On a PL embedded 2-sphere in 4-manifold

34

By Kazuaki Kobayashi

§ 0.
Let $M^{2 n}$ be a simply connected differentiable manifold, and let $\xi \in \pi_{n}\left(M^{2 n}\right)$ be a given homotopy class of maps $S^{n} \rightarrow M^{2 n}$. It is known that if $n>2$, the class ξ can be represented by a differentiable imbedding $f: S^{n} \rightarrow M^{2 n}$. This follows from a reasoning similar to the one used by H. Whitney to prove that every differentiable n-manifold can be differentiably imbedded in Euclidean $2 n$ space. For $n=1$, let $F_{p, q}$ be a compact connected orientable surface of genus p with q boundary components, where q may be equal to 0 . Let $a_{1}, \cdots, a_{p}, b_{1}, \cdots, b_{p}, C_{1}, \cdots, C_{q-1}$ be standard generators for the $H\left(F_{p, q}: Z\right)$. Here the C_{i} correspond to consistently oriented boundary circles (one is omitted because it is homologous to the sum of the others), and the a_{i} and b_{i} are standard curves on $F_{p, q}$, chosen so that $a_{i} \cap a_{j}=b_{i}$ $\cap b_{j}=a_{i} \cap b_{j}=\phi$ if $i \neq j$ and a_{i}, b_{i} intersect nicely at one point. Then S. Suzuki [5] proved the following:

Suzuki's Theorem. A non zero homology class $\sum_{i=1}^{p} \alpha_{i} a_{i}+\sum_{i=1}^{p} \beta_{i} b_{i}+$ $\sum_{i=1}^{a-1} r_{i} C_{i}$ of $H_{1}\left(F_{p, q}: Z\right)$ is representable by a simple closed curve on $F_{p, q}$ if and only if one of the following two conditions is satisfied:
(1) Not all the α_{i} and β_{i} are zero and the g.c.d $\left(\alpha_{1}, \cdots, \alpha_{p}, \beta_{1}, \cdots, \beta_{p}\right)$ $=1$,
(2) $\alpha_{i}=\beta_{i}=0$ for $1 \leqq i \leqq p$ and $\left|\gamma_{i}\right| \leqq 1$ for $1 \leqq i \leqq q-1$ and all non zero γ_{i} have the same sign.

For $n=2$, whether or not $\xi \in H_{2}\left(M^{4}\right)$ is representable by a differentiable imbedding $f: S^{2} \rightarrow M^{4}$ depends on the class $\boldsymbol{\xi}$ ([2], [6]). On the other hands there exists no example whose class $\xi \in H_{2}\left(M^{4}\right)$ is not representable by a $P L$ imbedding $f: S^{2} \rightarrow M^{4}$. So we attack a problem representing a class $\xi \in H_{2}\left(M^{4}\right)$ by a $P L$ embedding $f: S^{2} \rightarrow M^{4}$. And we obtain a following.

Theorem. Let M^{4} be a 1-connected closed PL 4-manifold. Then any 2-dim. homology class $\xi \in H_{2}\left(M \# k\left(S^{2} \times S^{2}\right)\right)$ is representable by a $P L$ embedding $f: S^{2} \rightarrow M \# k\left(S^{2} \times S^{2}\right)$ for some $k \geqq 0$ where $M \# k\left(S^{2} \times S^{2}\right)$ is a connected sum of M with k-copies of $S^{2} \times S^{2}$.

§ 1.

Proposition 1. (Kervaire and Milnor [2]) Let M be a closed PL 4-manifold containing a 2-dimensional subcomplex K such that
(1) $M-K$ is acyclic, and
(2) The boundary of a regular neighborhood of K is a 3-sphere. Then, every homology class $\xi \in H_{2}(M: Z)$ can be represented by a PL imbedded 2-sphere.

Corollary 1. Let M^{4} be a closed connected PL 4-manifold containing a 2-dimensional subcomplex K such that M-Int D^{4} collapses to K (i.e. M Int $D^{4} \backslash K$).
Then every homology class $\xi \in H_{2}(M: Z)$ can be represented by a PL imbedded 2-sphere.

Proof. Since M-Int $D \backslash K, U=M$-Int D is a regular neighborhood of K in M. So $\partial U=\partial D^{4} \cong S^{3}$ and $M-K \simeq M-\left(M\right.$-Int $\left.D^{4}\right) \simeq D^{4}$. Hence $M-K$ is acyclic. So by Proposition 1, every class $\xi \in H_{2}(M: Z)$ can be represented by a $P L$ embedded 2 -sphere.

Corollary 2. Let M^{4} be a closed connected PL 4-manifold with the following handle decomposition,

$$
\begin{aligned}
& M^{4}=D_{0}^{4} \cup \underset{i}{\cup}\left(D^{1} \times D^{3}\right)_{k} \cup \underset{j}{\cup}\left(D^{2} \times D^{2}\right)_{j} \cup D_{1}^{4} \quad \text { or } \\
& M^{4}=D_{0}^{4} \cup \underset{j}{\cup}\left(D^{2} \times D^{2}\right)_{j} \cup \underset{k}{\cup}\left(D^{3} \times D^{1}\right)_{k} \cup D_{1}^{4}
\end{aligned}
$$

(i.e. M^{4} has a handle decomposition without 3 -handles or without 1-handles). Then every homology class $\xi \in H_{2}\left(M^{4}\right)$ is representable by a PL imbedded 2-sphere.

Proof. If $M^{4}=D_{0}^{4} \cup \underset{i}{\cup}\left(D_{1} \times D^{3}\right)_{i} \cup \underset{j}{\cup}\left(D^{2} \times D^{2}\right)_{j} \cup D_{i}^{4}$,

$$
\begin{aligned}
\overline{M-D_{1}^{4}} & D_{0}^{4} \cup \cup_{i}^{\cup}\left(D^{1} \times\{0\}_{i} \cup \bigcup_{j} \cup\left(D^{2} \times\{0\}\right)_{j}\right. \\
& \searrow\left\{c *\left(\left(\cup_{i}\left(D^{1} \times\{0\}\right)_{i} \cup \cup_{j} \cup\left(D^{2} \times\{0\}\right)_{j} \cap \partial D_{0}^{4}\right)\right\}\right. \\
& \cup \bigcup_{i}\left(D^{1} \times\{0\}\right)_{i} \cup \bigcup_{j}\left(D^{2} \times\{0\}\right)_{j} \equiv K
\end{aligned}
$$

where c is the center of D_{0}^{4} (see also [4. P. 83]). Then K is a 2 -dim subcomplex of K which satisfies the conditions (1), (2) of Proposition 1 because $\overline{M-D^{4}}$ is a regular neighborhood of K in M. Hence every homology class $\xi \in H_{2}(M: Z)$ can be represented by a $P L$ imbedded 2 -sphere. If $M^{4}=D_{0}^{4} \cup \cup_{j}\left(D^{2} \times D^{2}\right)_{j} \cup \cup_{k}\left(D^{3} \times D^{1}\right)_{k} \cup D_{1}^{k}$, we may take the dual handle decomposition of the above ([4, p. 82]).

Then M has a handle decomposition without 3 -handles and so the conclusion follows from the above proof.

Remark. $P C(2), S^{2} \times S^{2}$ and non-trivial S^{2} boundle over S^{2} satisfy the hypothesis of Proposition 1.

Corollary 3. Let $P\left(T, m_{i}\right)$ be a 4-manifold obtained by plumbing according to the weighted tree $\left(T, m_{i}\right)$ such that $\partial P\left(T, m_{i}\right) \cong S^{3}($ see $[1, p .56])$. And let $M=P\left(T, m_{i}\right) \bigcup_{\exists} D^{4}$.
Then every homology class $\xi \in H_{2}(M: Z)$ is representable by a PL imbedded 2-sphere in M.

Proof. $\overline{M-D^{4}}=P\left(T, m_{i}\right) \backslash S^{2} \vee \cdots \vee S^{2} \equiv K$
where each S^{2} is a zero section of D^{2}-bundle over S^{2}. And since $\overline{M-D^{4}}$ is a regular nighborhood of K in M, the conclusion follows from Proposition 1.

Theorem. Let M^{4} be a 1-connected closed PL 4-manifold. Then any 2-dim. homology class $\xi \in H_{2}\left(M \# k\left(S^{2} \times S^{2}\right)\right)$ is representable by a PL embed$\operatorname{ding} f: S^{2} \rightarrow M \# k\left(S^{2} \times S^{2}\right)$ for some $k \geqq 0$ where $M \# k\left(S^{2} \times S^{2}\right)$ is a connected sum of M with k-copies of $S^{2} \times S^{2}$.

Proof. Let $M^{4}=D_{0}^{4} \cup \bigcup_{i} \cup\left(D^{1} \times D^{3}\right)_{i} \cup \bigcup_{j} \cup\left(D^{2} \times D^{2}\right)_{j} \cup \underset{k}{\cup}\left(D^{3} \times D_{1}\right)_{k} \cup D_{1}^{4}$.
Since every 2 -dim. homology class of closed 4 -manifold without 1 -handles is representable by a $P L$ imbedded 2 -sphere by Corollary 2 to Proposition 1, we will show that all 1-handles of M can be eliminated by attaching $S^{2} \times S^{2}$. Let $\phi_{1}:\left(\partial D^{1} \times D^{3}\right)_{1} \rightarrow \partial D_{0}^{4}$ be an attaching map. Then

$$
\begin{gathered}
D_{0}^{4} \cup\left(D_{1} \times D^{3}\right)_{1} \cong S^{1} \times D^{3} . \quad \text { And let } \\
S^{2} \times S^{2}=D_{2}^{4} \cup \bigcup_{t=1}^{2}\left(D^{2} \times D^{2}\right)_{)_{4}} \cup D_{3}^{4} \quad \text { and } \\
W_{1}=\left(M-\operatorname{Int}\left(D_{\left.\left.D_{\phi_{1}}^{4} \cup\left(D^{1} \times D^{3}\right)_{1}\right)\right) \bigcup_{a}\left(S^{2} \times S^{2}-\operatorname{Int}\left(D_{2}^{4} \cup\left(D^{2} \times D^{2}\right)_{1}\right)\right)}\right.\right.
\end{gathered}
$$

where $\quad \alpha: \quad S^{1} \times S^{2} \rightarrow S^{1} \times S^{2}$ is a $P L$ homeomorphism given by $\alpha(x, y)=(x, y)$ since

$$
\begin{aligned}
& \partial\left(M-\operatorname{Int}\left(D_{\phi_{1}^{4}}^{4} \cup\left(D^{1} \times D^{3}\right)_{1}\right)\right) \cong S^{1} \times S^{2} \quad \text { and } \\
& \partial\left(S^{2} \times S^{2}-\operatorname{Int}\left(D_{2}^{4} \cup\left(D^{2} \times D^{2}\right)_{1}\right)\right) \cong S^{1} \times S^{2} .
\end{aligned}
$$

Then $\quad W_{1} \cong M \#\left(S^{2} \times S^{2}\right)$. For $S^{1} \times\{0\} \subset S^{1} \times D^{3} \cong D_{0_{\phi_{1}}^{4} \cup\left(D^{1} \times D^{3}\right)_{1}, ~}^{\text {a }}$
is homotopic to a point in M since $\pi_{1}(M)=\{1\}$. And there is a nonsingular 2-ball B^{2} with $\partial B^{2}=S^{1} \times\{0\}$ because $\operatorname{dim} M=4$. And a regular neighborhood $U\left(B^{2}, M\right)$ is a 4 -ball containing $S^{1} \times\{0\}$ in its interior. So
we may assume that there is a 4 -ball D^{4} in M such that $\operatorname{Int} D^{4} \supset D_{0}^{4}$ $\bigcup_{\phi_{1}}\left(D^{1} \times D^{3}\right)_{1}$.
Then

$$
\begin{aligned}
& W_{1}=\left(M-\operatorname{Int}\left(D_{\underset{\phi_{1}}{4}}^{\bigcup_{1}}\left(D^{1} \times D^{3}\right)_{1}\right)\right) \bigcup_{a}\left(S^{2} \times S^{2}-\operatorname{Int}\left(D_{2}^{4} \cup\left(D^{2} \times D^{2}\right)_{1}\right)\right) \\
& \cong\left(M-\operatorname{Int}\left(S^{1} \times D^{3}\right) \cup_{a}^{\cup}\left(D^{2} \times S^{2}\right)\right. \\
& =\left(M-\operatorname{Int} D^{4}\right) \bigcup_{\partial D^{4}}\left(D^{4}-\operatorname{Int}\left(S^{1} \times D^{3}\right)\right) \cup_{a}\left(D^{2} \times S^{2}\right) . \\
& \left(D^{4}-\operatorname{Int}\left(S^{1} \times D^{3}\right)\right) \bigcup_{a}\left(D^{2} \times S^{2}\right) \\
& \cong\left(D^{2} \times S^{2}-\operatorname{Int} \tilde{D}^{4}\right)_{a} \cup\left(D^{2} \times S^{2}\right) \cong S^{2} \times S^{2}-\operatorname{Int} \tilde{D}^{4}
\end{aligned}
$$

Here
because $\left.\quad\left(D^{4}-\operatorname{Int}\left(S^{1} \times D^{3}\right)\right) \cong S^{4}-\operatorname{Int}\left(S^{1} \times D^{3}\right)\right)-\operatorname{Int} \tilde{D}^{4} \cong\left(D^{2} \times S^{2}-\operatorname{Int} \tilde{D}^{4}\right)$
where $\quad S^{4}=D^{4} \cup_{\partial} \tilde{D}^{4}$ and $\tilde{D}^{4} \subset \operatorname{Int}\left(D^{2} \times S^{2}\right)$. Hence

$$
W_{1} \cong\left(M-\operatorname{Int} D^{4}\right)_{\partial D^{4}}^{\cup}\left(S^{2} \times S^{2}-\operatorname{Int} \tilde{D}^{4}\right)=M \#\left(S^{2} \times S^{2}\right) .
$$

And W_{1} has a handle decomposition

$$
W_{1}=D_{3}^{4} \cup\left(D^{2} \times D^{2}\right)_{2} \cup_{\underset{a}{c}}^{\cup(\cup 1}\left(\cup\left(D^{1} \times D^{3}\right)_{i} \cup \underset{j}{\cup}\left(D^{2} \times D^{2}\right)_{j} \cup \underset{k}{\cup}\left(D^{3} \times D^{1}\right)_{k} \cup D_{i}^{4}\right)
$$

(i.e. one 1 -handle was eliminated and one 2 -handle was added.) where $\bar{\psi}$ is given by following;
since $S^{2} \times S^{2}$ is a closed manifold, an attaching map
$\psi: \partial D_{3}^{4} \rightarrow \partial\left(D_{2}^{4} \cup \bigcup_{l=1}^{2}\left(D^{2} \times D^{2}\right)_{l}\right) \quad$ is a homeomorphism
onto and

$$
\left(D^{2} \times \partial D^{2}\right)_{2} \subset \partial\left(D_{2}^{4} \cup \bigcup_{l=1}^{2}\left(D^{2} \times D^{2}\right)_{l}\right) .
$$

So we define $\bar{\psi}=\phi^{-1} \mid\left(D^{2} \times \partial D^{2}\right)_{2}$. And for \tilde{a} if ϕ is an attaching map in M of a handle in

$$
\bigcup_{i \geq 2}\left(D^{1} \times D^{3}\right)_{i} \cup \cup_{j} \cup\left(D^{2} \times D^{2}\right)_{j} \cup \cup_{k} \cup\left(D^{3} \times D^{1}\right)_{k} \cup D_{2}^{4},
$$

$\alpha^{-1} \phi$ is an attaching map in W_{1} of a handle in

$$
\cup_{i \geq 2}\left(D^{1} \times D^{3}\right)_{i} \cup \cup_{j}\left(D^{2} \times D^{2}\right)_{j} \cup \cup_{k}^{\cup}\left(D^{3} \times D^{1}\right)_{k} \cup D_{2}^{4} .
$$

So we denote $\tilde{a}=\alpha^{-1} \phi$.
By reordering lemma ([4. p. 76]) we may assume

$$
W_{1}=D_{i}^{4} \cup \underset{i \pi}{4} \cup\left(D^{1} \times D^{3}\right)_{i} \cup\left(D^{2} \times D^{2}\right)_{2} \cup\left(\cup_{\bar{a}} \cup\left(D^{2} \times D^{2}\right)_{j} \cup \underset{k}{\cup} \cup\left(D^{3} \times D^{1}\right)_{k} \cup D_{1}^{4}\right) .
$$

Next for $D_{3}^{4} \cup\left(D^{1} \times D^{3}\right)_{2}$ we do same procedure as above and replace it

tinue this steps until all 1-handles can be eliminated. Finally $W_{k}=M \# k\left(S^{2}\right.$ $\times S^{2}$) has a handle decomposition without 1 -handles where k is the number of 1 -handles of the original handle decomposition of M.

Remark. For a differentiable case, there is an example such that some class $\xi \oplus 0 \in H_{2}(M) \oplus H_{2}\left(\# k\left(S^{2} \times S^{2}\right)\right)$ can not be represented by a differentiable imbedding $f: S^{2} \rightarrow M \# k\left(S^{2} \times S^{2}\right)$ for any $k \geqq 0$. Let $M=S^{2} \times S^{2}$ and $\xi=2(\alpha+\beta) \in H_{2}\left(S^{2} \times S^{2}\right)$ where α and β are the classes representing $S^{2} \times$ $p, q \times S^{2}$ respectively. Then by ([2. Cor. 1]) ξ can not be represented by a differentiable imbedding $f: S^{2} \rightarrow S^{2} \times S^{2}$. But since the signature $\sigma\left(S^{2} \times S^{2}\right)$ is zero, $\xi \oplus 0 \in H_{2}\left(S^{2} \times S^{2}\right) \oplus H_{2}\left(\# k\left(S^{2} \times S^{2}\right)\right)$ can not be represented by a differentiable imbedding $f: S^{2} \rightarrow \#(k+1)\left(S^{2} \times S^{2}\right)$ for any $k \geqq 0$ (see [2. Th. 1]).

Department of Mathematics
Hokkaido University

References

[1] F. Hirzebruch, W. D. Neumann and S. S. Koh: differentiable manifold and quadratic forms, Marcel Dekker, Inc. New York 1971.
[2] M. A. Kervaire and J. W. Milnor: On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. 47 (1961) 1651-1657.
[3] J. W. Milnor: On simply connected 4-manifolds, Symposium International de Topologia Algebrica, Mexico (1958), 122-128.
[4] C. P. RoURKe and B. J. Sanderson : Introduction to piecewise linear topology, Ergeb. Math. und ihrer Grenzgebiete, 69, Springer Verlag.
[5] S. SUZUKI: Representations of 1-homology classes of bounded surfaces, Proc. Japan Acad. 46 (1970) 1096-1098.
[6] C. T. C. Wall: Diffeomorphism of 4-manifolds, J. London Math. Soc., 39 (1964) 131-140.
[7] C. T. C. Wall: On simply connected 4-manifold, J. London Math. Soc. 39 (1964) 141-149.

