of the matrix (V},, -+, V})

(z°, % ¢°) that is non-singular, let it be the upper part of that matrix and
write it by
Clz',z,0)= <

+ +
Uitz > *ty Umii
R . ’
+
Viv2,m-1-15 *** s Um,m-1-1

where det C+#0 in some U(x’)x U(z% ¢°). Put

A2 'Uz++'1,1’
: )—_—C_l : (', 7, 9).

o, \"U;'+1,m—z—1
Then {a;} are C* in (2, 7, ¢), analytic and homogeneous of degree 0, with
respect to (z, ¢), and fulfill the upper m—I—1 equations of (5. 3. 3).

Moreover, we see that they are also the solution of the system when
r=v(x', ¢) by virture of (5.3.1) and (5. 3. 2).
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Put
f(x’, T 0'>= V;r+1_az+z Vie— - —a, V= t(fla ) fm)

Then f is C* in (z'r, 0), analytic and homogeneous of degree O in (r, o)
and

fl@',r,6)=0 on U)xU(%d")N {‘2.' =y(z/, 0)} .

Apply Wierstrass preperation theorem to f. Then there exist integers m;
>1 and smooth functions g;(x’, 7, ¢) which are analytic and homogeneous
of order —m; in (r, s) and satisfy for j=1, .-, m

fi(& 7, 0)= <r—v(x’, a))mj-gj(x’, 7,0),
in some U(x%)x U(7" ¢ .

If we put
a(x’, 7, 0) = t<(7—”)m1—1g13 Tty (T'—v)mm_lgm> ’

the statement (i) is proved.

(ii) By the same way as in the proof of (i) it follows from Lemma
5.2 (iii) that there exist smooth scalar functions a;(x’, 7, ¢) and smooth
vector functions d;(z’, 7, 0) which are homogeneous of order O and —1 in
(r, o) respectively, and satisfy ‘

(5.3.4) Vi—(as  Vi+ - +a,; Vi+a;, . Vipt - +ai.Va
= (z—v(a, 0)) ds in some U(x")x U(", 6"
for i=1,---,1. Put
‘ (4'1,1 """ a.m,l\
a1, a.m z
Dl(x’, T 0)= O - 0 ’ D2=(d17“',dl)-
Ay,z+42 an 1+2
\al m a”;’m)

Then we have from (5. 3. 4)
Vi = B*Dy+(r—v(2, 0)) Dy,

where D,, D, are homogeneous of order 0, —1 in (r, 0) respectively. For
any non-singular m xm matrix C; it holds that
(T—'V) Dg
= Cy(z—v)Ci' D,
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Ef 0\ /Ef 0\
=C (c—v) 47 ) (t—v) 41 (t—v)Ci' D,
0 E) \ 0 E'
Ef 0\ /(z—v)E} 0
= Cl( (c—v) A ) ( A, )C{IDZ
0 E/) "\ O (t—v) E'

where Ef, E' are the [x[, im—[—1) x (m—[—1) identity matrices res-
pectively. ‘

We will choose C; in order to show that Vi erange B*. Take a;(z/,
7,0) in (i) and put

Gl na)=| 0

\ —am 0 1/

Then with a(d:’, 7,0) in (i) it holds that

B+ C,(2/, 7, )
= (Vi (c=v) @, Visa, =+, Vi)
(5.3.5) Ef 0
= (Vi,ady, Vi, -+, V)| (e—v(, 0)) 47

Since det Co(x’, 7, 6)=1 we have
R =det B* =det B*C,
= (r—v)det (VT, a, Vi, -+, V3),
where from (5. 2)
det (V{, a, Vi, -+, V3)#0.
Hence if we put | .
C1 = (V1+, a/l,,, Vz++2, *tty V;)
then C,(«/, z, 6) is homogeneous of order O in (r,¢) and det C;#0. Thus
we obtain from (5. 3. 5) ’
(r—v) Ef 0
Vi =B*D,+B*C, 4, Ci'D,.
0 (r—v) E'/. |
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|g(=', D),

1,2 CT vl g,
with some C>0. Hence it holds for large 7 that
|B*-Cyv*ly, > C(1 vt o+ T |vikl_y,)-
On the other hand
|B*-Cyvtly, < |G B v*|y, +|[B*, Cl vt
< C(IB*o*ly,+ vt 4,)-

3.7

Thus Theorem 5.1 is proved.

§ 6. The structure of (P, B,) for the case where the set
II is not empty.

This section is devoted to the case where the conditions (II) 8) and 7)
are applied. We only consider the point (z°,7% ¢°)€'x R" and its neigh-
borhood U(x) x (U(z%, ¢®) N (C- x R*™")) for which the set II is not empty
and R(z° 7% ¢°)=0. Note that in this case the boundary condition (B))
may be replaced by ’ S

(By) (V#, Vi, Vi, Va, Vi, Vi) (2, D)

“(uf, ‘ug, U, i, ‘uits, ‘um) (2, 0) = g(2'), in R"
and it holds that

B+ (.'13’, Ty 0) = ( if-’ VI-'i; Vlil-l) ’
R(x', 7, 0) = det (V{, Vii, Vi),

hence B* and R are S? in U(x®) x (U(z 6®)N(C- x R*™"), analytic in (z, 9)
e U, a"N(C- x R*™) and continuous in U(z’) x (U(z" )N (C- x R ).
We give some lemmas on the decomposed problem (P, B;) in §3 of 2m x
2m system, which will be used in §8 for the proof of the estimate (1. 1).

For the functions defined in §3 and §4 let us also use the following
notations for simplicity in symbolic caluculations :

B, (.23’, [,t, 0) = ( i‘—, V{D VI‘;I) (x,9 7, 0) ’
B'(z', p, 0)=(V{, Vi1, Vi) (2, 7, 0),
and

(6.1) sn(x, p, 0) = s,(x, 4, o) +4 us,(z, p, o),

where
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Let -
(t—v) Ef 0
Ci(z', 7, 0) = D, + C, 4, Ci'D,.
0 (z—v) £
Then C; is homogeneous of order O in (r, ¢) and
Vi, z,0)=B"-C; in U)xU(, d".

Thus the proof of the lemma is completed.

Now we must go back to the proof of Theorem 5.1. Since Im °=0
we take (%, #,) by (2.6) as the extention and denote them by (%, 4). Take
Ci(x', 7, 0) and C,(x', 7, 0) in the proof of (ii) and put

60(1", 7, 0)= G(Z, %, 7)

Ci(z',7,0)=C(& 75 =(Vt,a Vi, -, Vi) (@, %7
Ef 0 Ef 0

C,(z', 7, a)=( F—v(Z, d) )= gz, 7, 0)
0 E 0 E'

Then we have with somé C>0
(5.5) |det C(a', 7, 0)| 2 C

, for every (x',7,0)eI’'xC_x R,
and it follows from (5.3.5) tha
(5. 6) B+C,(z', 7, 6) = C,C,(z', 7, a).
Furthermore, we see from (2.6) and (5.4) that
(5.7) —Im g, z,0)=7T+v@, 6 >7

=T:(cdr, 047 = Cr 47

with~soine ~C> 0. Let B*,C° C,, G, g be the operators with their symbol
B+, C,, Cy, C,, g€ SY respectively. Then from (5.5), (5.6) and Lemma 2.1
a) and B) (ii) it holds for large 7 that

|B* (', D)-Cy(', D) v
>C|G(, D)v*

>C<|«U ]1 +|qx D "0,+1|%,+ Z lw@,)

If we consider the bilinear form —Im <{g(z’, D')v, v),,, we see from (5.7)
and Lemma 2.1 a) (iv) and B) (iv) that for large 7
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515 <_Pu/~‘+21(-73, ¢, 0)— Az, 0, U)> (A +prapr)™
= psiP(z, p, 9),
$2= Az, ¢, 0) (AP +pr )™
and
51, S; are real for real p. (see Lemma 3.1 and subsection 4. 1).
Here note that B’ and B” are smooth and it holds that in U(z°) x (U(O,
)N R
6.2) |s(@ 1, 0)|<C, and sz p0)>0
with some C>0. Here after we consider only 7, ¢ with Imr=Imp=<0.
Then we have the following
LemmMmA 6. 1.

a) For the functions in §4 the relations (i), (ii) and (iii) follow di-
rectly from their definitions :

(1)

hit = hiy—snhiy, by = hii+ a7 (A — ) hi,

hence
n= Vii—sa Vi, Vo= Vii+a ' (da—2h) Vi,

(ii)

bun=R"'-detB'= a(gl‘; n—1) An—2aH)~",

l1—spbuu=R'-detB,

by =by; for every i and every jgII,
(iii)

det (Vi, A—subun) Vii—bun Vir, Vilr) = 0.
B) The condition (II) B) implies
(1)
det B'(2° 0,6°)=0 and detB"(z"0,6°)#0.
Now let Q(x/, p, 6)€ S} be defined as follows :
Q(x', p, 6) = (det B') (det B")™* in U®)xU(0, ).
Then it holds that '
(ii)

Qx', ,0) = (1—=$ubun) (bun)™' = R(det B —sy
= (Zﬁ_lﬁ) (a([;; 11“‘1))4_521
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(iii)
det (VI,QVi—Vy, Vi) =0 in Ulx")x U(0, o).
PrOOF. a) (i) follows from the fact that (Afi, Ant) = (Au, Au) Su and
(hit, hi)=(hiz, i) SuTu. a) (1) and «) (ii) implies «) (ii) and a) (iii), re-
spectively. From a) and B) (i) it follows directly that ) (ii) and (iii) are
valid. Therefore we only prove 8) (i). From a) (i) and (6.1) we have
R(z® ' =11, 6°) = det (V¥, Vii+su Vi1, Viln)
= det B' + s, det B”
= (det B’ +s, det B") (x°, —17, ¢°)
+v —i7 (s, det B") (z°, —iT, ¢°).
Hence it follows from R(z’ ° ¢°)=0 that

(det B'+s;det B") (2%, 0,6" =0,
which implies det B'(z° 0,6")= 0. Since (det B’ + s, det B Nz’ g, d°) is
analytic in g, it follows from the condition (II) 8) that
(s,-det B")(z°, 0, 6" # 0,

which together with (6. 2) implies 8) (i).
LEMMA 6.2. Assume the condition (II) B). Let the equality (B,) be
satisfied for UEH_%’T (R**Y). Then there exist a constant C>0 and opera-

tors Cy, C,eS:' and k,x€ S} independent of U such that for large T
lg— Vinum—Crur — Counly,
_>_C<lubff+knu{ +kmuhl%,r+]uii+kmu{+Qu{1|%,r
+ sty + R n ey + Roy e %,r) :

Moreover, in U(z%) x (U, 6")N(C_-x R*™), the symbol of (k;x) is analytic
in (t', ¢') and has the form:

kv ki R
(6. 3) kur kun kum | = (Vi Vi, Vi)™ (Vi, Vi, Vi) (2,7, o)

kit Rurn R

where ky are my;X myg matrices with my=1—1, 1 or (m_l) for J=IL1I or
111, respectively. o S

In the constant coefficients case the analogous inequality holds, which
follows directly from the proof of the above lemma :

COROLLARY 6.1. Assume the same condition as in Lemma 6. 2.
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Let
(Byeo g(z, o) = (V{, Vi, Vitn)-("at, 4u, “4ihr) (<, o, O)
+(Vi, Vi, Vi) (a1, 4u, *am) (z, 0, 0).
Then there exist a constant C>O0 independent of @ such that
1g— Vindhn|
> C(|af +kuy @i + ki ] + |24+ ko a5 + Q|
+ | @+ b 27 + b 2l
in Uz’ ¢")N(C_ x R*Y), where (k;x) are functions defined by (6. 3).
ProoF oF LEMMA 6.2. Define %,z by (6.3). Then it holds that
Vi@, 1, 0)= Viku+ Vitku+ VI-II-IkIIII”,. ”
Vulad,t,0)= Vikiu+QVii+ Vitkun .
Here we used the relation 2;;=Q. Hence we have from (B))
g(z')= Vilz', D)ui(x', 0)+ Vulz', D) uni(z’, 0)
+ Vih(z!, D) uity (', O)
+ (Vi ko + Vig- b+ Vit kan) un (2, 0)
+(Vi-kiu+ Vii-Q+ Vit ki) un(2’, O)
+ Viu(z', D) (um (2, 0).
+Ci (', D) uy (2!, 0)+ Cy(x’, D) upn (2, 0),

where C, and C,e€ S;' arise from commutators. Hence we obtain

6.2.1)

09— Vinum—Ciuy — Cyun
ui +kooug ke
=(V{, Vi, Vi (', D')| unt + by + Qun ) .
uri+ Ryt + R #n

Since det B"(z°, °, 6)#0 by Lemma 6.1 ) (i), the lemma follows from
Lemma 2.1 B) (ii). _ , '

LEmMMA 6. 3. Consider the constant coefficients problem (Py, Q) of
2% 2 system in a sufficiently small neighborhood (U(z° ¢")N(2_):

rPH (xo, T, 0, D’n) 1211 (T, g, x,,)
= (EuD,—My(2", 7, 0))- {8, 2i1) (7, 0, z.,)

= f.ll(xn)a for xn>0’
Q2% =, 0) 814z, g, 0)+ 241(z,0,0) = 0.

(Prr, Qe
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If the conditions (II) ,BZ and (III) are assumed, then (Pyu, Q), is L*-well-
posed, that is, for any fu(x,)€ Hi(x,>0) and any (z, 0)€ U(z’) x (U(z’, ¢°)N
3.), the problem (Py,Q)s has a unique solution #u(r,o, x,)€ H(x,>0)
satisfying ,

(6. 4) |2a(z, o, )| < €| Ful)

for some C=C(z 7, 6> 0.
ProOF. - Recall the proof of Theorem 4.1. First we obtain from the

condition (III) the L*-well-posedness of the problem (P°, B),. Transform
it by a non-singular matrix

S(T, ‘7) = ( i, ht, h;la hit, A, hﬁl) .

- Then we have the following constant coefficients problem equivalent to
(P B)ye:

[ (A 0\ ]
AU
(P,U=|ED,— My (z,0)|O=F, for z,>0,
My
\ 0 M)

-

L

(PI’ Bl)zo 7 Bl U= BSﬁ

= (VI+9 ;I’ VI-{-I) t(d?—, ﬁ;b tdﬁl) (T’ 0’ 0)
+(Vi, Vi, Vm) (*4r, 211, *4m) (7, 0, 0)

. =0,
where
Oz, 0, x,) = S '4(z, 0, x,,)
= ‘(*af, *Ax, du, A1, “Aor, ")
and ,
F(x,)=8"f(z,)
= t(‘f?, lf.i—, .76{1, fnﬁ, tfﬁ-r, tf‘ﬁl)~
1) Existance of a solution of (Py, Q),s. From Corollary 5.1 the
solution U of (P,, B, for F(x,)=40, 0, fi, fi, 0, 0) fufills
4i (z, 0, x,) = #mlt, 0, x,) = O .
Hence from [Corollary 6.1 it holds that
27 (z, 0, 0)+ ki (7, 0,0) =0,
(6.3.1) 411 (z, 6, 0)+ Qaiy(z,0,0)= 0,
aii(z, 0, 0)+ ki dn(r, 0,0)=0.
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Tlﬁlerefhore the “(@1, 4%) (¢, 0, z,) is a solution of (Py, Q) for Ful(z,) =
", f1o-

2) The estimate (6. 4) for the above solution follows from the L*-well-
posedness of (P, B)),:

|0 o, )| < Crt||F ()

3) Uniqueness of the solution of (P, Q). Let #@y="%41, 411) be the
solution of (P, Q),» corresponding to f;=0. Take the bounded solutions
af, 45 of the equations

[(Ef’ D, —f (z, 0')> 4f (r,0,2,)=0 for x,>0,
112? (r, 0, 0) = —kindi(z, 0, 0),

and
[(EdD,—Mia(z, o)) aiti(r, 0, z,) =0 for z,>0,
ld{ﬁ (r, 0, 0) = —kimutn(r, 0, 0).

Put

U: ’(taii_’ 0, a{ly dﬁ, ta;I-I’ 0) . )
Then P,U=0 and (6.3.1) is fulfilled. Hence it follows from (6.2.1) that

B U= (Vi, Vi, Vi) “(“arf, a, “Ah) + Vi i
af + kit
= (VT, Vi, Vi) +| du+ Qan =0.
| At + R nn

Therefore U is a solution of (P, B, with F=0. From the L*well-
posedness of (P, B,),» we obtain U=0 and hence a,;=4},=0. This proves
the lemma. . :

LEMMA 6.4. Assume the conditions (II) B) and 7).

(i) Then the function Q(x', v, o) defined in Lemma 6.1 B) (i) takes
real values in U(x% x U(0, ¢°) for real p.

(ii) Suppose, in addition, the condition (III). Then for (z',z, 0)€ U(x®)
x Uz o°), R(x',7,0)=0 for Imt<0 is equivalent to t=0(x', ¢) and Q(x’,
0, 0)=0.

Proor.

(i) Since, in the case (a), the choice of the vectors {hf, hii} are re-
stricted to be real for #>0, Lemma 4.1 and the condition (II) 7) imply
that
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b‘:I II (x,a 2] 0)
= det B(ht, hir, hit)-(det B(h{, hif, hifd)™

is real for p>0 and R(x',z,0)#0. Here note that hf are the eigenvectors
which were defined in §4 by

(hit, hit) = (h11, hu) Su T

andvhence are real for p>0. From Lemma 6.1 B) (ii) it holds for Im
¢<0 that ‘
Q(x', p, 6) = R(det B")™'—sy

= (Zﬁ_lﬁ) <a(b; 11"‘1)>—1_521 .

If R(z',7,6)=0 and >0 then Q is real at such points, beﬂcause sy is real
for p>0 by virture of (6.1). If R(x',7,6)#0, p=0 and byu+1 Q is also
real, because A%, @, by and sy are so. From Lemma 6.1 «) (ii) we have

(6.4.1)

buu(a’, ©°—i7, ¢*)—1
= — 24 —1T (4,-det B"-a™) (z°, °—1T, ¢°)- R™ (2%, «*--17, ") .

Since (4-det B”-a™")(x% 7%, 6")#0 the condition (II) 8) and R(z" 7’ 0°)=0
imply byu (2’ 7% 9#1. Thus we see that Q(x/, p, o) takes real values
whenever p#>0. Since Q is analytic in p at g=0 Q always takes real
values for real g,

(ii) Suppose 7=#6(x',s) and Q(x’,0,6)=0. Then from (6.1) and
(6.4.1) we have R(x',0(x',0),06)=0. Hence we have only to prove the
converse. Suppose that R(x’,7,0)=0 and Im <0, then from Theorem
4.1 Imr=Im p=0. First if <0, it follows from (6.1) that Ims,#0
and from (i) that Q is real. This contradicts (6.4.1). We shall secondly
show that R(z’r,0)=0 for >0 is also impossible under the condition
(ITI). Let Ry(z%r,0) be a Lopatinskii determinant of (Py, Q). From
Lemma 6.3 and Theorem 3 of [11] we easily see the condition (III) implies
that for every fixed x'eU(z")

(6. 4. 2) . Ruy(x,7,06)#0 for r—0(z',7)>0
(for the case (@) in Lemma 3.1.)

On the other hand we see in §4 that

i«
MuSn = ((I)I 2_) .
11

Hence letting S be the first column of S;; we obtain
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Ry (2, 7, 0) = (Q, 1) S
= Q-+ 55 = R(det B")!

where the last equality follows from (6.4.1). Thus (6.4.2) and (6. 4. 3)
imply that

(6. 4. 3)

R(x',7,0)#0 for p=c—0(',0)>0

from which we obtain g=0.
If =0 and Q(x', 0, 0)#0 then we have from (6.1) and (6. 4. 1)

R(z',0(z', 0), 6) = Q(', 0, o) (det B") (x', 0, 0) £ 0.

This is a contradiction, hence Q(z’, 0, 6)=0 holds. Thus the proof of (ii)
is completed. '

LeEMMA 6.5. Assume the conditions (II) B), 7) and (III). Then there
exists a neighborhood U(x ¢°) such that for every (x',o)e Uz’ d")

—Q(x,0,0) >0, in the case (a).

COROLLARY 6. 2. Under the same conditions as in Lemma 6.5 we
have :

grad Q(x',0,6)=0 on {(x’, o)€ R™1'; Q(x/, 0,0)= O} .

(z’,0)
Proor ofF LEmMA 6.5. The condition (III) together with Lemma 6. 3
implies (6.4.2). On the other hand we have from (6. 4. 3) and (6.1)

Ru(z,z,0)=Q+pusP+Vps,.

Regarding our convention ¥1=—1 we consider the equation Ry=0.
Then we see
(6.5.1) Vus, (2, 0,0)= —Q(x, 0, 0)+r(x', V1, o) 1

where 7(z', Vg, 0) is an analytic function in ¥g¢. Now suppose that there
exists a sequence (x”, ¢”) such that

(@, o™= (2, 0°), as n—>o0,
__Q(xn, Oy an) < 0.

Then there exists a sequence {Vg*} with g*>0 such that (6.5.1) holds for

(™, ¢, @), because s,(x™, 0, ¢")>0 from (6. 2) and Q(x°, 0, ¢°)=R(x’, 0, *)=0

from Lemma 6.1 B) (ii). Putting "=p"+6(x" ¢”) we have a sequence

{z*} such that o o ’
>0 and Ryfz”, " d)=0.
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This contradicts (6. 4. 2) and proves the lemma.

Proor OF COROLLARY 6.2. Assume that

grad Q(z° 0,6")+# 0

(z’,9)

and for simplicity let

0
0x,

(z,0,0")# 0.
Then from the implicit function theorem we have

Qx', 0,0)= (xo—cl(x”, 0)) ¢ (x', o)

where ¢; is C* in (2", 0), ¢,(2% 6°)#0 and ¢, ¢, are real, because Q(z’, O,
o) is real. This contradicts Lemma 6.5, hence grad Q(z° 0, ¢°)=0.

(z’,0)

Furthermore the same argument is valid for the points (', ¢) such that
Q(x', 0,0)=0. Hence the corollary is proved. '

REMARK 6.1. In the case (b) in Lemma 3.1 the discussions of Lemma
6.4 and 6.5 are also valid. In this case the conclusion of Lemma 6.5
becomes —Q(x, 0, 6)<O.

REMARK 6. 2. If the coefficients of B are real and the set III is empty,
the condition (II) 7) is fulfilled automatically. Because it then holds that

bun = det B(h{, hi) (det B(ht, hih)) .

LEMMA 6.6. Assume the conditions (II) B) and (III). Then it holds
that

(i) Vi(x',z,e)€ L(V{, Vi) and

(11) V;I (x’a Ty 0') € L(VI}_I)
for such points (', 7, 6)€ U(x’) x (U(z, )N R*) that n=0(x',0) and Q(x',
0, 6)=0. ‘

ProoF. Let.(x', %, ) be the fixed real point satisfying the conditions

in Lemma 6. 6. . _ :
(i) Then from Theorem 4.1 it holds that for some C(z, % ¢°)>0

|det (V¥, Vi, Vit (', 9—iT, o)|
(6.6.1) < C(a', ', o)|Im A(a’, p—i7, o)}
-IR(x’,n—iT, a)I-T—% |
for keIl_. From Lemma 6.1 B) (ii) and ‘(6. 1) we have
R(x',z,0)= <Q +Vp Wy s+ sz)> det B".
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Since Q(x/, 0, 6)=0 we see that

Q(z', ¢, 0) = peo(z, p, 0)
with some function. ¢,. Hence we have for such a point

Rz, 7, 0) =Vp({Wpco+Vp s +5,)-det B,

hence

(6. 6.2) |R(", 7, 0)| < Cle—0(2, o)t = C12,
where C>0 and r=7—i7. On the other hand

(6. 6."3) Im A%(z', p—it, o) < Cr#

with some C>0. Hence it follows from (6.6.1), (6.6.2) and (6. 6. 3) that
det (V1, Vi, Vi) (2, 5, 0) =0, kel

which implies our assersion (i).
(ii) From Theorem 4.1 it holds that

4
Idet( T Vi oo, Vi, Vi, Vi) (&, p—i, o)l
<C(, % o |Im2{[ (!, p—1, o)l%
-|R(x’,77—i7’, a)|-7’_%,

for jel,. Hence the same argument as in (i) leads us to
J

det( i'-,"', ﬁ"“a l 1 VID VIII)( ,a7290)=0
for jel,. On the other hand for such points (z', 7, ¢) we have

J
J
det( f-, Tty V:_9 "ty l 1y II> VIII)

for jel, and 7€l ,UIIl,, because R(x', % ¢)=0. Furthermore {V{, Vi,
Vi) are linearly independent in U(x®) x U(z° ¢°), because of det B (x° 7° ¢°)
#0. Hence we obtain for any vectors {v;}C R"

det (vly “':vl—l’ ila VI-{I-I)=0
This implies that for such points
u€ L(Vi),

by virture of the linear independence of {Vii} and completes the proof of
the lemma. :

LEMMA 6.7. Assume the conditions (II) B), 1) and (III).
Then k;;; and ky; in (6. 3) are functions in '
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C=(U(x")x U(0, ¢") and analytic in (p, o) (Im p<0)," and for some C>O0
and for every (x', o) belonging to some neighborhood Ux’, 6

|kIII(xI3 0, U)IZ ’
(6. 5) and
|tin(a’, 0, 0) < C|Q(", 0, 6)|.

Proor. From (6.2.1) and Lemma 6.6 we have for every (z/, g, o)
such that p=7—60(z', 0)=0 and Q(z', 0, 0)=0

kin(x, g, 6) = ki (2, p,0)=0 .
Hence it holds for every (&', o) satisfying Q(x’, 0, ¢)=0 that
6.7.1) kin(x', 0,0)=ky (2, 0,0)=0.
On the other hand, from Lemma 6.1 8) we have that for (z', ¢)€ U(z’, ¢°)

R(x', 0(x', o), a) =Q(z, 0, 0)-det B"(z', 0, 0).

Therefore from the condition (II) ), Lemma 6.5 and its corollary, we see
that there exists a coordinate system {y;, -, ¥n, 21, ***, 22n-1-5} Oof B at
(z% ¢") such that ’

Q' 0,0)=F(Y, Z)
Y, &F0,Z)

= 5 ovoy, v.y;+G(Y, Z)

Where Y= Y(x’9 0') = (yb Ty yN)9 Z= Z(x’s 0') = (zb MY zZn—-l—N)’ Y(xO’ 0.0) = 09
Z(x ¢")=0,
@ F0, Z)

faay, <0 and |G, Z)|<ClYP

with some C>0.

Theorefore Q(x',0,0)=0 on Y =0, where (6.7.1) is valid.

Furthermore from the above form of Q(&, 0,¢) we see that it satisfies
(6. 5). '

Thus we see our assertions.

§7. Problems for 2x2 system of first order.

This section 'is devoted to problems for 2x2 system which play an
essential role for the proof of the estimate (1. 1), in the case where the set
IT is not empty. In subsection 7.1 a-priori estimates for the decomposed
problem (Py) in §3 are given by the modification of Kreiss’ consideration
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[7]. 1t should be noted that the symmetrizer Ry(x,t, o) used for the op-
erator Pj; in a neighborhood U(x") x U(z’, ¢°) of the point (z' 7% ¢°) is con-
structed along the ‘surface’ r=460(x, ¢). In subsection 7.2 we consider
a boundary value problem (P, Q) for 2x2 system, whose main purpose
is to see how the essential part of the proof of (1.1) is analyzed. It will
also be seen why the function Q was considered in §6. The point (z°
7%, 6°) considered in this section is only the one where the set II is not
empty (and hence ¢"+#0).
7.1. Let My(x, p, 6) be the matrix defined in Lemma 3.2 and as in

§6 put

T=n—1il,

p=r—0(x,0)=e¢—iI and

Ay = ||+ o],

Expand My in U(x®) x U(0, ¢°) around the surface r=0(x, o), i.e., p£=0.
Then it is seen from Lemma 3. 2 that
MII (x9 ll, 0)
(7.1) = My(x, &, 0)+ My(x, e—il, 6)— My(x, ¢, o)
= My (x, 7, 0)+¢E(x, ¢, 6)+(—i7) H(z, ¢, 0) + 0 (1’ 4;Y),

where E, H are real valued functions €S5% in (¢, ¢) and
'21 (x’ 0’ 0) > Ar )

0 , Alz, 0,0)

en ) hu hm)
’ H x, & 0)=
) ( ) ) (hm ha,

My (x, 7, 0) = (

E(x, e 0)= (

€n €
and consider the characteristic polynomial
det (EHZ—MH(JS, s a)) = (Z—Zﬁ (z, ¢, o)) (2-—2{1 (z, ¢, 0)) ,

we see from putting 1= (x, 0, ¢) in the above equation that

(4,en) (x, 0, 6) = (4, hy) (x, 0, 6) = A(x, 0, 6} >0 in the case (a),
(7.2) or

(4,en) (x, 0, 6) = (4, hy) (x, O, 6) = — 23(x, 0, 6’ <O in the case (b)
with the notations in Lemma 3. 1.

As in let us define in some U(z®) x (U(z%, 6N (C_-x R™) a skew
symmetric 2 X 2 matrix R, of order O by

&@@a=4D@n@—mFH$@@@y
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where
0 d,
D(z, z,0)= )

d dy(x, 7,0
Fe (0 —f b(x, 1, 0) 0)
\Ff o o o)

d,, d,, f and b are real and in S?.
Choose & so that

(7.3) (D+¢'B)(C+¢'E) is a self-adjoint matrix,

}an@=(

01
where C= (0 0) and E is the matrix defined above. Then we obtain

that for (r, s)€X_ ;
(7. 4) b(x,7,0)=(1+cey)  (dien—dien+dse,).
Let (% ) be one of (%, ;) defined by (2.6) and put
Rolx, 7, 0) = Ry(% (), #(c 4, 07), (e 47, 047) €S2 .
Hereafter, in this section we consider only such functions u(x)="%(u,, u,)€

H,,(R>*") that u=¢(D')-*(vy, vy), where (v, v;)€ H,,(R*") and ¢(z, 0)=
¢ (e4;Y, 0471 € S with supp ¢'CS,, (7% ¢°). Then we have the following

LemMMA 7.1. ([7]). One can choose R,(i.e., di, d,, ) €S} so that there
exist constants C, C',7,>0 such that for every 1>71, and u(x)
(P) |Putz, D) u; > C(r- fwlf, + Cllwl?.)
+7 Im (Ry(z', D) u, u)o,,> ,
where C' can be taken however large if f is taken large enough, and the
symbol of Ry(x, D) is R(x,t, o) and ’
Im (Ry(z’, D') u, u),,,
= 2 Re {d\uz, u)y,, + Re {dz 1, U,
—27 Im { fA  uy, i), +Re {(eb) uy, s, -

In order to avoid the ambiguity in the use of this lemma in what
follows, we sketch the
Proor. Estimating the commutator, we have
2 Re (Prru, Rou),,,
> Im (Ro(, D7) ty o, + (((Ro M) + (R Mu*) e, ),

—~C(llle, + ]y,
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with C>0 independent of . The symbol of (R,My) +(RyMy)¥)(x, D') is
Ry(2(x), %, ) Mu(2(2), 7, 5)- 4,
—M;(2(2), 7, 7) Ry(&(2), %,5)- 4 .

Using (7.1) and (7. 3) to calculate the symbol, we obtain for any (z, 7', ¢')€
Ux®) x (U(z%, 69N (2_)) and for any constant vector u="%u,, u,)

<(R0MII—MI*IRO) (z, 7', 0') u, u>
> —C 7' +7) |ul?

+7' Re {<d1 hawy, wy) +{dihptty, 1)

+<(d1 hu +dzh21) U, u2> +<(d1 hy+ dz hzz +f ) Uz, u2>}
where C,=C,(D, F)>0 does not depend on (z,7’,¢'). For any 6>0 and
(z, 7, ) e U x Uz% ¢®) N 2_) we have

|<d1 hattz, wy) +<dihyy + dy hoy) s, u2>|
= ACIALE A

with some C,=C,(D)>0. Choose U(z’, ¢°) sufficiently small, and d,=const
and f=const such that for (x, ¢, ¢')e U(z%) x (U(z%, " N2_
(7 1' 1) dl h21 (xs 6’, OJ) 2 2 ’
(7. 1. 2) dlh12+dzh22 +f—5~1C2>0 .

(We see from (7.1.2) that we can choose d, arbitrarily if choosing f>0
large enough.) Since (Z, %, 7)€ Ss, (2°) X Ss,, (z°, 0°) We see from (2.6) that
for every '

(x,7,0)€ RIx C_x R}
{(RoMu—MiR) (& 7 &) dyu, u)

> —TAE+7)C |ul2+'r"/1,<~g~ lag |2+ (C'+ 1) }uzlz)
Z (%_1250 C1> ?Ar |u112+ (C’ +1— 12€0C1) 7./17 luglz ’

where C’>0 is a constant such that
(7.1.3) C+1>dhy+dyhp+f—01C,.

Since supp ¢'C.S,, (¢% ") it follows from (2.6) that 74,¢'=7¢’. Hence we
see from Lemma 2.1 §) (v) that for large 7
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Re (((RoMuy) + (R M ¥) (z, D') u, ),
>7(1Jeufl3 +C all3)
with some C'>0. Hence from (7.10) we obtain
(O7) M | Pl + o7 lull3, > 7 (1- a3+ Clael2,)

+Im <Ro(x’, D) u, u>0,r .

Choosing 6>0 small we complete the proof.
In the above proof, choose R, with d,;, f satisfying (7.1.1), (7.1.2)
and d,=const>0 sufficiently large. Then we obtain the following
COROLLARY 7. 1.
(i) There exists a constant T, such that for every 7>7, and C,>0

there exist constants C,, C;>0 satisfying
(Pn) C, ”P11u||§,7+ Cr lullg,r > G HuH§T+ 1-7 |u2|3,r

Sor every u(x).

(ii) There exist a constant T, and a neighborhood U(7% o°) such that
for every T>7,, (A, eANeU[%d)NI_, C,>0 and 4=y, &) (x,)€
H,(R) there exist constants C,, C;>0 satisfying

(PII);O Cz”Pn(xO, 7, 0, D'n) 12(')"2'[‘ ClT lﬁllz
>Corlla ()| +1-7)a,)

7.2. Let Q(«', p, 6) be the function defined in Lemma 6.1 B) (i) and
assume the conditions (II) B), ¥). Then it follows from Lemmas 6.4 (i),
6.1 B) (i) and 6.5 (or Remark 6. 1) that for (x, g, 6)€ U(x°) x U(0, ¢°)

(7.5) Q(x', p, o) is real valued for real g,
(7.6) Q(z", 0,0°)=0,
(7.7) —-Q(x',0,0) >0 in the case (a),
or
<0 in the case (b).

Let Q(z!, D') be the operator whose symbol is the extension @(x/, r,0)€ S
of Q(x',v—60(x', 9),6). We consider the following boundary value problem
(Py, Q) for 2x2 system:

(7. 8) Pu(a, D) u = (D,—Mu(x, D'))-(u;, us)
(Pur, Q) = fl@)="(f, f)
(7.9) Qx', D) u,(x', O)+u,(x’, 0)=g(x') on R™.

3 +1
in R,
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THEOREM 7.1. Assume the conditions (7.5), (7.6) and (7.7). Hhen
there exist constants C,7,>0 such that for every '>7, and u(x) the fol-
lowing a priori estimate for the problem (P, Q) holds :

(P, Q) IIPHuHO,,—I-]Qu1+u2|%’72CTHuHO,,.
To prove this we need the following lemmas. The technique used in

the proof is also used in §8 for the proof of (1.1).

LemMMA 7.2. Let (7.8) be satisfied for u(x). Then for every 6>0
one can choose ¢, (or the size of supp ¢') and a constant 7,>0 such that
Sfor every 1>7, and u(x)

(7.10) A7 usfs, < dllllz, + 07wl + 07|47 A3,
consequently, let 1,(D) be the operator with its symbol Tt Ay, 0 A7) €S, then

(7.11) (oD s, wy), <76}, + 75 w13,
+767 AT AL -
LemMMmA 7.3. Let Ry(x',D') be the one in Lemma 7.1 and assume

(7.9). Then there exist constants C>0,7,>0 such that for any 6>0,7>7,
and u(x)

Im <R0(x’, D) u, u>0’7

> —C((01) Mgl + 07 |l y, + )
+Re <R1(x', D) u,, u1>0’r , A
where the symbol of R,€ S is represented in U(x") x (U(z" ¢")N2_) by
R(@',7',6")= —2d, Re Q+ d,|Q|*+'b+ 27 f Im Q
(7.12) =d,(—2Re Q+(1+¢'e) " (eu—ew) ¢')
+d,(|QIP+(1+¢ en) tene’)+ 21" f Im Q

(Q is allowed to take complex values.)

LEMMA 7.4. Assume the same conditions as in Theorem 7.1 and let
(7.9) be satisfied for u(x). Then one can choose R, €S} (especially d, and
d,) so that there exist constants C,C",7,>0 such that for every 7>7, and
u(z)

Re (Ry(a!, D) wy, wur), > —Clanf?y, —C"{1o(D) wr, ur), .

Here C" depends only on (2° 7% ¢°) and f, di, d, but not on the size of the
support of ¢'. :

Using these lemmas we first prove Theorem 7.1. The proofs of
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these lemmas are given after that.

Proor oF THEOREM 7.1. First choose d; so that it satisfies (7.1.1)
and (7. 4. 10) and the expression (7.4.7) are nonnegative. Secondly choose
dy(z, &', 6"\ =dP (x', ¢')+¢' d§P satisfying (7. 4.5) and (7. 4. 6) with C,>1. We
fix d; and d,. Then Lemma 7.3 and 7.4 are valid for every f with their
constants depending on f. Furthermore if f is chosen so that it satisfies
(7.1.2), Lemma 7.1 is valid and we obtain

HPII.u”(z),T
> C(r(lals, + C el )+ 7 Tm (Rott b,
2 C(r(lalls + C llalls) = C'7 (10D s ),
—Cy(8 |gl}, + a7 |y, +7 el y,,)
~CoT lwly,),

227

whepe C;, C,, C' and C" depend on f and §,>0 can be taken arbitrarily.
Hence it follows from (7.10) with fixed & that
C(|1Paullt, +Ciatlgl3,)
> 12 (1—6,Cy—Ci77™) |3,
+71HC'—06,Cs—C,77Y) |Jua|2
—~C1 {1y (D) wy, wi),
where C, and C, depend on f. Using (7.11) we obtain for any 6>0
depending on ¢, :
C(I1Puulls, +1ql3,)
>7*(1—=6,C—Ci7 ' —3C") ||uiff,
+7(C'—6,C—Cy7 ' =07 C") |usf§,
=1*(Cillalit, + Colluall?, ) -

Since d, and d, are fixed we see from (7.1.3) and (7. 4.11) that in order
to make Cs and C; positive it suffices to choose f, 6 and 6, so that

1—"51C3_C4T—1'_6 ‘Zf.[m Q"‘ng Im Q(I)l > 0 ’
and

f—51C3—C47'_1—5_1 lZfIm Q—Zdz Im Q(l)l

is sufficiently large.
The process of the choice is as follows :
(1) Choose 6 (hence¢,) such that §-|2d,Im Q®|<% and fix the 4.
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(2) Choose f so that f—d'|2d,Im Q%] is sufficiently large.
(3) Since Q(x° 0, ¢° =0 we can choose such a small ¢ that in
0

Ss,, (7% )
5-12fIm Q| <+,
Sf—012f Im Q| —6"|2d, Im QW] remains large.
(4) Choose 4, and 7, so that
5,.C+CIt <5 .
Thus we obtain C; and C; larger than 4 and complete the proof.
Proor oF LEmMMA 7.2. From integration by parts it holds that
147 w2, = (A, o, = 21Im (A Dy, s, -
It follows from Lemma 3.2 and (7. 8) that
D,uy, = 2%u,+ AP uy + (&' —1i1") py Ay + (¢ —i1") proAus+ f1,

where A%, ¢, 7/, p, and py, are of order O and the symbol of A is 4(Z, O, )
and real. Hence we see from Lemma 2.1 a) (iv) that

4 a2, <2 Tm (9 A, e+ (A7, 10,

+ <(s’—i7”)puu1, u1>0’r + ((s’—i?")plzuz, u1>0‘r}
+CT 7 el »

where the last term of the right arises from commutators and C>0 depend
only on M. Since (7, %, &)ESg‘O(:c")xSs‘o(r", ¢’) we see from (2.6) that

|¢'(#,7,5)| <8 and 7'(7, 7)< 4e.

Consequently the first inequality follows from Lemma 2.1 B) (vi) if ¢ is
taken sufficiently small. The second one follows from the first one because

of 7,(D)-¢(D)=1o(D')-A- A7 (D) =747 (D).
Proor oF LEMMA 7.3. From (7.9) we have

u2(x” 0) = g(x,)—Q(x,’ D’) ul(x,’ 0) .
Hence it follows from the definition of R, that
Im (Ry(z', D) u, u),
= 2d, Re {g—Qu,, uy),,+Re <dz ((g—Qu), g "Qu1>0,r
—2rf Im <./1‘1 (g—Quy), u1>0,r +Re <(eb) uy, u1>0,7
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= 2d, Re {g, u,)o ,+Re {dzg9, )0, — 21 f Im {A7 g, u;),,,
—Re {d;- Qui, g)0,,—Re {drg, Qui 0 ;
—2d, Re {Quy, u1)o ,+Re {dy Quy, Qur)o,;
+27 f Im (A7 Quy, usyo, +Re {(d) t, ),

Noting that d,, Q€ .S, we have the following estimates with respect to the
first five terms of the right hand side of the above equality :

(g wido,| = [<dbg, 47 ¥,
<lgly,, lm|_y, < o7 |wl2y +(07) " gly,
{drg, 920,|< Clole, <CT7gl},,
T<A™ g, wos| <TGy, ol g,
<orlulty, +@ ol

<d2'Qubg>0,r ’ |<d20, Qu1>o,r
SO |2y, + 01 g}, -

< Clg‘%,rlull—%,r

Hence we obtain for large 7
Im (Ry(2', D) u, ), .
> —Cld,, du, f)- (07 |u]* 4, +(07)g13,)
—2d, Re {Qui, )0, +Re (d:Q* Q) s, 1),
+21f Im (Q47) s, ), +Re {(e) wy, wr),
—Cld £,Q) |l
where the last term described above arises from the commutators. Thus

the lemma follows from (7. 4).

Proor oF LEMMA 7.4. For the sake of the generalization (see subsec-
tion 10.2), assume that Q is complex valued. From Taylor’s expansion
we have

QU , )= QO )+ 1 Q0 )
+ (7 QP (!, ¢, 0'),
e; (2!, ¢, o') =€l (2, ')+ e} (2!, ¢, a"), G,j=1,2),

(1+s’elz(x’, ¢, a’))~1 =1—¢e?(x, a’)+0<(e')2> ,

0 .
where Q®=Q(z', 0, ¢'), Q¥ =-{%~(x', 0,0¢’) and €Y=e;(x',0,06"). Since p
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=¢'—ir’, from the definition (7.12) of R, we see that for (z/, 7/, ¢’)€ U(x")
x (U(% e )N 2_)

Rz, ¢, d")=2r"f Im Q
—2d,(Re Q¥ +¢'Re Q¥ +7' Im QO
+((¢"P—("?) Re Q® +2¢'1" Im Q@)
+ o {|QO [+ (€2 + (7) 1QVI+ (2 + (P) Q)
+2Re (¢ +i7") QP QO
+2Re ((P— (P +i2¢'7") QP QO
+2Re (' —i7") (P — (") +i2'7) QP QW)
+&(1—¢' e + O ((¢'?)) {di (el — ) + d, e
+die (el —eif)) + e’ eéP} :

Put dy(x, ' —ir", ¢')=dP (x', ¢')+ &' d§" with some real d® and d§’(=const).
Then the above equals to

=7'Ci+(—2d, Re Q'+ 45" |Q®?)
+¢'(d|QO—dy(2Re QV— (el —ef))

(7.4.1) +dP (e +2 Re QP Q<°>)>
+ (P (d5" (e + 2 Re QP QO) + oy + b dS”)
+0(|¢'F),
where

C, = 2f Im Q—2d,(Im Q® +2¢' Im Q®—7" Re Q)
+d,{—2Im QP Q® + 2 Re (—1"+i2¢) QP QY
7 (2 +0F) QPP +171QP
+2Re (—i(pfF—e'1'+i2('F) QP QV},
and k;, k., do not depend on d,, d, and f:

k= —2Re Q¥ —ely (ely’ — ) + el — e,
k= |QW2+2Re QP QO — e el + i)

Now we shall determine d,, d® and d¥ as follows:

(7.4.2) —2d,Re QO +dP |QUP >0,
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(7. 4. 3) the coefficient of ¢ is zero,
(7. 4. 4) the coefficient of (¢'))=C,>1.
From (7. 4. 3) we obtain |
745  dP=—k(dP]QOP—di(2Re QU — (e —ef))),

where k=6 +2Re QVQ® does not vanish because of &0 ((7.2)) and
QO (2% ¢°)=0. Insert this into C,, then

(7.4.6) Co=d$ (khy— kb5t | QO
+dy (b + kB (2 Re QO — (el —eff)))
Let us show that it is possible to choose d; so that (7. 4. 2) is fulfilled.

From (7.4.5) and (7. 4.6) we have for some fixed C;>1

—2d, Re Q"+ 4 |QV|*
(7.4.7) = di(—2Re QU+ ' |QU[F(2Re Q¥ —(eld —eif)))

— k| QO

= b (1= B2 QOP) " (kdi— Co1QO),
where
ko= — 2 Re QO+ |Q®[*(2 Re Q¥ — (el —eff)) &

+]QO* (2% Re QU+ A |QV).

The condition (7.5) implies that for any small §>0 there exists a neigh-
borhood U(z®) x U(¢°) such that

(7.4.8) d|Re Q¥ = Q1> > |Q™|* in U(x%)x U(d").
Hence it holds for some C>0 that

(7.4.9) G QU< Cliy| in U(z® x U(d").
Note that for d; satifying (7.1.1) we have from (7.2) and (7.7)

(7. 4.10) kdi>—CdRe Q® >0

with some C>0, because of € =hy(x, 0,0). Then it is seen from (7. 4.9)
and (7. 4. 10) there exists a real number d, (satisfying (7. 1.1)) such that

kodi—C,| Q@4 > 0 in Uz®) x U(e").

Since k3%(1—Fk;2k,|Q@|%) ! in (7. 4.7) is positive, we thus obtain d, satisfying
(7.4.2.)
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Since k;#0 and Q(z’, 0,0)=0, a real number df’ is determined by
(7.4.6) so that (7.4.4) is valid. Take d{® satisfying (7.4.5), then (7. 4. 2),
(7.4.3) and (7.4.4) hold. Furthermore —2d,Re Q©+d®|Q|* does not
depend on ¢/. Thus we see from (7.4.1) that

Rz, ¢, ¢)—T"C,> 0

in a sufficiently small neighborhood U(z’) x U(0, ¢°).

Finally choose ¢, so that S, (z°, 6°)CU(z% ¢°). Then for the symbol of
Rz’ D), R\(Z ('), #(zA;?, aA;Y), &(z4;, 647 Y), it holds that for every (2, r,
g)E R"xC_x R*!

R, % #)+C'T>0,
where C">0 is a constant such that for all (z/, 7', ¢’ )ESs, (2°) X Sa, (", o)
(7. 4.11) C'> |G| =|Ciz', 7, o' s £, ).

Hence the assertion of Lemma 7.4 follows from Lemma 2.1 B).
REMARK 7. 1. It is seen from the above proof and (7.12) that the
assertion of Theorem 7.1 is also valid if it satisfies (7.1.1) and

dl (“‘ZRCQ + (1 + S'elz)—1(311—622)€’> + dz(lQIz + (1 + 8’612)—16215,> 2 0
for any (&', ¢’,7’) in a real neighborhood U of (z° 0, ¢°) such that (¢’ +8(z,
P+ o' ?<1.

___1 )
Furthermore using (é If) Mn(é lf) with some 2€S? over U, we see

that the above condition is equivalent to that on U
ReQ<0 if |Q°+ (1 +¢'ey) ey ¢ =0 in the case (a), which follow
from that ReD(x, ¢')>0 on U.

§8. The proof of Theorem 1.1

In §6 and the latter part of §5 we have tried to analyse how the
L’-well-posedness of the freezing problem dominates the relations among
the coefficients of the boundary operator. In this section we prove (1.1)
on the base of that analysis in three subsections. In order to prove (1.1)
for k=0 we have only to show (3. 4) whether the set II is empty or not.
In subsection 8.1 we prove (3.4) by the consideration in §5, for the case
where the set II is empty. In subsection 8.2 we do so by that in §6
together with the methods used in §7, for the case where the set II is
not empty. Note that the dependence of C; in (3.4) on support of ¢ does
not affect the validity of Lemma 3.3. The proof of (1.1) for £>1 is given
in subsection 8. 3.

8.1. We prove (3.4) in the case where the set II is empty, using the
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estimates (Pf), (P#) and (B*) in §5.
From (Pf) and (Pg;) it holds for Ue€ H, ,(R%) that
Crl|Ulle.r
< C7 (1l o+ Nt Nlo,e + laeitlo.r+ el )
< NPT ai {lo,p + | Prtvaectillor + 1Pt e o, + | Prixeatallo,
7w o, 4T st L
On the other hand it follows from (B,) and Lemma 5.3 (ii) that
g= Vi, D)ui(x', 0)+ Vi (x!, D) uity(z’, O0)
+ Bt (z', D')-Cy(x!, D) us (', 0)
+ Ki(z!, D) uy (2!, 0)+ Vi (&', D) um (', O),

(8.1)

that is,
us (0) _
=g— VIIIuIII(O)_KIuI_ 0),
where '

Ki(z', D) v
= (B*Cy) (¢!, D')—B* (', D')-Cy(«', D') € ST,

1

Ci
(C3> €S? with

Using the estimates (B*) and (Py;) we have

C,(, DY) = JC}: [ x I matrix |
|C2: (m—1)x! matrix.
Cr? |ui +Clui o, +7 |uifr+ Clui |y )
<lgly,+ | Vinumly , + | Kiur |y,
< |gly,,+ | Pareerulloy + lur |y,
Hence for large 7 it follows from the estimate (P;) that
C(rH |t o+ usda] _y,)
<lgly,+ ||Pmumno,,+r% |t |o.y
<lgly,+ 1Pt ui llo.,+ | Priszesllo,r -
Combining this with (8. 1) we obtain (3. 4).

- 8.2. In this subsection we prove (3.4) in the case where the set II
is not empty. If R(z’7° ¢°)# O, the proof is the same as that in [7],
that .is, (3.4) is obtained by using the estimates (Pf), (Pd), (Pu) and the
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relation (B,) together with Lemma 2.1 8) (ii) and taking the constant C,
in (Py) suitably. Therefore we prove it in the case where R(z’ 7', ¢°)=0,
by using the estimates (Pf), (Pf), (Py) and Lemmas in §6 (especially Lem-
ma 6.2 and 6. 7).

From Lemma 6.2 it holds that for small 6,>0
lg— Vﬁluﬁl—c1uf_czuﬁ];,

> C{r(lo3,+ o) + 8.7 aal2y )
where C, C,e.S;! and
[gllgr> luﬂg,r— [knuf]g,r" |kIIIu;I|g,7 >
192]07 Iu +Qu;1+klllul_lg,ra

lgs|” 1,_. Iuml_“, |k1111u1_|2_%,,.—Ikmnuillz_%,,-
Since the symbols of %,,€S?,
C(lglzl +|uﬁl|2_ >
>Tlu1+ +5172|um‘ -3
—C(T |uz 8+ 8.7 uz |24, + 87" |une? )
‘ —T!kllluill%,r-
Using the estimates (Pf), (P#;) we have for large 7
(1P wt g |1Py 1 I+ | Praull+ | Pracil -+ o,

= TZ(”“ 13,7+ lleex 1137+ 01 [ eerkall.» + [loernall5, r>
—7 ki unls,—Co.1? |u11l2_%,, .

From Lemma 7.2 we have
8. 2) wial?y , < C2(r 2 fil s+ leend3) -
Since ¢; is small it follows from the estimate (Py;) that
IPUIR,+1ol,
8.3) = Cr*|| Ui,
+C1 {Im Ry, wrsyo,— |brnteinli ) -
On the other hand from the boundary condition (B;,) we have
(VT, Vi, Vi) (&, D)-*Cut, uit, ‘ud) (x")
= g(z)=(Vr, Vi, Vi) (&', D')-("ux, e, “eamy) ()«
Since det (V{, Vi, Vi) (&' 7° ¢°)#0 it follows from Lemma 2.1 B) (iii) that
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t(tu;—, ui;a zul-{l)
=C'g—((V}, Vit, Vit) " («, D)+ T’ (', D))
* (VI_, ViI, VI;I) (xla D,) : t(tul—, u&l’ tuﬁl)
where C’'e S and 7"€S7'. Hence from Lemma 6.2 we have

(8. 4) up(x)=Cig—Tu' — byt — byttt — Ry i
where

T= Ty, Ty, T e S3, C,eSt,

w' = ""ur, uir, “usm) »

kau(x', 1, 0)= 02, 7, ).

As in the proof of Lemma 7. 3, let us delete uj; by using (8.4). Then
we have

Im (Rowry, tr1)o,r
= 2d, Re {C,g— T’ — kyyyu; — Qupyr— byt 1ir, #in)o.r
+Re {d,- (Cyg— Tu' — ku1ur — Quir— by in)
ACrg— T’ — kyyyug — Quir— Ryy i im) o,
=21 f Im {A7*-(Cyg— T — kyyyuur — Quini— Ry i tiy), Unno
+ Re {(eb) w11, trr)o,; -

Since C,, ky€S? and T €S53}, the estimates of the right hand terms of the
above are as follows: for some constant C>0

|24,<C10, wido,| < C(37 |l 5 ,+(@7) |013,).
|2d, (T, wiso,,

< CI”’L%,T' Iuﬁl_.;:,r

< C(lug |y, + lute] Vel _y ) il _y

<C(Jui Py, + lunly , + lwmly,),

|2d1 Chypmm e, u;I>0,T| =< C‘“ﬁll%,r' luhl-%ﬂ"
< C(o7 lutal2 ,+(67) " Jumls,),
2d, Re {ky1ur, ur)o,r
= 2d, Re {uy, k?{luil>0,r
< 2d, Re {uy, kft1tin)o, + Clug o ot -1
< 1-Vkftdally + CJur B+ el 1)
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(o kv, Brernr o | < [t |3+ il )
(o Fxer i, Quteyo | < 1y Buavuts 13+ 1+ |Qudal3
< Clus [3,+1+|Quuli.,,
|27 F<A7 Cog, hado | < CT((07) gl + 67 |udal?r)
< C(57|glt, +or |unl?y,),
|27 A7 T, o
< Cr{(en) | Tw'l3 + o7 uinf2..)
< C{o7(lut |2 ot + i)+ 07 Lty
|27 F A Raa i, wisd, | < CT((07) g 3+ 0 |ia |21
< C(57 our [+ 07 lutaly.,).
|27 F <A B, i, o] < O ((07) il + 07 |t
< C(67 |uinlh,+07 |kl ).

The other terms are estimated by the same way as above. Thus we obtain
for large 7 ‘

Im {Rytrr, U)o,y
> — Cldy Q) ((37) g1}, +8 | [3+(07) |l + 0 e .,)
- Iki“uu;ll%,,—-Zdl Re <Qu£1, u£1>o,r
—2|Quili, +Re (. Q* Q) by, ), ,
+27 £Im {(QA™) ut, i), +Re {(eb) wir, wir),
—C(d, f, Q) ]uillz_%’r )

where the last term of the right arises from the commutators.
From (8. 3) and the estimates (P;) and (Pg;), using the above inquality,
we see that

1A UlG+ 191y, = Cr U,
+CT {— o tdal?,— 1Bl a3, — 2| Quein 3.1
—2d, Re {Quyy, urr)o,,+Re <(d2 Q*Q) uy, uil>o'r
+Re {(eb) uly, uir), +27f Im (QAY) uiv, wir), }
= CP* | U1 o+ Ci{ — Ver s a3, — | B ctial3 1
—2| Qi3 + (Ruttis, tirdorf
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with R;€S? in Lemma 7. 3.
From we have for (2/,7,d")e Ux)x (U(z% ¢)NZ_)

k:l(x,a o) = k(2 ¢ o ")+ kv (x, 0'),

k(@ 7' o) = p BD (', o)+ (2, o),
where (6.5) is valid for A% and £{;. Furthermore note that

| = (P+P,
and that the Q satisfies the conditions (7.5), (7.6) and (7.7) in Theorem
7.1 by virture of Lemmas 6.4 (i), 6.1 B) (i) and 6.5. Then by the same
method as in the proof of Lemma 7.4, changing (7. 4. 2) slightly one can
choose d; (in this case d, must be chosen so that d,é (x,, 0y) is sufficiently
large) and d,(x, 7', ¢')=d(z', ¢')+'di¥ so that the bracket of the second
term of the right hand of (8.5):
{ } = "‘Cluillz_%,,_cu<ro(Dl) Ui, uir>w

for every uy=¢(D)vy€ H, (R with vy;€ H,,(R%™), where C and C”
are some constants corresponding to those in Lemma 7. 4.
Thus by the same way as in the proof of Theorem 7.1 we obtain for

U=""uf, ‘us, Sb( ) U, ‘urd, uIII)EHl, (B v

1P U +1gl3, = G UG
for large ¥>0, where C, is a positive constant depending only on the sup-
port of ¢, which implies (3.4). Thus Theorem 1.1 is proved for £=0.

8.3. To obtain (1.1) for 2>1, apply the operator A* to the equations
of (P°, B) and put u,=A*u, f,=A*f and ¢g,=A4*g. We obtain

8.6) D,u,= Au,+ T A up+ fr,

Bu, =T A *u,(x’, 0)+ gy,
where by virture of Lemma 2.1 «) (iii)

| Ty A" sallop < Cllaeello,r

| T4 waly , S Clugl 4, -
Hence from (1.1) for 2=0 we obtain

C7 laerllo.r < lletiello,s + lukl_%,f"' Il fello,r + ng‘%,, .

On the other hand it follows from the same method as in the proof of
Lemma 7.2 that

el 3, < Clltelloe+77 1 fillor)
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Thus we obtain for large 7
Cr (| A* wlloy < 145 F o, + 1441, -
Use this for £=1. Then we have
7| Dautllo,r < 7 (1 Auellor+ 11 Fllorr)
<7(CllAulo,+1Fllos)
< C(1A e+ lolg,)-

From this the theorem follows for k=1:

Cr ”unlr < “f”lyr'l' ]glg,r :

To obtain (1.1) for £2=2, we differentiate (8.6) with respect to x, and
use the fact that D, A(x, D')=AD,+ A,, where A, is the pseudo-differential
operator with symbol (D, A)(x, z,¢). Thus (1. 1) holds for any integer 2>0
and the proof of Theorem 1.1 is completed.

§9. Adjoint problems.
Let bi(x')="bi,, -+, b} 2m) (') (=1, ---, m) be a certain real base of the

space of null B(z') whose elements are ¢*(R”) and constant outside some
compact set of R”(here we may assume the existance of such a base.) Set

T(z")= (b1, -, by b1y -+, b3),
where b,(x')=%b;1, -, bssm) and B*(z')=(b,, ---, b,). Then it holds that
B(z) T=(B(by, -+, b,), 0, -+, 0) = (BB¥, 0).
Since rank B=m, det BB¥*#0. Hence we have
(BB¥)"'BT = (E,, 0).

where E, is the m xm identity matrix. Therefore the problem (P° B) is
equivalent to

(?0’ El

(E1, 0)#=(BB*)"g on R",

where #(x)=T"'(z")u(x). Let P* be the formal adjoint of P°. Then we
have the Green’s formula :

i=(ED,-5(T7A,T)D)i=T"f in Ri",
2:

9. 1) (B, ©) gy — (0 B*0) gy = B

for #,9€ Cy(R%™). Let us consider the adjoint boundary value problem :
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- ){13'«5=¢ in Rm,
0,E)D=¢ on R",

to

v
®
S
<
I
=
S
I
=
5
S
<

(P, B) = (ED,~*A(@ D))v=¢ in R},

where we put

9.2) v=(T*"%, ¢=(T*"8,

B(z!)=(0, E) T* = (b, -+, Bi)*.
Now we have the following v
TuEOREM 9.1. Under the conditions (I), (II) and (III), the following
a priori estimate holds with some constants Cy,7,>0 :
9.9 1P ol s+ 1B 0l = o ol

for every T>1,,ve H, ,(R:") and integer k>0. -
PrOOF of THEOREM 9.1. Putting xy=—2x, in (P, B') we consider the

following problem :
(P, B*) {P(*)(x, Div=¢ in R,
’ B*(x)v(x!, 0)=¢ on R»,

where we put

P(*)(xo, x", X, , Do, D", Dn) = Pl(_xo, .’13", Ly 5 —D07 D": Dn)
(9. 4) = EDn_tA(_xm .23”, Ly s _DO, D”) ’

B (zy, ") = B (—x,, x").

From (9. 4) and the proof of Theorem 1.1 it suffices to show that each

of the assumptions (I), (II) and (III) for (P°, B) implies the same for (P,
B™) respectively. Note that the characteristic equation is

det P (zy, 2", 245 7, 0, A)
= det (E,l—‘A(—xo, ', z,; —r, a)>
(9. 5) = det (ER—A(——:C(,, x' z,; —r, o'))
= det (Ea—Ay(— o, 2", 2,) (— 9 +i7)

n—1
—jZZ_:IAJ(_an x", xn) 0.1)
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Then it is easy to show that the condition (I) is fulfilled for (P, B™).
Since (P°, B), (P°, E,) are equivalent and (P, B'), (P’, E,) are so, the condition
(III) for (P°, B) together with (9.1) and (9.4) implies the same for (P™,
B™) (Theorem 2 of [8]) Therefore we have only to show that the con-
dition (II) is fulfilled for (P™), B™*).

First we seek the Lopatinskii determinant and coupling coefficients for
(P™, B®), Put -
So(z, 7, 0) = (h{, hi, hitr, i, hit, hi)
(B,, B,) (', 7, 0) = B(z") S,(x', O, 7, 9) ,

where S, is a 2mx2m matrix and B,, B, are m xm matrices. Then it

holds that

(9.6)

P 0
A oo «
(S;LAS) (, 7, 0) = M 0 ,
i 5
P
0 My

(bs) (2, 7, 0) = (B4) ' B,

Hence we have

(—-,2% 0 )
AL
<S§“A*(S5")‘1> (x, 7, 0) = P (Mgy)*
0 Ar
a ............... E
\ 0 (Mﬁl)*[
Put
9.7) (B;, B,) (x!, 7, ¢) = B'(z') (S§)"}(«', O, 7, o)

where B/, B, are m x m matrices. Then we see that the Lopatinskii

determinant and coupling coefficients of (P, B*)) are
_ R(*)(xo, .ZC”, T 0) = det B;(_xm x,,a -7 0) ’

(9. 8) BN A
) (20, 2", 7, 0) = ((BL) ™ By) (— 2o, 2", —7, 0)

respectively. Now we show the following two lemmas.
LeEMMA 9.1. For the quantities defined above the following hold :
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( 1 ) R(*)(xO, x”’ 7, 0) det B ( Xy, T ,y —f’ 0)

= —R(—x,, ", —7%, 0)-det By(—x,, 2", —7%, 0),
(i1) (553 (xo, 2"y 7, 0) = (bj)( Ty, X', —7%, ).
Proor. From (9. 2) we have
BB)*=0.

Hence it follows from (9.6) and (9.7) that
0= (BSOSO‘I( ’)*> (—x, 2", 0, —%, 0)
~(B., B) (B(S:)")* = (B, B) (g,)) )
= B, (B)*+ B,(BL)*.
This implies (1) Furthermore we have
(bsg) (— x4, 2", —%, 0) = (B,) ' By(— x, 2", —7%, 0)
—(BY ™ By)* (— 20, 2", —%, 0)
= —(b{P)* (xy, 2, 7, 0) .

This shows (ii) and completes the proof of the lemma.

LEMMA 9. 2. The zeroes of R™(x,, x", 7, 0) and R(—x,, x", —%, 0)
coincide in I'x C_x R™*.

Proor. Let us consider the following constant coefficients problems
with parameters (r,0)e C_x R*':

&5, [ED—A@ 5 a)i=0 i >0,
T (B, O0)a=4 on zx,=0,
(B, E)) KED,,—‘“{(xO,?,G))%:O in z2,>0),
T [(OaEz>%=¢’ on z,=0,

Let # and © be exponentially decaying solutions of (P°
respectively. Then it holds that

9.2.1)
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On the other hand we see that the fact
(9. 2. 2) R(z% % d"#0 for some (% ¢")eC_x R

is equivalent to that there exist a constant C, and a neighborhood U(z’ ¢°)
such that for every (¢, 0)€ U(z%, ¢®) N(C- x R, § and exponetially decaying
solution # of (P E)),

,272(7, g, 0)‘ S CO !g‘ .
Hence if (9.2.2) is valid we have from (9. 2. 1)

for -every € U(z% ¢°)N(C.x R™) and exponentially decaying solution © of
(P, E,),. This implies R'(z% 1% ¢°)#0, where R'(x’,%,¢) is a Lopatinskii
determinant of (P, E,), or (P, B'), for (2,7 0)e'x O, x R*'. Since (',
2 d)elxC_x R*' is arbitrary we see that R(x',r,0)#0 implies R'(z/,
%,0)#0. The converse is also valid by the same discussion as above. In
view of (9. 4) and

R (—xz,, 2", —7,0) = R* (xy, 2", 7, 9),

we obtain the lemma.

Now we show the condition (II) for (P*), B*)). 1If the characteristic
equation (9.5) has a double root 1 at (x,, 2", x,; 7% ¢°)€ ' x R”, then in
a neighborhood of the point (9.5) has a real double root 2 only on the
surface

9.9) t=—0(—x, 2", 2,; 0).

If the set II for P is empty for the point (x,, 2", z,; 7% ¢®)€l’ x R,
then that for P° is so for the point (—x,, ", x,; —17°, o°.

(II) a): Let (2% 7" d")el'x R* be a point for which the set II for
P™ is empty. From Lemma 9.1 we have for every j, k<m

k
R™®) (x,, 2", 7, 0)-det (VT, -+, V5, -+, VI (—x0, 2", —7%, 0)
(9. 10) g

= —R(—x,, 2", —%, 0)-det (Wf, -, Wg, -, W) (zo, 2", 7, 0)
where
(Vi, oo, Vi, VT, o, Vi) (— o, 27, —7%, 0)

= (BS) (—x,, 2", —%, 0),
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(WT, o, W, WH, o, W3 (a0, 2", 7, 0)
= (B'(S*)") (— a0, 2", —%, 0).

Assume that for all j, k<m
det (W, o, Wi, e, W) (2%, )

Note that it holds that for all j, i<m

J
det( i*_,”'a 2-""9W;;)(x0370,00)=0'

0.

Since
rank (W7, .-, Wi Wi, -, Wo) (2% 7% 6®)=m,
we obtain for every v,€ R™
det (vy, **+, V\)=0.

This is a contradiction. Hence there exist indeces j,, k& (<m) such that

A
det( {F,“" ch_o,"" WZ)(xO’TO,UO)ng-
Since R(—x, ", —%, ) is not identically zero, (9. 10) for (j,, &) implies

Eq
that det (Vf{, -+, V;, ---, V) is not identically zero. Hence we obtain for
small >0

|R® (24, 2, =i, ¢")| > C|R(— 20, 2", —2° —il, 69| = CT

with some C=C(x,, 2", 7%, ¢°)>0, where the last inequality follows from
the condition (II) a) for (P°, B).

(II) B): Let (%% d°)el'x R* be a point for which the set II for
P™ is not empty. By the same method as in the proof of (II) ) we have
from (II) B) for (P°, B) the order relation:

RO (e it | CP
Hence it follows from 1 B) (i) that

det (B*)' (z° 7% ¢®) # 0.
On the other hand we see from

det (B*)"” det B
bt 5 ) = e = ().

Since from Lemma 6.1 B) (i)

det B'(—2°% —7% ¢")#0,
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we obtain

(9. 11) Ry, 2", 7, 0) = — C(, 7, 0)- R(— x,, 2", —%, 0),

where C(2/, 7, 6)=det (B*)" (det B")'#0. Hence from (9.9) we see that
the second part of the condition (II) 8) are valid for (P™), B™®),

(II) 7): We can define the reflection coefficients &5 for (P, B¥)
by the same way as in (9.8). Then we see that

(bg)) (.230, x”, T 0) = —(b;;) (‘“xo, JC", -7, 0')

as in Lemma 9.1. Hence if byy is real then B¥) is real. This implies
(II) 7). Thus Theorem 9.1 is proved.

From (9.1), Theorem 1.1 and Theorem 9.1 we obtain the L?-well-
posedness of (P, B) in half space which is described in the following form
(Theorem 1 and Remarks 1 of applied to first order system.):

THEOREM 9. 2. Assume the conditions (I), (II), and (III) for half space
R'xQ2=Rr" and I'=R". Then for any integer k,s(k>0) there exist
positive constants Ty, and C,, such that for any 1>7,, and for any f€
H,.,(R7"),9e H, _, 13, (R") the problem (P, B) has a unique solution ue€
H, iy 5o1;;(R%Y) which satisfies

”u“1+lc,s—1;r S Ck,sr‘1<”f”1c,8;r+ ]g]k+s+%,7> .
Furthermore if s>0 and f=9=0 for ,<T then u=0 for z,<T.

§ 10. Remarks on the conditions (II) ) and (II) 7).

10.1. We remark in this subsection that the condition (II) 8) is nec-
essary for the case where (P, B) is a second order problem with real con-
stant coefficients. This interesting fact is proved by R. Agemi using 2]

Let us consider the following second order problem of real constant
coefficients :

aZ n-—-1
ﬁ—4> u =<Di—<D§—Z

i=1

( D))u@=f i R,
B
Bu|r=(Dn—ijDj—cDo u(z',0)=g¢g(x’) on I'=R",
i=1
where D, = —igt—. By virture of the transformation :

v (x)=Adu and v,(x)=D,u,

we have the following equivalent 2x2 system ([J, Q):
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0= o)

O, Q | =( ) %), for 2,30,
| Q0,(0)+:(0) =4,
where Q(r, 0)= (nz_: o,+cr) . Lopatinskii determinant R of the prob-

lem (], Q) is

Rz, 0)=(Q, 1)-’ ‘4, zﬁ)-Afl
(10. 1) = (z;;—— Cz:b 105+ cf)>/1;1 :

where

it(r, 0) = £V2—|g? W1 =—1)
Apply [] to Lemma 3.1 then we have
p=plz,0)=t—lo]  (the case (a),

hence we have 6(¢)=|¢|. Since the prbblem (OJ, B) felfills~the condition
(I), we have the following :

LEmMMA 10. 1. Assume the condition (III). Let R(7% ¢°)=0 where
©(z% ") =1"—|6*| =0 and ¢*+0. Then it holds that

(10.2) ¢*= :2:173
Proor. Since we have from (10. 1)
(10.1.1) R(z', ") = R(|0], 0*)
—<7§:bja‘}+cla°l) Ai=o0,
we see from Corollary 6.2 and (6. 7. 2) that
' gr;ad R(ﬂ(o"), o°> = grdad R(Io"l, a")

0
(10.1.2) = (e |03|> o (bur e 5 )) 47
=0.

Hence if ¢=0 we have b;=0 for all j=1, ---,n—-l. If c¢#0, it follows
from (10.1.1) and (10.1.2) that '

p—l
=20
J=1
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This proves the lemma.

Next we show that the condition (II) 8) is necessary for the problem
(OJ, Q) to be L?well-posed :

THEOREM 10.1. Under the same assumptions as in Lemma 10.1, we
have
codim {(x’, o€ R"x R*™; R(ﬂ(a), 0> = 0}
=rank Hess R(0(o°), a°>

(z’,0)
j=n—-2, for c#0,
l=0, for ¢c=0.

Proor. From (10.1.2) we have

TR (ote) =— e (2) 4
wk(ﬁsj—) 4 for j#k,
C<ﬁ+gﬁ%)A?l for j=*k.
Hence
Hess R(6(0), o)
A—lo! a0+ 10,
o R VS
GnaGy o o e h—]a]?
If c=0

rank Hess (0(0), a) =0.

(z*,0)
If ¢c#0 this matrix has the eigenvalues

tcla\‘l, e —clal“}, 0 (see §4 in [2])
n—>2

Hence

rank Hess R(ﬂ(a"), a°) =n—2.

(z!,0)

Put
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M= {(x', f)ER"x R, R(ﬁ(a), ¢7> = 0}
= R"x {GER’” ijaj+c|a] }

If ¢=0 we have from Lemma 10.1 ,=0 and hence M,=R*"', Let c#O.
It follows from R(f(s), 6)=0 that

clol’= (Z;: j”j)

Hence from (10.2) we have

t{E)~(Epe).

o]+ 18] =|<a, B3,

where b=%b,, -+, b,_1). Lec ¢>0 for simplicity, then it follows from
(10.1.1) that

M,=Rx{ce R""; |o|-|b| = <o, b)|, X b;0,<0}.

Hence dim Mp=n+1 (also, in the case ¢<0) for fixed b. Therefor we
obtain codim Mp=n—2=rank Hess R(#(c¢°), ¢°), for c#0.
Thus the proof is completed. ’

10. 2. This subsection is devoted to the generalization of our Main
theorem to the case where the boundary operator B(x') is complex. Since
the condition (II) 7) has an essential meaning in the case where B is real,
we consider the conditions (II) #') and 7’) described in §1 instead of (II) B)
and 7). Throughout this subsection, we assume the condition (I) with
complex valued B and assume all symbols are homogeneous of order O.

From (II) 8') and (6. 4. 3) it follows that for (r, 6)e X_nU(<", ¢°), '€ U(X")
10.3)  Rul@,7,0)=(n(@, 1, o) +Vun(a, 1 o)) (Vu—D(', 4)),

where 7, and 7, are smooth and r,(z° 0, ¢°)#0. Furthermore let Q be the
function defined in Lemma 6.1 ) (i). Then it follows from (6. 4.3) and
(6.1) that Ry is real if Q is real and ¥u is real or pure imaginary in the
case (a) or (b), respectively. Applying implicit function theorem to (10. 3)
we see from Lemma 6.4 (i) that (I) B) and 7) imply that |D is real or
pure imaginary in the case (a) or (b), respectively. This shows that (II)
g') is fulfilled. Since it follows from (6. 4. 3) that (II) 8) and f') imply (II)
7'), we see that (II) 8) implies (II) §') and 7).

Hereafter we consider (r, ¢) as vectors€3_.
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LEmMA 10.2. Using the notations in Lemma 3.1 and (7 .1) Q is writ-
ten in the form: except terms with respect to 7

Q, p,0)= (2“(1 + epe) ey — en)+ r2> ¢
—(@ +ewe) 2+ rD) D in the case (a),
or
—<—z'(1 + elgs)‘12§+r2D>D in the case (b)
respectively.
Proor. It follows from (6. 1), (6. 4. 3) and (10. 3) that
Q=(n+Vpn)Wp—D)— (s +Vps)
= —n D+ pr,— ps®® +(n—r,D—s,)Vp.
Since Q is analytic in ¢ we have
n—rD—s,=0

hence Q= —nD+pr,—ps®
= (r,—sP)u—(rD+s,)D.

This together with (3.1), (3.3), (6.1) and (7. 1) implies the lemma.
Put Q"=Q(z', 0, ¢) and Q(”—ﬁ(x’, 0, 6) as in the proof of Lemma
7.4. Then we see from Lemma 10. 2 that

= —(4"(«", o)+ (2", ) D(, 7)) D', o)

Q® {or
= —(—i(#)O(z', 0)+ (2", 0) D(a', 0)) D, 0),
(10. 4) QW = (27 (el — ) +7%) («', )
+ (A0 e — AP — 7P D) (z!, 0)- D(2', o)

o

with the same kind of notations as Q® and QW, in the case (@) and (b)
respectively. Now Theorem 7.1 is generalized in the following

THEOREM 10. 2. Assume the conditions (II) «), B') and (III). Then the
conclusion of Theorem 7.1 is valid.

ProoF. We have only to show that Lemma 7.4 is valid under the
conditions of this theorem. We see from the proof of Lemma 7.4 that

+(—i(8)© e +i(%)V— " D) (z, 0)- D(z', )



156 ’ : T. Ohkubo and T. Shirota

it suffices to show that the expression (7.4.7) is non-negative. Let us
consider the coefficient %, of d; in the right of (7.4.7):

{2k Re QO +(Im Q) (2Re Q¥ — (el —eff))
+(Re Q) (2Re Q¥ —(e0 —eff))} ka+ 0 (1QOF)..

Use (10.4), the relation k=¢+2Re QW Q®, then the above equals in the
case (a) to

(10. 5)

= I, {2("Re D+Re 7§ D) (ef? +2 Re QP Q)
+ 20 T D-+Tm rOD? Re (49 + D(i? e — 4§ D))}
+0((Re DP)+0(|DF).
Since € =(A") it holds that
e Re 79 D>+ (A Im D +Im ¥ D?? Re r®

= (ef? Re ¥ Re D—2¢ Im 7{” Im D)Re D+ 0 (IDP‘) .
Hence (10. 5) equals to

=2k2%" Re D+0(|D|)Re D+0(|DF).
In the case (b), we see by the same way that (10.5) equals to

= 2kZ(%)® Im D+0(|D]) Im D+0(|DF).

Therefore it is non-negative (or non-positive in the case (b)) in a sufficiently
small U(z®) x U(¢®), because of the condition (II) ). Moreover from
(10. 4) we have |Q°|*=0(|Dl|*). Consequently, we see that there exist real
d, satisfying (7.1.1) and a neighborhood U(z®)x U(¢") such that (7.4.7) is
non-negative. Thus the theorem is proved.

Using the above theorem let us generalize Theorem 1.1:

TueoOREM 10.3. Assume the conditions (II) &), B'),7") and (III). Then
the conclusion of Theorem 1.1 is valid for complex valued B(x').

ProoF. Since Im 4z >0 and Re g <0, it follows from the condition
(II) B that R(x', g, 0)=0 for Im <O is equivalent to =0 and D(z', o)
=0. Hence we see from the proof of Lemma 6.6 that Lemma 6.6 is
valid for such points (z', 7, 0)€ Ux®)x (U7, ¢®)N R™) that »=0(x',0) and
D(z',6)=0. On the other hand, we see from (1.2) that in some U(x®)x
U(¢°) of a point (2% ¢°) in Lemma 10.2

Re D(x', 6) >0

or
—Im D', 0)>0
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in' the case (@) and (b) respectively.
Hence we obtain
%r’a()i Re D(x',0)=0
or
grad Im D(x', 6)=0

(z’,0)
whenever
Re D(z',0)=0
or
Im D(x', 6)=0

respectively. Consequently it is seen from the condition (II) 7’) that the
inequalities (6.5) are replaced by

|0, o), |k, o) < CRe D(', o)
(10. 6) or
|k, o)}, |B (2, 0)[ < —CIm D(=', )

in the case (a) and (b) respectively.

In the proof of (1.1) in subsection 8.2, use these inequalities instead
of (6.5). Then we see from the proofs of Theorems 7.1 and 10.2 that
(1.1) is valid for our case.

Thus we can generalize our Main theorem :

THEOREM 10.4. Assume the conditions (II) a), B'), ¥') and (III). Then
the conclusion of Main theorem is valid for complex valued B(x').

Proor. Follow the proof of Theorem 9.1 and note the relation (9. 11)
especially. Then it is seen that the conditions (II) 8) and 7’) are preserved
for the problem (P, B™®). Therefore the assertions of Theorems 9.1 and
9.2 are valid under the conditions of this theorem.
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