On a generalization of F. M. Markel' theorem

By Makoto HAYASHI

The purpose of this paper is to prove the following result.

Theorem. Let G be a non-identity finite group satisfyin the following conditions (a) and (b): (a) If the orders of centrlizers of two elements are equal, they are conjugate in G. (b) A Sylow 2-subgroup of G is abelian. Then G is isomorphic to the symmetric group of degree 3.

The notation in this paper is standard. (See. D. Gorenstein [2])

LEMMA 1. Let G be a finite group satisfying the condition (a). Then x is cojugate to x^k , for any element x in G, where k is prime to the order of x.

Proof. Obvious.

LEMMA 2. Let G be a finite solvable group, S a Sylow 2-subgroup of G. If the order of x is odd and x is in $N_{G}(S)$, then x is a non-real element.

PROOF. We prove by induction on the order of G. Let K be a minimal normal subgroup of G. If K does not contain x, the image of x in G/K is non-real by induction. So x is non-real in this case. If K contains x, we have that $[x, S] \subseteq S \cap K = 1$. Since $C_{G}(x)$ contains a Sylow 2-subgroup of G, we have that the order of $N_{G}(\langle x \rangle)/C_{G}(x)$ is odd. Hence x is not a real element in this case, too.

Now we separate the proof of the theorem into two parts; G is solvable and G is nonsolvable.

Part (1). G is solvable.

LEMMA 3. $G = O_{2',2}(G)$.

PROOF. By lemma 2, we have that $N_{\sigma}(S) = S$. Since Sylow 2-subgroups of G are abelian, Burnside' transfer theorem implies the lemma.

Lemma 4. A Sylow 2-subgroup of G is elementary abelian.

Proof. Obviaus.

From now on we use the following notation throughout this paper; H=O(G). We fix a prime p such that $O^p(H) \lesssim H$ and set $H_0=O^p(H)$.

LEMMA 5. p=3.

PROOF. Let U be the inverse image of the Frattini subgroup of H/H_0

in H and set $\overline{G} = G/U$. For the non-identity element \overline{y} in \overline{G} , \overline{y} is conjugate to \overline{y}^k , $k=1,2,\cdots,p-1$ by lemma 1. By the structure of \overline{G} , we have that p-1=2.

If H is a 3-group, we have the theorem by F. M. Markel [3]. So we may assume that H is not a 3-group and will derive a contradiction. We fix a prime q such that $O^q(H_0) \lesssim H_0$. We note q is neither 2 nor 3. Let U_1 denote the inverse image of the Frattini subgroup of H_0/O^qH_0 in H_0 . Set $\overline{V} = H_0/U_1$.

LEMMA 6. q-1 is divisible by 2 and 3.

PROOF. Since q is neither 2 nor 3, we have the lemma by lemma 1. Lemma 7. H is a 3-group.

PROOF. We use the notation mentioned above. Suppose false. We set $\overline{G} = G/U_1$, \overline{S} a Sylow 2-subgroup of \overline{G} .

Let $\overline{V} = \overline{V}_1 \times \cdots \times \overline{V}_r$, where \overline{V}_i is an irreducible component of \overline{V} , under the conjugate action of \overline{S} , $1 \le i \le r$. Since \overline{S} is an elementary abelian 2-group and \overline{V}_1 is \overline{S} -irreducible, we have that $|\overline{S}:C_{\overline{S}}(\overline{V}_1)|=2$. As the order of \overline{V}_1 is neither 2 nor 3, by lemma 1, there exists a 3-element \overline{y} acting on \overline{V}_1 . Since \overline{V}_1 is cyclic, we may assume that \overline{y} normalizes \overline{S} . Then \overline{y} is non-real by lemma 2, so the inverse image of \overline{y} is non-real. This contradicts the condition (a).

Part (2). G is nonsolvable.

By lemma 1, we have that $O^{2'}(G) = G$. So H. Bender [1] imaplies that G/O(G) is a direct product of an abelan 2-group and finite simple groups with abelian Sylow 2-subgroups; $G/O(G) \cong L_1 \times \cdots \times L_s$, where L_i is isomorphic one of the following groups, $1 \le i \le s$; (i) an abelian 2-group, (ii) $L_2(2^n)$, $2 \le n$, (iii) $L_2(q)$, $q \equiv 3$ or 5 (mod. 8), (iv) Janko' simple group of the order 175,560 or (v) Ree type. We may assume that one of the component is listed from (ii) to (v). If it is of (ii)-type, then the cyclic subgroup of the order 2^n+1 in it does not satisfy the conclusion of lemma 1. If it is of (iii)-type, by the same reason, the subgroup of the order q+1/2 or q-1/2 does not satisfy the conclusion of lemma 1. If it is of (iv)-type the subgroup of the order 5 in it does not satisfy it. Finally if it is of (v)-type non-identity 3-elements in it are non-real. In every case, we have a contradiction. The proof is complete.

Department of Mathematics Hokkaido University

References

- [1] H. BENDER: On groups with abelian Sylow 2-subgroups. Math. Zeit. 117 (1970).
- [2] D. GORENSTEIN: Finite Groups. Harper Row (1968).
- [3] F. M. MARKEL: Groups with many conjugate elements. J. of Algebra 27 (1973).

(Received September 3, 1974)