## On a problem of D. G. Higman

## By Tosiro Tsuzuku

Dedicated to Professor Kiiti Morita on his 60th birthday

In his paper [3], D. G. Higman gave a characterization of (projective) symplectic groups  $PS_p(4,q)$  of dimension 4 over the field  $F_q$  ([3], Theorem 2) and proposed the similar characterization for higher dimensional case. In this note, we will give a characterization of higher dimensional symplectic groups by adopting Kantor's idea in [5].

For notation we follow that of Higman [3] mostly. Given a group G of permutations of a finite set  $\Omega$  we denote by  $a^g$  the image of  $a \in \Omega$  under  $g \in G$ , and by  $G_a$  the stabilizer of a,  $G_a = \{g \in G | a^g = a\}$ . For a subgroup H of G and a subset X of  $\Omega$  we let  $a^H = \{a^g | g \in H\}$ ,  $X^g = \{a^g | a \in X\}$  and  $G_X = \bigcap_{a \in X} G_a$ . We call the number of orbits of  $G_a$ ,  $a \in \Omega$ , the rank of G and we call the lengths of these orbits the subdegrees of G. Our theorem is the following.

THEOREM. Let G be a transitive rank 3 permutation group on a finite set  $\Omega$  whose subdegrees are 1,  $(q^{n-1}-q)/(q-1)$ ,  $q^{n-1}$  where q is a power of a prime number p and  $n \ge 4$ . Assume that there are at least q elements of  $G_a$ ,  $a \in \Omega$ , fixing a  $G_a$ -orbit of length  $(q^{n-1}-q)/(q-1)$  pointwise. Then n is even and G contains a normal subgroup isomorphic to the projective symplectic group  $PS_p(n,q)$  which is generated by all the symplectic elations.

Proof. For  $a \in \Omega$ , we denote  $G_a$ -orbits by  $\{a\}$ ,  $\Delta(a)$ ,  $\Gamma(a)$  with  $\Delta(a)^g = \Delta(a^g)$ ,  $\Gamma(a)^g = \Gamma(a^g)$   $(g \in G)$  and  $|\Delta(a)| = (q^{n-1} - q)/(q - 1)$ ,  $|\Gamma(a)| = q^{n-1}$ . The intersection numbers  $\lambda$ ,  $\mu$  of G are defined by

$$|\varDelta(a)\cap \varDelta(b)| = \begin{cases} \lambda & \text{if } b\in \varDelta(a) \\ \mu & \text{if } b\in \Gamma(a) . \end{cases}$$

Aecording to Lemma 5 in [3], we have

$$\mu q^{n-1} = \frac{q^{n-1} - q}{q-1} \left( \frac{q^{n-1} - q}{q-1} - \lambda - 1 \right).$$

Hence  $\mu=1+q+\cdots+q^{n-3}$  and  $\lambda=-1+q+\cdots+q^{n-3}$ . Thus, by Lemma 8 in [3], a block design  $\mathcal{Q}$  whose points are the elements of  $\Omega$  and whose blocks are the symbols  $b^{\perp}$ , one for each  $b\in\Omega$ , and whose incidence  $a\in b^{\perp}$ 

is defined by  $a \in b^{\cup} \Delta(b)$ , is symmetric with parameters

$$\left(\frac{q^{n}-1}{q-1}, \frac{q^{n-1}-1}{q-1}, \frac{q^{n-2}-1}{q-1}\right)$$

and G is a automorphism group of  $\mathcal{D}$  and primitive on  $\Omega$ .

Now we prove that  $\mathscr{D}$  is the projective space  $\mathscr{Q}(n-1,q)$ , namely,  $\mathscr{D}$  is isomorphic to the design of points and hyperplanes of the desarguesian projective space  $\mathscr{Q}(n-1,q)$  of dimension n-1 over  $F_q$ . For two distinct points  $a,b\in \Omega$ , we define a line by

$$a+b=\bigcap_{a,b\in x^{\perp}}x^{\perp}$$
.

a+b is called a line of singular type or a line of hyperbolic type according as  $a \in b^{\perp}$  or  $a \notin b^{\perp}$ . Then we have that

- (1) If  $x \in a+b$ ,  $x \neq a$ , then a+x=a+b, and  $a \in b^{\perp}$  if and only if  $x \in b^{\perp}$ , and so a+b and the type of a+b are uniquely determined by any two distinct points in a+b ([3], § 7, ii)).
  - (2)  $G_{a\cup 4(a)}$  fixes all lines through a ([3], § 7, v)).
- (3)  $|G_{a\cup d(a)}|$  divides h-1, where h is the number of points on a line of hyperbolic type ([3], § 7, viii)).

Let a+b, a and  $b\in\Omega$ , be a singular line and put  $|a+b|=1+m_1$ . Then there are  $(|a^{\perp}|-1)/m_1$  lines in  $a^{\perp}$  through a and  $(|a^{\perp}\cap b^{\perp}|-1)/m_1$  lines in  $a^{\perp}\cap b^{\perp}$  through a. Hence  $m_1|q=(|a^{\perp}|-1, |a^{\perp}\cap b^{\perp}|-1)$ . For  $d\in A(a)\cap \Gamma(b)$ ,

$$|G_{a,b}:G_{a,b,d}| = \frac{|G_b:G_{b,d}|}{|G_b:G_{a,b}|} \cdot |G_{b,d}:G_{a,b,d}|$$

$$= \frac{q^{n-2}}{1+q+\dots+q^{n-3}} \cdot |G_{b,d}:G_{a,b,d}|.$$

Hence  $q^{n-2}||d^{G_{a,b}}|$ . Then, since  $\Delta(a)\cap \Gamma(b)$  is invariant by  $G_{a,b}$  and  $|\Delta(a)\cap \Gamma(b)|=q^{n-2}$ ,  $G_{a,b}$  is transitive on  $\Delta(a)\cap \Gamma(b)$ . Therefore a Sylow p-subgroup P of  $G_{a,b}$  is transitive on  $\Delta(a)\cap \Gamma(b)$ . Let us assume that  $m_1 < q$ . Since  $|a^{\perp}-(a+b)|=(q^{n-1}-q)/(q-1)-m_1$ ,  $pm_1 \nmid |a^{\perp}-(a+b)|$ . Since P acts on  $a^{\perp}-(a+b)$ , there is a point  $c \in a^{\perp}-(a+b)$  such that  $|c^P| \leq m_1$ . Then for each point d of  $\Delta(a)\cap \Gamma(b)$ ,

$$|d^{P_{\sigma}}| = |P_{\sigma}: P_{c,d}| = \frac{|P: P_{c,d}|}{|P: P_{c}|} \ge \frac{|P: P_{d}|}{|P: P_{c}|} \ge \frac{q^{n-2}}{m_{1}}.$$

Since  $a+c \not\ni b$ , we can choose  $d^{\perp}$  such that  $a, c \in d^{\perp}$  and  $b \not\in d^{\perp}$ , namely,  $d \in a^{\perp} \cap c^{\perp}$  and  $d \not\in b^{\perp}$ . Then  $|d^{P_c}| \leq |d^{G_{a,c}}| \leq \lambda = (q^{n-2}-1)/(q-1)-2$ . Thus

$$\frac{q^{n-2}-1}{q-1}-2 \ge \frac{q^{n-2}}{m_1} \ge \frac{pq^{n-2}}{q} = pq^{n-3},$$

which is impossible. Hence every singular line contains exactly 1+q points. Next let a+b, a and  $b \in \Omega$ , be a hyperbolic line and put  $|a+b| = 1 + m_2$ . Then we have

$$1 + m_2 \le \frac{(q^n - 1)/(q - 1) - (q^{n-2} - 1)/(q - 1)}{(q^{n-1} - 1)/(q - 1) - (q^{n-2} - 1)/(q - 1)} = 1 + q$$

([1], p. 65). On the other hand, from the assumption  $q \le |G_{a \cup d(a)}|$  and (3), we have  $q \le m_2$ . Hence |a+b|=1+q. Thus  $\mathscr{D}$  is a symmetric block design with parameters  $((q^n-1)/(q-1), (q^{n-1}-1)/(q-1), (q^{n-2}-1)/(q-1))$  and each line contains 1+q points.

According to a result of Dembowski-Wagner ([2]. Theorem),  $\mathscr{D}$  is the block design of  $\mathscr{Q}(n-1,q)$ . Since the coorespondence  $a \leftrightarrow a^{\perp}$  defines a polarity  $\delta$  of  $\mathscr{D}$  and  $a \in a^{\perp}$ ,  $\delta$  is a symplectic polarity of  $\mathscr{D}$  and the action of  $g \in G$  commutes with  $\delta$ . Since  $G_{a \cup_{d(a)}} \neq 1$ , G contains a  $(a, a^{\perp})$ -elation for each  $a \in \mathscr{Q}$ . Then the conclusion of our theorem follows by a result of HigmaneMclaughlin ([4], Theorem 1).

Department of Mathematics Hokkaido University Sapporo Japan.

## References

- [1] DEMBOWSKI P.: Finite geometries, Springer 1968.
- [2] DEMBOWSKI P.—WAGNER A.: Some characterizations of finite projective spaces. Arch. der Math. 11, 465-469 (1960).
- [3] HIGMAN D. G.: Finite permutation groups of rahk 3. Math. Zeitschr. 86, 145-156 (1964).
- [4] HIGMAN D. G.—MCLAUGHLIN J. E.: Rank 3 subgroups of finite symplectic and unitary groups. J. reine u. Angew. Math. 218, 174-189 (1965).
- [5] KANTOR W. M.: Note on symmetric desings and projective spaces. Math. Zeitschr. 122, 61-62 (1971).

(Received November 2, 1974)