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Introduction

Z. Kuramochi gave in his paper a very interesting theorem, which
can be stated as follows.

Theorem of Kuramochi. Let R be a hyperbolic Riemann surface of
the class Oz (resp. Ogzp). Then, for any compact subset K of R such that
R—K is connected, R—K as an open Riemann surface belongs to the class
Op (resp. Oyp).

The theorem was proved by using the existence of points of positive
harmonic measure on Martin or Kuramochi boundary. It is known that
the existence of points of positive harmonic measure on the Martin or the
Kuramochi boundary is equivalent to the existence of those points on the
Wiener or the Royden boundary. Then there were questions whether there
exists a hyperbolic Riemann surface, which has no boundary points with
positive harmonic measure on the Royden or the Wiener boundary and has
yet the same property as stated in the theorem of Kuramochi. To these
questions N. Toda and K. Matsumoto and K. Matsumoto gave
answers in the positive and proved that R€O,, N Uy implies R — K€ Oux
(X=B or D) for every compact subset K of R with connected complement.

In this paper we shall deal with a problem similar to the above by
considering the class O,y and capacities instead of harmonic measures on
the Royden boundary. The main pourpose of this paper is to show a
theorem similar to the above: ReO ,.NUy implies R — K€ O,y for any
compact subset K of R with connected complement.

1. Capacity on the Royden boundary (cf. [14, 15])

Let R be a hyperbolic Riemann surface. For a subset A of R, we
denote by dA the (relative) boundary of A in R. We call a closed or open
subset A of R is regular if A is non-empty and consists of at most a
countable number of analytic arcs clustering nowhere in R. We fix a

closed disk K, in R once for all and let Ryg=R—K,.

*) B & 23
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We denote by 4y (resp. 45) the Kuramochi boundary (resp. the Royden
boundary) of R. Let C (resp. C) be the Kuramochi capacity on 4, (resp.
the capacity on 4,) (cf. [14, 15]). Let g be the harmonic measure on 4y.
We set dg={bedy; C({$})>0} and 42={ted,; C({&})>0}. Furthemore let
dgg={bedy; p({b})>0}. Then dgCdsCd,. A point in dg—Adgs (resp. dgy)
is called a singular point of first kind (resp. a singular point of second kind)
by Z. Kuramochi [5]. We denote by Ugy (resp. Uyy) the class of all Rie-
mann surfaces such that d¢# @ (resp. dgs# ). The harmonic boundary of
R} is denoted by I', ([2]).

LemMA. If U is an open subset of R} with UNIT,+ 0, then there is
a regular region G on R such that GCUNR and G& SOz°.

Proor. There is an open subset U, of R} such that U,cU, UNT,#9
and U;NR is a regular open set in R, Since U NI, #@, we can find a
compact subset K of U,NI", with C(K)>0. By the aid of Lemma 7 in
[15], we see that there exists a bounded continuous Dirichlet function f on
R such that 0= f<1, f#0, f/=0 on R—U,NR and f is harmonic in each
component of U;NR. Then there is a component G of U;NR with >0
on G. Since the restriction of f to G belongs to HBD(G) and =0 on 0G
(co(UiNR)) we see that G& SOpy.

Let G be a regular region on R. Set Q={f|G; fe BCD(R)}». Then
it can be seen that there is a topological mapping of G® onto the Q-
compactification G§ (cf. [2]) whose restriction to G is the identity. Thus
we may identify G® with G}. Since QCBCD(G), G} is a quotient space
of the Royden compactification G} of G. Hence there exists a canonical
mapping® 7 of G} onto G?. We set be=(G?—dG?)N4,. Then it is known
([2, 13]) that % is a homeomorphism of GU% !(bg) onto G U bg.

By the aid of the proof of the [Proposition 1 in and Lemma 7 in
[15], we can prove

ProrosiTION 1. Let K be a compact subset of bg. Then C(K)=0 if
and only if C%(p™'(K))=0, where C% is the capacity on G3—G with respect
to a fixed closed disk in G.

COROLLARY. If (GP—0GP)N42+0, then GeUgy.

According to M. Nakai [12], we say that a Riemann surface R is said
to be almost finite genus if there exists a finite or infinite countably sequence
{A,} of relatively compact annuli in R such that

1) See p. 107 in for the definition of SOxup.
2) f1G means the restriction of f to G.

3) Cf. [HE]
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(a) A,NA,=0 (n#m),
(8) R— [_jfl is a planar subregion of R,
(1) f_jll/log mod A, < .

By an annulus on a Riemann surface R we mean a region which is con-
formally equivalent to a doubly connected plane region.

ProrosiTioN 2 ([8]). Any Riemann surface of almost finite genus does
not belong to Upgy.

2. A N-functions

Let f be an analytic function on R with values in a complex plane C.
Let a' be any number in €. We denote by G, the covering surface gen-
erated by f over {j{w—a'|<r} (r>0). Let A(r) be the area of G,. If

A(r)
— T’
sense of A. Beurling (cf. [7])-

DeFINITION 1. A function f in AD(R) is said to be an AN-function

if either it is a constant function or it is not a constant function and any
complex number in C is an ordinary point with respect to f.

We denote by AN=AN(R) the family of all AN-functions on R. By
definition, we have AN(R)C AD(R). Thus for the corresponding null

classes, we have O,,CO .

The following properties are easy to see:

(i) If G is a region on R and f is a function in AN(R), then the
restriction f|G of f to G belongs to AN(G).

(i) If feAD(R) is finitely sheeted”, then it belongs to AN(R).

3. Functions with Iversen’s property

Consider a noncompact bordered Riemann surface (R, @) with compact
border @ which may be empty.

DEeFINITION 2 (cf. [13]). A function in the class M(RUa) of (single-
valued) meromorphic functions on RUa is said to have Iversen’s property
with respect to the ideal boundary B in the sense of Kerékjart6-Stoilow of

R if the following conditions are satisfied :

4) We say that f is finitely sheeted if it is ﬁmtely sheeted as a mapping of R into C,
cf. [16].
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(a) f is not constant,

(b) for an arbitrary disk U on {|jw|< o0} with flaynU=0 and f(R)N
U=+0, and for every component V of f~}(U), the set U—f(V) is totally
disconnected in U, i.e., U—f(V) does not contain nondegenerate continua.

Let R’ be a subregion of R such that (R, a’), a’=0R’, is a noncompact
bordered surface with compact border o', and the ideal boundary 5’ of R’
is a subset of . For feM(RUa), we denote by f' the restriction of f to
R'Ud, i.e., ffe M(R'Ud).

DEeFINITION 3 (cf. [13]). We shall say that fe M(RUa) has the locali-
zable Iversen property with respect to § if the following is true:

(c) Not only does f have Iversen’s property with respect to 8 but f”
as well has this property with respect to 8 for every R'.

Let (R, a) be a non-compact bordered Riemann surface with ideal bound-
ary B in the sense of Kerékjarts-Stoilow. Let f be a function in M(RU a).
Let p be a point of 8 and {G,};.; be a determining sequence of p. Since

ﬁ F(G,) (in RUP) does not depend on the choice of such a sequence, we
n=1
denote it by Cr(f,p). The set Cr(f, p) is called the cluster set of f at p.

THEOREM 1 (cf. [13]). If feM(RUa) has the localizable Iversen prop-
erty, then either the cluster set Cr(f, p) of f at a Kerékjdrt6-Stoilow’s ideal
boundary point p consists of a single point or Cr(f, p)={|w|= oo}

4. AN-function on O, -surfaces

We consider the family SO, (resp. SO.y) of bordered Riemann surfaces
(R,7) with boundary 7 such that every AD-function (resp. AN-function)
of R with Re f=0 on r reduces to a constant. We denote by O, (resp.
O ,,) the class of all open Riemann surfaces, any subregion of which belongs
to the class SO, (resp. SO4n). The class O, was introduced by T. Kuroda
[9] By definition, we see that O, CO,,.

Let R be a Riemann surface in the class O,,. Consider a non-compact

subregion (G, a) of R with compact border a and non-empty Kerékjarto-
Stoilow’s ideal boundary f=p(G). We allow the case R=G and B=0.

By modifying the proof of Theorem VI, 2B, in [12], we shall prove

THEOREM 2. Let R€O,,. Then every function f in AN(GUa),
GUaCR, has the localizable Iversen property.

Proor. Since G is arbitrary, it suffices to prove that f€e AN(GUa) has
Iversen property. For this purpose take a disk U in € with fla)nU =0
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and f(G)NU =0 and choose a component V of f(U). We must show
that U—f(V) is totally disconnected.

First we shall show that f(V) is dense in U. If this were not the
case, then we could find two concentric disks W, and W, such that U—
f(V)DW,DW,oW,. We assume that U= {jw—w,|<r} (#>0). Set §(w)

=—(B——;ﬁ—)——r/(w—wo) for weU—W,. Then §e AN(U—W,) and Re §=0
on U. Let g=§|(U—W,) and consider h=gof on VUAV. Since g¢ is
finitely sheeted, it can be seen that h€ AN(VUAV) and Re A=0 on aV.
Therefore (V, 3V)& SO which contradicts R€ O,,,,.

Next suppose U—f(V) contains a proper continuum K. Then we can
choose a disk U, with U,cU such that U,— K consists of at least two
components. Thus there exists a component V; of f~'(U,) contained in V.
Clearly f(V,) belongs to a component of U;—K and hence f(V;) cannot be
dense in U;. This is a contradiction.

THEOREM 3 (cf. [13]). Let ReO,,. Then every fe AN(GUa), GUa
CR, is bounded continuous on the relative Kerékjdrt6-Stoilow compactifica-
tion Gxs. of (G, a).

Proor. By a discussion similar to that in the proof of Theorem VI,
2C, in [13], we can prove the theorem.

4. The classes UyNO,, and Uy

Let p be a point of f=p(R) and {G,}s-, be a determining sequence of
p- If lim 1g yse, >0 (resp. lim 147555, >0)%, then we say that p is of posi-

tive harmonic measure (resp. of positive capacity). For the above {G,}y,
let A(p)= N G,UdGY (the closures are taken in R}). It is easy to see that
n=1 :

2 is of positive harmonic measure (resp. of positive capacity) if and only
if p(A(p))>0 (resp. C(A(p))>0).

DEeFINITION 4. We denote by Uy (resp. Uy) the class of all hyperbolic
Riemann surfaces such that there exists a point p in B(R) with positive
harmonic measure (resp. positive capacity).

By definition, we have UysC Uy.

THEOREM 4. Suppose Re UyNO O and K be an arbitrary compact
set in R with connected complement. Then R—K belongs to O 4.

Proor. Take a regular subregion R,CR such that Ry,DK and R—R,
is connected. shows that AN(R—R,) C ABD(R—R,) and every

5) See p. 43 and p. 164 in [2]
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feEAN(R—R,) can be continuously extended over Ryg,, a=0R,. We must
prove that f is a constant. Suppose the contrary is true. Since RE€ Uy,
there is a point p in 8 with positive capacity. We denote by A (p) the set of
all points of 4y lying over p. Then C(A(p))>0 and C(A(p)N4)>0 since
C(4)=0. By we see that lim f(2) exists. We denote by a’

2P

the limit. Since lim f(z)=lim f(z)=a’ for all be A(p), we see that A(p)N
z—b =P ~
Alc{b€~41; FVb)=a'}®. It follows form in that 0= C(A(p)
N4)<C(bed,; f¥(b)=a'})=0. This is a contradiction.
THEOREM 5. UyNO,,C|DUny.

ProoF. Remove a closed disk K from an R'€0zp—0g. Then R=R’
— KeUgyCUgzy but R¢ O,,, and therefore UpwZ UyNO,,. Next we
shall show that there exists an ReUyNO o y— Ugy, i.e.

UyN O 0,7 Uny .

Let R be the Riemann surface constructed by K. Matsumoto in [11]. He
showed that ReUsN O ,o,—Uxrp (CUxN O ;o,— Uxrp). Since R is almost finite
genus, it follows from [Proposition 2 that R does not belong to Uzy. Thus
Re UNﬂ OAON— UHN-

5. Some classification theorems

THEOREM 6. O ,0,<Oy.

Proor. First we shall prove O ,,,CO,y. Let R€O,,.
is a non-constant function f in AN(R). Let 2, be a fixed point in R. Let
G be a component of {z€R; Re f(z)>Re f(zy)}. Then f—Re f(2,) is non-
constant and belongs to AN(G). Since Re (f—Re f(z,))=0 on G, we see
that GZ SO,y and R¢ O,. This is a contradiction. Thus we have O,
cO,y. Secondly we shall prove that there exists a Riemann surface be-
longing to Ouy— O,,. Let R"€Osp— Og and K be a closed disk in R'.
Then R=R'—K€O0,4p—0,,,CO04y—0 -

CoROLLARY. O,p—0 ,,#0.

DEFINITION 4 (cf. [3]). We denote by Of, (resp. O5x) the family of
all hyperbolic Riemann surfaces R such that the closure of 4g; (resp. 45)
in R} equals I';.

By definition, we see that Ox,C OzyC Ugy.

Suppose there

THEOREM 7. If a Riemann surface R belongs to Osxy, then any regular

6) Ct [i6]
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subregion of R belongs to SOgzpU Upgy.

ProoF. Let G be any subregion of R. Then (G*—d0G”) NIy, =0 or
#0. In the first case we see that GeSOy,. Next suppose (G?—aG?)NI",#4.
Since G?—dG? is open in R} (Satz 9. 9 in [2]), by assumption, we have
that (G?P—0G?)N4E+6. Thus G € Uyy by the [Corollary| to [Proposition 1.

CoOROLLARY. Let ReOzy and G be any subregion of R. If G& SOup,
then Ge€ OAN-
THEOREM 8. Ozy<O0,q,.

Proor. Let ReOgy. Let G be any regular subregion of R. Then
it follows from that GESOxpU UgyCSO4y. Thus ReO,,. It
is known (cf. [13]) that there exists a hyperbolic plane region R such that
ReO,, (cO,,). Then it follows from Theorem 12, c), in that Re
0 ,,—Ozx.

CoroLLARY. O, —Ozy+0.

A0

6. A covering property of analytic functions

The definition of a mapping of type B1 is due to M. Heins [3]. Let
¢ be an analytic mapping of a hyperbolic Riemann surface R into another
R'. For a mapping ¢ of type B1, K. Matsumoto proved that ¢ is of
type B1 if and only if each component of ¢ '(G’) belongs to SOg" for
any relatively compact regular subregion G’ of R’ (cf. [2]).

By a modification of the proof of in [10], we shall prove.

THEOREM 9. Let ReOgxy and f be a non-constant analytic function
on R. Let U be any open disk in {|w|< o} and V be a component of
fHU). If flVe AN(V), then f|V is of type Bl. Hence V covers each
point of U the same number of times except for at most a closed set of
capacity zero and f|V is finitely sheeted.

PrOOF. Suppose f|V is not of type B1l. Then there exist an open
disk in U with U,cU and a component V, of (f|V)*(U,) such that V,cV
and V,&€S80z5 in V. Let s be a continuous superharmonic function on U
such that s=0 on dU, s=1 on U, and s is harmonic in U—U,. On the
other hand, since V, & SO, in V, there is a non-constant function # in
HB(V;) such that «=0 in dV, and 0<u<1. We set «*(2)=u(z) for z€V,
and =0 for z€ V—V,. Then «* is subharmonic in V and #*<sof in V.
Let sof=h + p be the Riesz decomposition of sof in V, where A is the

7) See p. 31 in [2] for the definition of SOxs.
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harmonic part of sof. Since ||sof||}<max|grad s|*||f]|3<oo, it follows from
124

the Dirichlet principle that A HBD(V). Since A=0 on dV and «* is non-
constant, £ is non-constant. Thus V&SOg;,. Hence it follows from the

Corollary| to [Theorem 7 that Ve O,y. This is a contradiction.
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