Analytic functions in a neighbourhood of irregular boundary points

By Zenjiro Kuramochi
(Received April 30, 1975)

The present paper is a continuation of the previous paper with title "Analytic functions in a lacunary end of a Riemann surface" ${ }^{11}$. We use the same notions and terminologies in the previous one. Let G be an end of a Riemann surface $\in O_{g}$ (we denote by O_{θ} the class of Riemann surfaces with null boundary) and $G^{\prime}=G-F$ be a lacunary end and let $p \in \Delta_{1}(M)$ be a minimal boundary point relative to Martin's topology M over G with irregularity $\delta(p)=\varlimsup_{\substack{M \\ z \rightarrow p}} G\left(z, p_{0}\right)>0$, where $G\left(z, p_{0}\right): p_{0} \in G^{\prime}$ is a Green's function of G^{\prime}. Then Theorems 2,3 and 4 in the previous show that analytic functions in G^{\prime} of some classes have similar behaviour at p as p is an inner point of G^{\prime}. We shall show these theoremes are valid not only for the above domains but also for any Riemann surface $\notin O_{G}$. The extensions of Fatou and Beurling's theorems express the behaviour of analytic functions on almost all boundary points but have no effect on the small set, $\left\{p \in \Delta_{1}(M): \delta(p)>\delta\right\}$. The purpose of this paper is to study analytic functions on the small set, to extend theorems in the previous one and to show some examples. Let G be a domain in a Riemann surface R. Through this paper we suppose ∂G consists of at most a countably infinite number of analytic curves clustering nowhere in R. The following lemma is useful.

Lemma $5^{2)}$. Let R be a Riemann surface $\in O_{g}$ and let G be a domain and $U_{i}(z)\left(i=1,2, \cdots, i_{0}\right)$ be a harmonic function in G such that $D\left(U_{i}(z)\right)$ $<\infty$. Then there exists a sequence of curves $\left\{\Gamma_{n}\right\}$ in R such that Γ_{n} separates a fixed point p_{0} from the ideal boundary, $\Gamma_{n} \rightarrow$ ideal boundary of R and $\int_{r_{n} \cap \theta}\left|\frac{\partial}{\partial n} U_{i}(z)\right| d s \rightarrow 0$ as $n \rightarrow \infty$ for any i.

Generalized Gree's function ${ }^{2)}$ (abbreviated by G.G.). Let R be a Riemann surface with an exhaustion $\left\{R_{n}\right\}(n=0,1,2, \cdots)$ and G be a domain in R. Let $w_{n, n+i}(z)$ be a harmonic function in $R_{n+i}-\left(G \cap\left(R_{n+i}-R_{n}\right)\right)$ such that $w_{n, n+i}(z)=0$ on $\partial R_{n+i}-G$ and $=1$ on $G \cap\left(R_{n+i}-R_{n}\right)$. We call $\lim _{n}$ $\lim _{i} w_{n, n+i}(z)$ a H.M. (harmonic measure) of the boundary determined by G
and denote it by $w(G \cap B, z)$. Let $V(z)$ be a positive harmonic function in R except at most a set of capacity zero where $V(z)=\infty$. If $w\left(G_{\delta} \cap B, z\right)$ $=0$ for any $\delta>0$ and $D(\min (M, V(z)) \leqq M \alpha: \alpha$ is a const. for any M, we call $V(z)$ a G.G., where $G_{\dot{\delta}}=\{z \in R: V(z) \geqq \delta\}$. Then it is known

Lemma 6. 1$)^{3)}$ Let $V(z)$ be a non const. G.G. Let $\widehat{G}_{\dot{\delta}}$ be the symmetric image of G_{δ} with respect to $\partial G_{\dot{\delta}}=\{z \in R: V(z)=\delta\}$. Identify $\partial G_{\dot{\delta}}$ with $\partial \widetilde{G}_{\dot{\delta}}$. Then we have a Riemann surface $\widetilde{\boldsymbol{G}}_{\dot{\delta}}$ called a double of $\widetilde{G}_{\dot{\delta}}$. Then $\widetilde{\boldsymbol{G}}_{\dot{\delta}} \in O_{g}$.
2) By 1) and by Lemma 5, we see there exists a const. α such that $D(\min (M, V(z)))=M \alpha$ and $\int_{\partial \Theta_{M}} \frac{\partial}{\partial n} V(z) d s=\alpha$ for any M and $\sup _{z \in R} V(z)=\infty$.
3) Let $V(z)$ be a G.G. and let $W(z)$ be a positive harmonic function $\leqq V(z)^{4}$. Then $W(z)$ is a G.G.
4) A Green's function of R is a G.G. with $D\left(\min \left(M, G\left(z, p_{0}\right)\right)\right)=2 \pi M$. Let p_{i} be a sequence such that $G\left(z, p_{i}\right) \rightarrow a$ non const. harmonic function $G\left(z,\left\{p_{i}\right\}\right)$. Then $G\left(z,\left\{p_{i}\right\}\right)$ is a G.G. with $D\left(\min \left(M, G\left(z,\left\{p_{i}\right\}\right)\right)\right) \leqq 2 \pi M$.
G-Martin's topology ${ }^{5}$, GM. Let R be a Riemann surface $\ddagger O_{g}$ and let $G\left(z, p_{0}\right)$ be a Green's function of R. Put $R^{\prime}=\left\{z \in R: G\left(z, p_{0}\right)>\delta\right\}: \delta>0$. Then the doubled surface \widetilde{R}^{\prime} with respect to ∂R^{\prime} is in O_{g}. Let $G^{\prime}\left(z, p_{i}\right)$ be a Green's function of R^{\prime} and let $\left\{p_{i}\right\}$ be a sequence such that $p_{i} \rightarrow$ boundary of R and $G^{\prime}\left(z, p_{i}\right)$ converges to a harmonic function. Then we say $\left\{p_{i}\right\}$ determines a boundary point p and put $G^{\prime}(z, p)=\lim G^{\prime}\left(z, p_{i}\right)$. We denote by $B\left(R^{\prime}\right)$ the set of all boundary points. Then G-Martin's topology is introduced on $\bar{R}^{\prime}=R^{\prime}+B\left(R^{\prime}\right)$ as usual with

$$
\operatorname{dist}\left(p_{i}, p_{j}\right)=\sup _{z \in R_{0}}\left|\frac{G^{\prime}\left(z, p_{i}\right)}{1+G^{\prime}\left(z, p_{i}\right)}-\frac{G^{\prime}\left(z, p_{j}\right)}{1+G^{\prime}\left(z, p_{j}\right)}\right|: p_{i}, p_{i} \in \bar{R}^{\prime}
$$

where R_{0} is a compact set in R^{\prime}.
Then we see $G^{\prime}(z, p): p \in \bar{R}^{\prime}$ is a G.G. and $\int_{\partial V_{M^{\prime}}(p)} \frac{\partial}{\partial n} G^{\prime}(z, p) d s=2 \pi: p \in R^{\prime}$. Where $V_{M}(p)=\left\{z \in R^{\prime}: G^{\prime}(z, p)>M\right\}$. Let p and $q \in \bar{R}$. Then $\int_{\partial V_{\left.M^{(}\right)}} G^{\prime}(\zeta, p) \frac{\partial}{\partial n}$ $G^{\prime}(\zeta, q) d s \uparrow$ as $M \rightarrow \infty$. We define the value of $G^{\prime}(z, p)$ at q by $\lim _{M=\infty} \frac{1}{2 \pi}$ $\int_{\partial \nabla_{M^{(q)}}} G^{\prime}(\zeta, p) \frac{\partial}{\partial n} G^{\prime}(\zeta, q) d s$ also the mass $m(p)$ of $G^{\prime}(z, p)$ by $\frac{1}{2 \pi} \int_{\partial V_{M^{\prime}}(p)} \frac{\partial}{\partial n}$ $G^{\prime}(z, p) d s$. Then

LEMMA 7. 1) $G^{\prime}(p, q)=G^{\prime}(q, p), G^{\prime}(p, q)$ is lower semicontinuous on $\bar{R}^{\prime} \times \bar{R}^{\prime}, G^{\prime}(p, p)=\infty$, if $G^{\prime}(z, p)>0$ and $G^{\prime}(z, p)$ is continuous on $\bar{R}^{\prime}-p$ for $p \in R^{\prime}$.
2) $m(p)=1$ for $p \in R^{\prime}$ and $m(p) \geqq \frac{\eta}{2 k}$ for $p \in \bar{G}_{\eta}^{\prime} \cap B\left(R^{\prime}\right), G_{\eta}^{\prime}=\left\{z \in R^{\prime}\right.$: $\left.G^{\prime}\left(z, p_{0}\right)>\eta>0\right\}, k=\sup _{z \notin R_{0}} G^{\prime}\left(z, p_{0}\right)$, where R_{0} is a compact set with $R_{0} \ni p_{0}$.

Energy integral, capacities and transfinite diameters ${ }^{5}$) Let F be a closed set in R^{\prime}. Let $\left\{R_{n}\right\}$ be an exhaustion of R and let $\omega_{n}(z)$ be a harmonic function in $\left(R^{\prime} \cap R_{n}\right)-F$ such that $\omega_{n}(z)=1$ on F except capacity zero, $=0$ on $\partial R^{\prime} \cap R_{n}$ and $\frac{\partial}{\partial n} \omega_{n}(z)=0$ on $\left(\partial R_{n} \cap R^{\prime}\right)-F$. If there exists a const. M such that $D\left(\omega_{n}(z)\right)<M$ for any n, then $\omega_{n}(z)$ in mean \rightarrow a function $\omega(F, z)$ called C.P. (capacitary potential). Clearly $\omega(F, z)$ has M.D.I. (minimal Dirichlet integral) among all functions with value 1 on $F,=0$ on ∂R^{\prime} except capacity zero. In this case, $\widetilde{R}^{\prime}\left(\right.$ of $\left.R^{\prime}\right) \in O_{g}, \omega(F, z)=w(F, z)$. H.M. (harmonic measure of F). Let K be a compact set in R^{\prime}. Then evidently there exists a uniquely determined mass μ on K of unity such that the energy integral $I(\mu)=\frac{1}{4 \pi^{2}} \int G^{\prime}(p, q) d \mu(p) d \mu(q)$ is minimal and its potential $U(z)$ has the following properties: $U(z)=M \omega(K, z), I(\mu)=D(M \omega$ $(K, z))=2 M$. We define $\operatorname{Cap}(K)$ by $1 / I(\mu)=1 / 2 \pi M=D(\omega(K, z)) / 4 \pi^{2}$. We define $\operatorname{Cap}(F)$ of a closed set $F \subset \bar{R}^{\prime}$ by $\sup _{K \subset F} \operatorname{Cap}(K)$. Also we define transfinite diameter $D(F)$ by $\left.1 / D(F)=\lim _{n} \inf _{\substack{p_{i}, F F \\ p_{j} \in i=1}} \sum_{i=1}^{n} G^{\prime}\left(p_{i}, p_{j}\right)\right)_{n} C_{2}$. Put $1 / D^{M}(F)=\lim _{n}$ $\left.\inf _{\substack{p_{i} \in F_{i=1}^{j>}}}^{n} G^{\prime M}\left(p_{i}, p_{j}\right)\right)_{n} C_{2}$ and $D^{0}(F)=\lim _{M} D^{M}(F)$, where $G^{M}\left(p_{i}, p_{j}\right)=\min \left(M, G^{\prime}\left(p_{1}\right.\right.$, $p_{i t} p_{i \in}, F_{i=1}$
$\left.p_{j}\right)$). Then clearly $D(F) \leqq D^{0}(F)$.

Let $p \in \bar{R}^{\prime}$. Then by Green's formula and by Lemma 5 we have

$$
\begin{aligned}
& G^{\prime}(q, p)=\frac{1}{2 \pi} \int_{\partial V_{M}(p)} G^{\prime}(\zeta, q) \frac{\partial}{\partial n} G^{\prime}(\zeta, p) d s: \quad q \ddagger \bar{V}_{M}(p) \\
& M=\frac{1}{2 \pi} \int_{\partial V_{M}(p)} G^{\prime}(\zeta, q) \frac{\partial}{\partial n} G^{\prime}(\zeta, p) d s ; q \in V_{M}(p) .
\end{aligned}
$$

Put $\mathrm{d} \mu_{p}(\zeta)=\frac{1}{2 \pi} \frac{\partial}{\partial n} G^{\prime}(\zeta, p) d s$ on $\partial V_{M}(p)$. Then $G^{\prime M}(z, p)=M \omega\left(V_{m}(p), z\right)$ $=\int G^{\prime}(\zeta, z) d \mu_{p}(\zeta)$ and $\mu_{p}=0$ on $B\left(R^{\prime}\right)$. Let $p_{1}, p_{2}, \cdots, p_{n}$. Then $G^{\prime \mu}\left(z, p_{i}\right)$ $=\int G^{\prime}(z, \zeta) d \mu_{p_{i}}(\zeta)$ and

$$
\int G^{\prime M}\left(z, p_{i}\right) d \mu_{p_{j}}(z) \leqq \int G^{\prime}\left(z, p_{i}\right) d \mu_{p_{j}}(z)=G^{\prime M}\left(p_{j}, p_{i}\right) .
$$

Put $\mu=\sum_{i=1}^{n} \mu_{p_{i}} / n$, then

$$
\begin{equation*}
I(\mu) \leqq \frac{1}{n^{2}} \sum_{\substack{i=1 \\ j=1}}^{n} G^{M}\left(p_{i}, p_{j}\right) \tag{1}
\end{equation*}
$$

Lemma 8. Let $A \subset \tilde{A}$ be closed sets in \bar{R}^{\prime} and suppose there exists a const. M such that $\frac{1}{2 \pi} \int_{\partial V_{M}(p) \cap \tilde{A}} \frac{\partial}{\partial n} G^{\prime}(z, p) d s \geqq \delta_{0}>0$ for any $p \in A$. Then

$$
1 / D^{\circ}(A) \geqq 1 / D^{M}(A) \geqq \delta_{0}^{2} / C \circ a p(\tilde{A})
$$

Proof. Let $d \mu_{p_{i}}=\frac{\partial}{\partial n} G^{\prime}\left(z, p_{i}\right) d s$ on $\partial V_{M}\left(p_{i}\right) \subset R^{\prime}: p_{i} \in A$ and let μ_{n}^{\prime} be the restriction $\mu_{n}=\sum_{i=1}^{n} \mu_{p_{i}} / n$ on $\tilde{A} \cap R^{\prime}$. Then $\int d \mu_{n}^{\prime} \geqq \delta_{0}>0$ and by (1)

$$
I\left(\mu_{n}^{\prime}\right) \leqq \frac{1}{n^{2}} \sum_{\substack{i=1 \\ j=1}}^{n} G^{M}\left(p_{i}, p_{j}\right)
$$

By the simmetry of $G^{M}\left(p_{i}, p_{j}\right)$

$$
\begin{gathered}
2\left(\sum_{\substack{i<j \\
i=1}}^{n} G^{\prime M}\left(p_{i}, p_{j}\right)\right)=\sum_{\substack{i=1 \\
j=1}}^{n} G^{M}\left(p_{i}, p_{j}\right)-\sum_{i=1}^{n} G^{M}\left(p_{i}, p_{i}\right) \quad \text { and } \\
1 / D_{n}^{M}(A)=\inf _{p_{i}, p_{j} \in A} \sum_{\substack{i \leq j \\
i=1}}^{n} G^{M}\left(p_{i}, p_{j}\right) /_{n} C_{2} \geqq\left(\frac{n}{n-1}\right) I\left(\mu_{n}^{\prime}\right)-\frac{M}{n-1} .
\end{gathered}
$$

Now μ_{n}^{\prime} is a mass only on $\tilde{A} \cap R^{\prime}$ with total mass $\geq \delta_{0}$. By definition $1 / C a \circ p(\tilde{A})$ is the infimum of energy integrals of all distributions on $\tilde{A} \cap R^{\prime}$ of mass unity. Hence $I\left(\mu_{n}^{\prime}\right) \geqq \delta_{0}^{2} / C a ̊ p(\tilde{A})$. Let $n \rightarrow \infty$. Then $1 / D^{M}(A) \geqq \delta_{0}^{2} /$ Cåp (\tilde{A}).

Capacity and transfinite diameters of irregular boundary points ${ }^{6)}$ $B\left(R^{\prime}\right) \cap \bar{G}_{\eta}: \quad G_{\eta}=\left\{z \in R^{\prime}: G^{\prime}\left(z, p_{0}\right)>\eta\right\}$. Put $F_{\eta}=\left\{z \in \bar{R}^{\prime}: G^{\prime}\left(z, p_{0}\right) \geqq \eta\right\}$. Then F_{η} is closed in \bar{R}^{\prime}. Let $\left\{R_{n}\right\}$ be an exhaustion of R (not of R^{\prime}). Then $\operatorname{Ca\dot {p}}\left(F_{\eta} \cap\left(\overline{R^{\prime}-R_{n}}\right)\right)=\lim _{i=\infty} \operatorname{Cap}\left(F_{\eta} \cap \bar{R}^{\prime} \cap\left(\overline{R_{n+i}-R_{n}}\right)\right) \leqq \frac{1}{4 \pi^{2}} D\left(\omega\left(F_{\eta}, z\right)\right) \leqq \frac{1}{\eta^{2}} D$ $\left(\min \left(\eta, G^{\prime}\left(z, p_{0}\right)\right)\right) \leqq \frac{2 \pi}{\eta}<\infty$. Let $\omega_{n}(z)$ be C.P. of $F_{\eta} \cap\left(R^{\prime}-R_{n}\right)$. Then $\omega_{n}(z)$ in mean \rightarrow a harmonic function $\omega(z)$. Now $\omega(z)=0$ on ∂R^{\prime} and $\leqq 1$. By $\widetilde{R} \in O_{g}, \omega(z)=0$. Hence

$$
\begin{equation*}
C \stackrel{\circ}{ } \rho\left(F_{\eta} \cap\left(R^{\prime}-R_{n}\right)\right) \downarrow 0 \text { as } n \rightarrow \infty . \tag{2}
\end{equation*}
$$

Theorem 7. Let $A=F_{\xi} \cap B\left(R^{\prime}\right): \xi>0$. Then $D(A) \leqq D^{\circ}(A)=0$.
Proof. Let $v\left(p_{0}\right)$ be a neighbourhood of p_{0}. Then there exists a const. k such that $G^{\prime}\left(z, p_{0}\right) \leqq k$ in $R^{\prime}-v\left(p_{0}\right)$. By Green's formula and by Lemma 5

$$
\frac{1}{2 \pi} \int_{\partial V_{M}(p) \Gamma \cdot\left(\frac{\varepsilon}{2}\right.} G^{\prime}\left(\zeta, p_{0}\right) \frac{\partial}{\partial n} G^{\prime}(\zeta, p) d s=G^{\prime}\left(p, p_{0}\right)-\frac{1}{2 \pi} \int_{\partial V_{M}(p)-\sigma^{\frac{\varepsilon}{2}}} G^{\prime}\left(\zeta, p_{0}\right) \frac{\partial}{\partial n} G^{\prime}(\zeta, p) d s
$$

Put $m^{\prime}(p)=\frac{1}{2 \pi} \int_{\partial V_{M}(p) \cap \sigma^{\frac{\epsilon}{2}}} \frac{\partial}{\partial n} G^{\prime}(\zeta, p) d s$, then $\quad \frac{1}{2 \pi} \int_{\partial V_{M}(p)-G \sigma^{\frac{\delta}{2}}} \frac{\partial}{\partial} G^{\prime}(\zeta, p) d s=1-m^{\prime}(p)$.
Suppose $p \in \bar{G}_{\dot{\varepsilon}}$, then by (3) we have

$$
\begin{equation*}
m^{\prime}(p) \geqq \frac{\xi}{2 k} \quad \text { for any } p \in \bar{G}_{\xi} \text { and for any } M<\infty \tag{4}
\end{equation*}
$$

 a number M_{n} such that $V_{M}(p) \subset R^{\prime}-R_{n}: M>M_{n}, p \in F_{\xi} \cap B\left(R^{\prime}\right)$. Hence we have

Proposition. Let ξ and n be numbers. Then there exists a number M such that $m(p) \geqq \frac{1}{2 \pi} \int_{\left(x^{\prime}-p^{2}\right.} \frac{\partial}{\partial n} G^{\prime}(\zeta, p) d s \geqq \frac{\xi}{2 k}$ for $M \geqq M_{n}$ and for $p \in F_{\xi}$ $\left.{ }_{\partial V_{M^{\prime}}(p) \cap\left(R^{\prime}-R_{n}\right)}\right) \sigma_{\frac{\xi}{2}}$
$\cap B\left(R^{\prime}\right)$.
Let $\varepsilon>0$ be a given positive number. Then by (2) there exists a number n such that $\operatorname{Cap}\left(F_{\eta} \cap\left(R^{\prime}-R_{n}\right)\right)<\varepsilon: \eta=\frac{\boldsymbol{\xi}}{2}$. Let $\tilde{A}=F_{\eta} \cap\left(\overline{R^{\prime}-R_{n}}\right)$ and $A=F_{\xi} \cap B\left(R^{\prime}\right)$. Then by the proposition there exists a number M^{\prime} such that $\frac{1}{2 \pi} \int_{\partial J_{M}(p) \cap A}^{\partial n} \frac{\partial}{\partial n} G^{\prime}(\zeta, p) d s \geqq \frac{\eta}{k}: M \geqq M^{\prime}$ and $p \in A$. Hence by Lemma 8 $1 / D^{M}(A) \geqq\left(\frac{\eta}{k}\right)^{2} / \varepsilon . \quad$ Let $M \rightarrow \infty$ and then $\varepsilon \rightarrow 0 . \quad$ Then we have Theorem 7.

Let Ω be a domain in the z-sphere such that $\Omega \nsubseteq O_{g}$. Let $G(z, p)$ be a Green's function of Ω. We shall extend the domain of the definition of $G(z, p)$ to $\bar{\Omega} \times \bar{\Omega}$ by $G(p, q)=\varlimsup_{\xi \rightarrow p} \varlimsup_{\eta \rightarrow q} G(\xi, \eta)$ for $p, q \in \bar{\Omega} \times \bar{\Omega}$. Then we see at once $G(p, q)=G(q, p)$ and $G(z, p)=G(z, p): z \in \Omega, p \in \bar{\Omega}$ (in Lemma $4^{1)}$ $G(z, p): p \in \bar{\Omega}$ is defined). Let F be a closed set on $\bar{\Omega}$. Define $D^{*}(F)$ by $1 / D^{*}(F)=\lim _{n} \inf _{p_{i}, p_{j} \in F_{i}} \sum_{i=1}^{n} G\left(p_{i}, p_{j}\right) /{ }_{n} C_{2}$.

Lemma 9. 1) Let Ω be a domain in the z-sphere such that $\Omega \notin O_{g}$. Let $G\left(z, z^{\prime}\right)$ be Green's function of Ω. Then there exist consts. M and $\boldsymbol{\delta}$ depending on Ω such that

$$
G\left(z, z^{\prime}\right) \leqq \log \frac{1}{\left|z-z^{\prime}\right|}+M
$$

for any points z and z^{\prime} with spherical distance $<\delta$.
2) Let F be a closed set on $\bar{\Omega}$ such that $D^{*}(F)=0$. Then F is a set of (logarithmic) capacity zero.

Proof. By $\Omega \nsubseteq O_{g}, C \Omega$ is a set of positive capacity. We can find two closed sets E_{1} and E_{2} in $C \Omega$ such that both E_{1} and E_{2} are of positive capacity and spherical distance between E_{1} and $E_{2}=d>0$. We denote by $\left[z, z^{\prime}\right]$ the spherical distance betweed z and z^{\prime}. Put $C\left(4 \delta, z^{\prime}\right)=\left\{z:\left[z, z^{\prime}\right]\right.$ $\leqq 4 \delta\}: \delta \leqq d / 8$. We can find a finite number of points, $z_{1}, z_{2}, \cdots, z_{i_{0}}$ such that $\sum_{i} C\left(\delta, z_{i}\right) \supset z$-sphere, and $C\left(4 \delta, z_{i}\right)$ has common points at most one of E_{1} and E_{2}. Suppose $\left[z, z^{\prime}\right]<\delta$. Then there exists $C(4 \delta, z)$ such that $C\left(2 \delta, z_{i}\right) \ni z$ and z^{\prime} and $C\left(4 \delta, z_{i}\right) \cap E_{j}=0(j=1$ or 2$)$. Let $\widetilde{G}\left(z, z^{\prime}\right)$ be Green's function of $C E_{j}$. Then $\widetilde{G}\left(z, z^{\prime}\right) \geqq G\left(z, z^{\prime}\right), \widetilde{G}\left(z, z^{\prime}\right)$ is harmonic in $C\left(4 \delta, z_{i}\right)-z^{\prime}$ and $\widetilde{G}\left(z, z^{\prime}\right)-\log \frac{1}{\left|z-z^{\prime}\right|}$ is continuous on $C\left(4 \hat{,}, z_{i}\right) \times C\left(4 \delta, z_{i}\right)$. Hence there exists a const. $M\left(z_{i}\right)$ such that $\widetilde{G}\left(z, z^{\prime}\right) \leqq \log \frac{1}{\left|z-z^{\prime}\right|}+M\left(z_{i}\right)$. Hence we have 1) by putting $M=\max _{i} M\left(z_{i}\right)$

Proof of 2). Let $F_{k}=F \cap C\left(2 \delta, z_{k}\right)$. Then it is sufficient to show F_{k} is a set of capacity zero. By a conformal mapping we can suppose $z_{k}=0$ and $\delta \leqq 1 / 4$. Then we have $\lim _{n} \inf _{z_{i} \in F_{i=1}}^{n} \log \frac{1}{\left|z_{i}-z_{j}\right|} /{ }_{n} C_{2}=\infty$ by $D^{*}\left(F_{k}\right)=D^{*}$ $(F)=0$. Hence F_{k} is a set of capacity zero.

Mass distribution of a generalized Green's function Let R be a Riemann surface $\ddagger O_{g}$. Let $U(z)$ be a positive harmonic function in R and let G be a domain. Let $U_{n, n+i}(z)$ be a harmonic function in $R_{n+i}-\left(\left(R_{n+i}\right.\right.$ $\left.\left.-R_{n}\right) \cap G\right)$ such that $U_{n, n+i}(z)=0$ on $\partial R_{n+i}-G, U_{n, n+i}(z)=U(z)$ on $G \cap\left(R_{n, n+i}\right.$ $\left.-R_{n}\right)$. Put $\lim _{n} \lim _{i} U_{n, n+i}(z)={ }_{G}^{\alpha} U(z)$. Let $\widetilde{U}_{n, n+i}(z)$ be a harmonic function in $R_{n+i}-\left(\left(R_{n+i}^{n}-R_{n}\right) \cap G\right)$ such that $\widetilde{U}_{n, n+i}(z)=0$ on $\left(R_{n+i}-R_{n}\right) \cap G,=U(z)$ on $\partial R_{n+i}-G$. Put $\lim _{n} \lim _{i} \widetilde{U}_{n, n+i}(z)={ }_{G}^{\beta} U(z)$. Then

Lemma 10^{3}. 1) ${ }_{\alpha}^{\alpha}\left({ }_{G}^{\alpha} U(z)\right)={ }_{G}^{\alpha} U(z)$ and ${ }_{G}^{\alpha} U(z)+{ }_{G}^{\beta} U(z)=U(z)$.
2) Let $U(z)$ be a harmonic function which is a G.G. with $D(\min (M$, $U(z)) \leqq M k \pi$ and let $G_{0}=\left\{z \in R: G\left(z, p_{0}\right)>\delta\right\}$. Then $a_{0}^{8} U(z) \leqq k \delta / 2$ at $z=p_{0}$.

We suppose Martin's top. M is defined on $\bar{R}=R+\Delta\left(\Delta=\Lambda_{1}+\Delta_{0}\right)$. Let $\bar{G}_{\delta}(M)$ be the closure of G_{δ} relative to M-top. Let $F_{n}=\{z \in \bar{R}: M$-dist $(z$, $\left.\left.\bar{G}_{\delta}(M)\right) \leqq 1 / n\right\}$ and ${ }_{F_{n}} U(z)$ be the lower envelope of superharmonic functions larger than $U(z)$ on F_{n}. Put $U_{\delta}^{*}(z)=\lim _{n}{F_{n}} U(z)$. Then by Martin's theory $U_{\delta}^{*}(z)$ is represented by a canonical distribution μ on $\bar{G}_{\delta}(M) \cap \Delta_{1}$. Clearly

$$
\begin{equation*}
U_{\delta}^{*}(z) \geqq{ }_{\theta_{0}}^{q} U(z) . \tag{5}
\end{equation*}
$$

Lemma 11. 1) Let $U(z)$ be a positive harmonic function being a G.G. in R. Then there exists a canonical distribution μ on $\bigcup_{\partial>0} \bar{G}_{b}(M) \cap \Delta_{1}$ such that

$$
U(z)=\int K(z, p) d \mu(p) .
$$

2) If there exists a const. $\delta>0$ such that $\bar{G}_{\delta}(M) \cap \Delta_{1}=\bar{G}_{b^{\prime}}(M) \cap \Delta_{1}$ for any $\delta^{\prime} \leqq \delta$, then there exists a canonical distribution μ on $\bar{G}_{d}(M) \cap \Delta_{1}$ such that

$$
U(z)=\int K(z, p) d \mu(p) .
$$

Proof of 1) Since $U(z)$ is a G.G. there exists a const. k such that $D(\min (M, U(z)))=k M \pi$ for any M. By (5) and by Lemma 10

$$
\begin{equation*}
\left(U(z)-U_{\delta}^{*}(z)\right) \leqq k \delta / 2 \quad \text { at } z=p_{0} . \tag{6}
\end{equation*}
$$

Let $\delta=\delta_{1}>\delta_{2} \cdots \downarrow 0, U_{\delta_{n}}^{*}(z)$ and μ_{n} be a canonical mass of $U_{\delta_{n}}^{*}(z)$. Then $\mu_{n} \uparrow$ and $\mu_{n}-\mu_{n-1}$ is also canonical on $\bar{G}_{\delta_{n}}(M) \cap \Delta_{1}$. Now $U_{\delta_{n}}^{*}(z)=U_{\delta_{1}}^{*}(z)$ $+\sum_{i=2}^{n}\left(U_{\delta_{i}}^{*}(z)-U_{\delta_{i-1}}^{*}(z)\right)$. Hence by (6) $U(z)=\lim _{n} \lim U_{n}^{*}(z)$ and $U(z)$ is represented by a canonical distribution μ on $\bigcup_{i>0} \bar{G}_{\delta}^{n}(M) \cap \Delta_{1}$. 2) is evident by 1).

Let $D_{1} \supset D_{2}$ be two domains. Let $\ddot{U}(z)$ be a positive harmonic function in D_{1}. We denote by ${\underset{D}{D_{2}}}_{D_{1}}^{U}(z)$ the greatest subharmonic function in D_{2} vanishing on ∂D_{2} not larger than $U(z)$. Let $V(z)$ be a positive harmonic function in D_{2} vanishing on ∂D_{2} except at most a set of capacity zero. We denoteby $\underset{D_{2}}{D_{1}} V(z)$ the least positive superharmonic function in D_{1} larger than $V(z)$. Then the following are well known.

$$
\begin{aligned}
& { }_{D_{2}}^{D_{1}} U(z) \text { and } \underset{D_{2}}{\stackrel{D_{1}}{E}} V(z)\left(\text { for } \underset{D_{2}}{\stackrel{D_{1}}{E}} V(z)<\infty\right) \text { are harmonic and }
\end{aligned}
$$

Let $U(z)$ be minimal in D_{1}. Then if $\underset{D_{2}}{D_{1}} U(z)>0, \underset{\substack{D_{1} D_{1} \\ D_{2} D_{2}}}{\substack{D_{1} \\ D_{1}}} \underset{(z)}{\substack{D_{2} \\ D_{1} \\ D_{1}}}=U(z)$ is minimal in D_{2}. Let $V(z)$ be minimal in D_{2}. If $\underset{D_{2}}{\underset{D_{2}}{L_{1}}} V(z)<\infty, \stackrel{D_{1} D_{1}}{D_{D_{2} D_{2}}^{E}} V(z)$ $=V(z)$ and $\underset{D_{2}}{\stackrel{D_{1}}{E}} V(z)$ is minimal in D_{1}.
If $U_{n}(z) \nearrow U(z),{ }_{D_{2}}^{D_{1}} U(z)=\lim _{n}\left(\underset{D_{2}}{D_{1}} U_{n}(z)\right)$.

Correspondence between two minimal points Let \widetilde{R} be a Riemann surface $€ O_{g}$ and R be a Riemann surface $\subset \widetilde{R}$. Let $\left\{\widetilde{R}_{n}\right\}$ be an exhaustion of \widetilde{R} and \mathfrak{p} be a boundary component of \widetilde{R}. Suppose Martin's topologies \widetilde{M} and M are defined over \widetilde{R} and R respectively. If $p_{i} \xrightarrow{\alpha} p: \alpha=\widetilde{M}$ or M and $p_{i} \rightarrow \mathfrak{p}$ (considered in $\widetilde{\boldsymbol{R}}$), we say a point (relative to α-top.) lies over \mathfrak{p}. We denote by $\Delta(\alpha) \cap \nabla(\mathfrak{p})$ and $\Delta_{1}(\alpha) \cap \nabla(\mathfrak{p})$ sets of boundary points, minimal boundary points over \mathfrak{p} respectively. In the present paper boundary components are considered only for \widetilde{R} (except special remark). Let $G\left(z, p_{0}\right)$ be a Green's function of R. Let $F_{\dot{\delta}}(\widetilde{M})=\left\{z \in \tilde{\hat{R}}: \varlimsup_{\substack{\delta \rightarrow z \\ \tilde{\tilde{M}}}} G\left(\zeta, p_{0}\right) \geqq \delta\right\}$ and $F_{\dot{\delta}}(M)$ $=\left\{z \in \bar{R}: \varlimsup_{\zeta \rightarrow z} G\left(\zeta, p_{0}\right) \geqq \delta\right\}$. Let A be a set relative to \widetilde{M}-top.. We denote by $A \cap \Delta(M)$ the set of point p of A lying over $\Delta(M)$, i.e. there exists a sequence $\left\{z_{i}\right\}$ such that $z_{i} \xrightarrow{\widehat{M}} p$ and $z_{i} \longrightarrow$ boundary of R. Then

THEOREM 8. 1$)^{6)} \quad$ Let $\left.z_{i} \xrightarrow{\widetilde{M}} p \in\left(\tilde{\boldsymbol{R}}+\Delta_{1}(\widetilde{M})\right) \cap F_{\delta}(\widetilde{\boldsymbol{M}})\right) \cap \Delta(M)$ and $G\left(z_{i}, p_{0}\right)$ $>\varepsilon_{0}>0$. Then $z_{i} \xrightarrow{M}$ a uniquely determined point $q \in \Delta_{1}(M) \cap F_{\delta}(M)$ and

2) Let $q \in \Delta_{1}(M) \cap F_{\dot{\delta}}(M)$. Then there exists a point $p \in \widetilde{R}+\Delta_{1}(\widehat{M})$ such that $\widetilde{K}(z, p)=a^{\prime}{\underset{R}{\tilde{\mathcal{R}}-p}}_{E}^{R} K(z, q) ; a^{\prime}>0$, clearly $p=\varphi^{-1}(q)$. Further

$$
\begin{aligned}
& \Delta_{1}(\widetilde{M}) \cap F_{\delta}(\widetilde{M}) \cap \nabla(\mathfrak{p}) \approx \Delta_{1}(M) \cap F_{\dot{\delta}}(M) \cap \nabla(\mathfrak{p}) \\
& F_{\delta}(\widetilde{M}) \cap\left(\widetilde{R}+\Delta_{1}(M)\right) \cap \Delta(M) \approx \Delta_{1}(M) \cap F_{\delta}(M)
\end{aligned}
$$

where \approx means the existence one to one mapping.
Proof of 1) 1) is proved by L. Naim. Let $\widetilde{G}\left(z, p_{0}\right)$ be Green's function of \widetilde{R} and $v\left(p_{0}\right)$ be a neighbourhood of p_{0} and put $M=\sup _{z \notin v\left(p_{0}\right)} \widetilde{G}\left(z, p_{0}\right)$. Let $\tilde{K}(z, p)$ and $K(z, q)$ be kernels in \tilde{R} and R respectively. Then if $G\left(z, p_{0}\right)>\varepsilon_{0}$,

$$
\begin{equation*}
\frac{\widetilde{G}\left(z, z_{i}\right)}{\varepsilon_{0}} \geqq \widetilde{K}\left(z, z_{i}\right) \geqq \frac{\widetilde{G}\left(z, z_{i}\right)}{M} \geqq \frac{G\left(z, z_{i}\right)}{M} \geqq \frac{\varepsilon_{0} K\left(z, z_{i}\right)}{M} \geqq \frac{\varepsilon_{0} G\left(z, z_{i}\right)}{M^{2}} \tag{7}
\end{equation*}
$$

Let $z_{i} \xrightarrow{\widetilde{M}} p$ and let $\left\{z_{i}^{\prime}\right\}$ be a subsequence of $\left\{z_{i}\right\}$ such that $z_{i}^{\prime} \xrightarrow{M} q$. Then by $(7){ }_{R}^{\widetilde{R}-p} \widetilde{K}(z, p)>0$. By the minimality of ${\underset{R}{I}}_{\tilde{R}-p}^{\tilde{K}}(z, p){ }_{R}^{\tilde{R}-p} \widetilde{K}(z, p)=a K(z, q)$: $a>0$ and $q \in \Delta_{1}(M)$. Since $\left\{z_{i}^{\prime}\right\}$ is an arbitrary M-convergent subsequence, such point q is uniquely determined. We denote it by $\varphi(p)$. If $p \in F_{\dot{\delta}}(\widetilde{M})$ $\cap \nabla(\mathfrak{p})$, evidently $q \in F_{\dot{\delta}}(M) \cap \nabla(\mathfrak{p})$.

Proof of 2) By 1) if $p \in F_{\dot{\delta}}(\widetilde{M}) \cap \Delta_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p}), q \in F_{\dot{\delta}}(M) \cap \Delta_{1}(M) \cap \nabla(\mathfrak{p})$. Conversely let $q \in \Delta_{1}(M) \cap F_{\dot{j}}(M) \cap \nabla(\mathfrak{p})$. Then there exists a sequence $\left\{z_{n}\right\}$ such that $z_{n} \xrightarrow{M} q$ and $G\left(z_{n}, p_{0}\right) \geqq \delta-\frac{1}{n}$ and $K\left(z, z_{n}\right) \leqq \frac{2 G\left(z, z_{n}\right)}{\delta} \leqq \frac{2 \widetilde{G}\left(z, z_{n}\right)}{\delta}$ for $\frac{1}{n} \leqq \frac{\delta}{2}$, hence $\underset{R}{\stackrel{\tilde{R}}{E}} K(z, q)<\infty$. By the minimality of $K(z, q)$, there exists a uniquely determined point $p \in \Delta_{1}(\widetilde{M})$ such that ${\underset{R}{E}}_{\stackrel{\widetilde{R}}{E}} K(z, q)=a \widetilde{K}(z, p)$: $a>0$, clearly $q=\varphi(p)$. We show $p \in F_{\dot{\delta}}(\widetilde{M})$. Let $\Omega_{s}=\left\{z \in R: G\left(z, p_{0}\right)>\delta-2 \varepsilon\right\}$: $3 \varepsilon<\delta$ and let $\left\{z_{n}^{\prime}\right\}$ be a subsequence of $\left\{z_{n}\right\}$ such that $G^{\prime}\left(z, z_{n}^{\prime}\right)$ converges to $G^{\prime}\left(z,\left\{z_{n}^{\prime}\right\}\right)$, where $G^{\prime}\left(z, z_{n}^{\prime}\right)$ is a Green's function of $\Omega_{،}$. Then $\frac{\widetilde{K}(z, p)}{a}$ $\geqq K(z, q) \geqq \frac{G^{\prime}\left(z,\left\{z_{n}^{\prime}\right\}\right)}{M}>0$ by $G^{\prime}\left(p_{0}, z_{n}\right)=G\left(z_{n}, p_{0}\right)-(\delta-2 \varepsilon)>\varepsilon$ for $\frac{1}{n}<\varepsilon$. Hence

$$
\begin{equation*}
{ }_{\Omega_{\mathrm{t}}}^{\tilde{\mathcal{R}}} \widetilde{K}(z, p)>0 \tag{8}
\end{equation*}
$$

Let $U(z)=\widetilde{K}(z, p)$. Let $V_{n}(z)$ be a harmonic function in $\Omega_{A} \cap \widetilde{R}_{n}$ such that $V_{n}(z)=U(z)$ on $\partial \Omega_{\varepsilon} \cap \widetilde{R}_{n},=0$ on $\partial \widetilde{R}_{n} \cap \Omega_{c}$. Then $V_{n}(z) \nearrow_{c \Omega_{s}} U(z)$ in Ω_{ι}. Let $W_{n}(z)$ be a harmonic function in $\Omega_{\varepsilon} \cap \widetilde{R}_{n}$ such that $W_{n}(z)=0$ on $\partial \Omega_{\varepsilon} \cap \widetilde{R}_{n}$, $=U(z)$ on $\partial \widetilde{R}_{n} \cap \Omega_{،}$. Then $W_{n}(z) \downarrow{ }_{\Omega_{c}}^{\overline{\tilde{N}}} U(z)$. On the other hand, $U(z)=V_{n}(z)$ $+U_{n}(z), U(z)={ }_{c \Omega_{s}} U(z)+{\underset{\Omega}{\varepsilon}}_{\tilde{\sim}}^{I} U(z)$ and by $(8) U(z)>_{C \Omega_{c}} U(z)$. Hence $C \Omega$, is thin at p. Let $v_{n}(p)=\left\{z \in \tilde{\widetilde{R}}: \widetilde{M}-\operatorname{dist}(z, p)<\frac{1}{n}\right\}$. Then $C v_{n}(p)$ is thin at p and $C\left(v_{n}(p) \cap \Omega_{t}\right)$ is thin at p, whence $v_{n}(p) \cap \Omega_{s} \neq 0$ for any n and $\varepsilon>0: \varepsilon<$ $\frac{\delta}{3}$. Let $\varepsilon>\varepsilon_{1}>\varepsilon_{2} \cdots \downarrow 0$. We choose z_{n} in $v_{n}(p) \cap \Omega_{\iota_{n}}$, where $\Omega_{\iota_{n}}=\{z \in R$: $\left.G\left(z, p_{0}\right) \geqq \delta-2 \varepsilon_{n}\right\} . \quad$ Then $z_{n} \xrightarrow{\widetilde{M}} p, \varlimsup_{n} G\left(z_{n}, p_{0}\right) \geqq \delta$ and $p \in F_{\dot{\delta}}(\widetilde{M}) . \quad$ By the assumption we can find a sequence $\left\{z_{n}\right\}$ such that $z_{n} \xrightarrow{M} q, z_{n} \longrightarrow \mathfrak{p} . \quad G\left(z_{n}, p_{0}\right)$ $>\varepsilon_{0}>0$. $G\left(z, z_{n}\right)$ and $\widetilde{G}\left(z, z_{n}\right)$ converge. Then
$K(z, q) \leqq \frac{G\left(z,\left\{z_{n}\right\}\right)}{\varepsilon_{0}} \leqq \frac{\widetilde{G}\left(z,\left\{z_{n}\right\}\right)}{\varepsilon_{0}}, \quad a \widetilde{K}(z, p)={ }_{R}^{\widetilde{\mathcal{R}}} K(z, q) \leqq \frac{\widetilde{G}\left(z,\left\{z_{n}\right\}\right)}{\varepsilon_{0}} ; a>0$ and $\widetilde{K}(z, p)$ is bounded outside of a neighbourhood $\mathfrak{v}(\mathfrak{p})(\mathfrak{p}(\mathfrak{p})$ is supposed compact in \widetilde{R}). Clearly p lies on a boundary component \mathfrak{p}^{\prime} of \widetilde{R}. Assume $\mathfrak{p} \neq \mathfrak{p}^{\prime}$. Then $\widetilde{K}(z, p)$ is bounded outside of $\mathfrak{v}\left(\mathfrak{p}^{\prime}\right)$ of \mathfrak{p}^{\prime} such that $\mathfrak{v}(\mathfrak{p}) \cap \mathfrak{v}\left(\mathfrak{p}^{\prime}\right)$ $=0$. This implies $\sup _{z \in R} \widehat{K}(z, p)<\infty$. This is a contradiction. Hence p lies over \mathfrak{p} where q lies. Thus we have 2). The latter part is proved similarly.

Let $R \subset \widetilde{R} \pm O_{g}$ be Riemann surfaces and let $G\left(z, p_{0}\right)$ be a Green's function of R. We suppose Martin's topologies \widetilde{M} and M are defined on \widetilde{R} and R. Let $R^{\prime}=\left\{z \in R: G\left(z, p_{0}\right)>\xi\right\}$ and suppose G-Martin's top. $G M$ is defined on $R^{\prime}+B\left(R^{\prime}\right)$. Let $w=f(z): z \in R$ be an analytic function in R whose value falls on the w-sphere. If the complementary set $C f(R)$ of $f(R)$ is of positive capacity, we call $f(z)$ a bounded type in R. In this paper we consider only functions of bounded type in R. Then

Theorem 9. 1) Let $z_{i} \xrightarrow{M} q \in \Delta(M), z_{i} \in G_{\delta}=\left\{z \in R: G\left(z, p_{0}\right)>\delta\right\}$. Then $f\left(z_{i}\right) \rightarrow$ one point denoted by $f(q)$.
2) Let $z_{i} \xrightarrow{\widetilde{M}} p \in \Lambda_{1}(\widetilde{M})+\widetilde{R}, z \in G_{\dot{d}}$. Then $f\left(z_{i}\right) \longrightarrow f(p)$.
3) Let $z_{i} \xrightarrow{G M} p \in B\left(R^{\prime}\right): z \in G_{o+\varepsilon}: \varepsilon>0$. Then $f\left(z_{i}\right) \longrightarrow f(p)$.
4) Let $A\left(\Delta_{1}(\widetilde{M})+\widetilde{R}, \delta\right)=\left\{f(p): p \in\left(\Delta_{1}(\widetilde{M})+\widetilde{R}\right) \cap \bar{G}_{b}(\widetilde{M}) \cap \Delta(M)\right\}, A(\Delta(M)$, $\delta)=\left\{f(p): p \in \Delta(M) \cap \bar{G}_{\delta}(M)\right\}$ and $A\left(B\left(R^{\prime}\right), \delta\right)=\left\{f(p): p \in B\left(R^{\prime}\right) \cap \bar{G}_{\delta}(G M) \cap\right.$ $\Delta(M)\}$. Then $A\left(\Delta_{1}(\widetilde{M})+\widetilde{R}, \delta\right) \subset A(\Delta(M), \delta)=A\left(B\left(R^{\prime}\right), \delta\right): \delta>\xi$ and $A(\Delta(M), \delta)$ is a closed set of capacity zero and $\cup_{\delta>0} A(\Delta(M), \delta)$ is an F_{σ} set of capacity zero.

Proof. Let $z_{i} \in G_{s}: \delta>\xi$ and let $G^{\prime}\left(z, z_{i}\right)$ be a Green's function of R^{\prime}. Then $G\left(z, z_{i}\right) \geqq G^{\prime}\left(z, z_{i}\right)$. Let $\left\{z_{i}^{\prime}\right\}$ be a subsequence of $\left\{z_{i}\right\}$ such that $G\left(z, z_{i}^{\prime}\right)$ and $G^{\prime}\left(z, z_{i}^{\prime}\right)$ converge. Then $G\left(z,\left\{z_{i}^{\prime}\right\}\right) \geqq G^{\prime}\left(z,\left\{z_{i}^{\prime}\right\}\right)>0$ and $G^{\prime}\left(z,\left\{z_{i}^{\prime}\right\}\right)$ $=0$ on ∂R^{\prime} and is a G.G. in R^{\prime}, whence $\sup _{z \in R^{\prime}} G^{\prime}\left(z,\left\{z_{i}^{\prime}\right\}\right)=\infty$. Assume $f(z)$ does not converge as $z_{i} \longrightarrow q$. Then there exists two subsequences $\left\{z_{i}^{k}\right\}$ $(k=1,2)$ of $\left\{z_{i}\right\}$ such that $G\left(z, z_{i}^{k}\right) \longrightarrow U^{k}(z), f\left(z_{i}^{k}\right) \longrightarrow w^{k}: w^{1} \neq w^{2}$. Now $\frac{G\left(z, z_{i}\right)}{\delta} \geqq K\left(z, z_{i}\right) \geqq \frac{G\left(z, z_{i}\right)}{M}: M=\sup _{z \notin v\left(p_{0}\right)} G\left(z, p_{0}\right)$ and
$\delta K(z, q) \leqq U^{k}(z) \leqq M K(z, q)$.
On the other hand, $U^{k}(z) \leqq G^{w}\left(f(z), w^{k}\right)$, where $G^{w}\left(w, w^{k}\right)$ is a Green's function of $f(R)$ and not necessarily $w^{k} \in f(R)$ but $\in \overline{f(R)}$. Hence

$$
\begin{aligned}
& K(z, q) \leqq \frac{1}{\delta} \min \left(G^{w}\left(f(z), w^{1}\right), G^{w}\left(f(z), w^{2}\right)\right) \quad \text { and by Lemma } 4 \\
& \infty=\sup _{z \in \mathbb{R}} U^{k}(z) \leqq \frac{M}{\delta} \sup _{z \in R} \min \left(G^{w}\left(w, w^{1}\right), G^{w}\left(w, w^{2}\right)\right)<\infty .
\end{aligned}
$$

This is a contradiction, hence $f(z) \longrightarrow$ uniquely determined point denoted by $f(q)$.

Proof of 2) By Theorem 8, 1) $z \xrightarrow{\widetilde{M}} p \in\left(\Lambda_{1}(\widetilde{M})+\widetilde{R}\right): z \in \bar{G}_{0}(\widetilde{M})$ implies $z \xrightarrow{M} q \in \Lambda_{1}(M)$ and we have 2). 3) is proved similarly as 1).

Proof of 4) Let $w_{n} \in A(\Delta(M), \delta)$ and $w_{n} \longrightarrow w^{*}$. Then there exists z_{n} such that $z_{n} \in \Delta(M) \cap \bar{G}_{\dot{\delta}}(M): w_{n}=f\left(z_{n}\right)$. Let $\left\{R_{n}\right\}$ be an exhaustion of R. For any z_{n} we can find z_{n}^{\prime} in $\left(R-R_{n}\right) \cap G_{j-\frac{1}{n}}$ such that M-dist $\left(z_{n}, z_{n}^{\prime}\right) \leqq \frac{1}{n}$, $\left|f\left(z_{n}^{\prime}\right)-w_{n}\right| \leqq \frac{1}{n}$. Consider $K\left(z, z_{n}^{\prime}\right)$. Then we can find a subsequence $\left\{z_{n}^{\prime \prime}\right\}$ of $\left\{z_{n}^{\prime}\right\}$ such that $K\left(z, z_{n}^{\prime \prime}\right\}$ converges uniformly. This means there exists a point $z^{*} \in \Delta(M) \cap \bar{G}_{\delta}(M)$ such that $z_{n}^{\prime \prime} \xrightarrow{M} z^{*}$ and $f\left(z_{n}^{\prime \prime}\right) \longrightarrow f\left(z^{*}\right)$. Clearly $w^{*}=f\left(z^{*}\right)$. Hence $w^{*} \in A(\Delta(M), \delta)$ and $A(\Delta(M), \delta)$ is closed. We can choose ξ so that $\xi<\delta$. Since $A(\Delta(M), \delta)=A\left(B\left(R^{\prime}\right), \delta\right)$ for $\delta>\xi$ is proved easily, it is sufficient to show $A\left(B\left(R^{\prime}\right), \delta\right)$ is a set of capacity zero. By Theorem 7 the transfinite diameter of $B\left(R^{\prime}\right) \cap \bar{G}_{\delta}(G M)$ is zero. Since for any point $w \in A\left(B\left(R^{\prime}\right), \delta\right)$ there exists at least a point z in $B\left(R^{\prime}\right) \cap \bar{G}_{\dot{\delta}}(G M)$ such that $w=f(z)$ and since $G^{w}\left(f(z), f\left(z^{\prime}\right)\right) \geqq G^{\prime}\left(z, z^{\prime}\right)$, transfinite diameter $D^{*}(A(\Delta(M), \delta))$ is zero and by Lemma $9 A(\Delta(M), \delta)$ is a set of (logarithmic) capacity zero.

We consider the behaviour of $f(z)$ as $z \longrightarrow \Delta(M)$ of $R \subset \widetilde{R}$. We define another Riemann surface R^{*} as follows. We can find a segment S in R such that $f(z)$ is univalent in a neighbourhood $v(S)$ of S. Put $S^{w}=f(S)$. Let \mathscr{F} be a leaf such that $\mathscr{F}=f(R)$ and let $\partial \mathscr{F}$ be its boundary. Let $S(\mathscr{H})$ be a slit in \mathscr{H} with $S(\mathscr{F})=S^{w}$. Connect $\mathscr{F}-S(\mathscr{F})$ and $R-S$ crosswise on $S^{w}(=S)$. Then we have a Riemann surface $R^{*}=(R-S)$ $+(\mathscr{F}-S(\mathscr{F}))+S$. Put $f(z)=$ projection of z (as R and R^{*} are considered covering surfaces over the w-sphere) in $\mathscr{F}-S(\mathscr{H})$. Then $f(z)$ is analytic in R^{*}. In this case, we also denote by $f(z): z \in R^{*}$. So long as we consider $f(z)$ near the boundary of R, we can use R^{*} instead of R. Let $u(z)$ be a harmonic measure of $\partial \mathscr{F}$ in R^{*}. Then by $R \notin O_{g} u(z)$ is non const.. Put $U(w)=\sum_{i} u\left(z_{i}\right): f\left(z_{i}\right)=w, z_{i} \in R^{*}$. Then by Theorem $1^{1)}$

$$
\begin{equation*}
U(w) \leqq 1 \text { and } U(w) \text { is quasisubharmonic in } f(R) . \tag{9}
\end{equation*}
$$

Let $\left\{R_{n}\right\}$ be an exhaustion of R. Then for $R_{n_{0}} \ni p_{0}$, there exist const.s N_{1} and N_{2} such that

$$
\begin{equation*}
N_{1} G\left(z, p_{0}\right) \leqq U(z) \leqq N_{2} G\left(z, p_{0}\right) \quad \text { in }\left(R-R_{n_{0}}\right) \tag{10}
\end{equation*}
$$

Irregularity of minimal points Irregularity δ of minimal points relative to \bar{M} and M top.s are defined by

$$
\delta(p, \widetilde{M})=\varlimsup_{\substack{z \rightarrow p \\ \widetilde{M} \tilde{p}}} G\left(z, p_{0}\right): p \in \widetilde{R}+\Delta_{1}(\widetilde{M}), \quad \delta(q, M)=\varlimsup_{\substack{z \rightarrow q \\ M}} G\left(z, p_{0}\right): q \in \Delta_{1}(M) .
$$

Then by Theorem $8 \delta(p, \widetilde{M})=\delta(q, M): q=\varphi(p)$. Also put $u(p, \widetilde{M})=\varlimsup_{\substack{z \rightarrow p \\ \widetilde{\tilde{L}}}}$
$u(z) ; p \in \tilde{R}+\tilde{I}_{1}(M)$ and $u(q, M)=\varlimsup_{z \rightarrow q} u(z): q \in \Delta_{1}(M)$. Then by Theorem 8, 1) $u(p, \widetilde{M}) \leqq u(q, M)$. Further $u(p, \widetilde{\vec{M}})=U(q, M)$ for $p \in \tilde{R}$ and $q=\varphi(p) \in \Delta_{1}(M)$. In fact let $p \in \widetilde{R}$ and $q \in \Delta_{1}(M)$. Then by Brelot's theorem on a point $p \in \widetilde{R}$ there exists only one M-point q which is minimal relative to M-top., i.e. $z \xrightarrow{\widetilde{M}} p(z \longrightarrow p)$ is equivalent to $z \xrightarrow{M} q$ and we have $u(p, \widetilde{M})=u(q, M)$. We remark $u(z)$ is not harmonic in R but harmonic in $R-S$ and $u(z)$ is the least positive harmonic function in $R-S$ with value $u(z)$ on S. Hence $u(z)={ }_{c_{\theta}} u(z)$ for any domain $G \subset R-S$. We define $u(z)$ at S by $u(z)=\varlimsup_{\zeta \rightarrow z}$ $u(\zeta)$.

Theorem 10. 1) Let $\left\{z_{i}\right\}$ be a sequence such that $z_{i} \xrightarrow{M} q \in \Delta(M)$ with $\underline{\lim } G\left(z_{i}, p_{0}\right)>0$. Then $f\left(z_{i}\right) \longrightarrow f(q)$ (by Theorem 9) : $f(q) \in \overline{f(R)}$ and for any \bar{r} there exists a uniquely determined connected piece $\omega_{r}(q)$ over $C(r, f(q))$ $=\{|w-f(q)|<r\}_{\bar{M}}$ such that $z_{i} \in \omega_{r}(q)$ for $i \geqq i(r)$.
2) Let $z_{i} \xrightarrow{\widetilde{M}} p \in \Lambda_{1}(\widetilde{M})$ with $\underline{\lim } G\left(z_{i}, p_{0}\right)>0$. Then for any $r>0$, there exists a uniquely determined connected piece $\omega_{r}(p)$ over $C(r, f(p))$ such that $z_{i} \in \omega_{r}(p)$ for $i \geqq i(r)$.
3) Let w_{0} be a point. Then

$$
\begin{aligned}
& \sum u\left(q_{i}\right)+\sum u\left(q_{j}, M\right) \leqq 1: q_{i} \in R, q_{j} \in \Delta_{1}(M), f\left(q_{i}\right)=f\left(q_{j}\right)=w_{0} . \\
& \sum u\left(p_{i}\right)+\sum u\left(p_{j}, \widetilde{M}\right) \leqq 1: p_{i} \in R, p_{j} \in \Delta_{1}(\widetilde{M}), f\left(p_{i}\right)=f\left(p_{j}\right)=w_{0} .
\end{aligned}
$$

Proof of 1) Case 1. $f(q) \oplus S^{w}$. We can find $r^{\prime}<\min (r, \delta)$ (where δ is the number defined in Lemma 9) such that any connected piece over $C\left(r^{\prime}, f(q)\right)$ has no common points with S_{w}. We can also suppose $z_{i} \in R$, $G\left(z_{i}, p_{0}\right)>\delta^{\prime}>0$ and by (10) $u\left(z_{i}\right) \geqq \delta^{\prime \prime}$ and $\left|f\left(z_{i}\right)-f(q)\right|<\frac{r^{\prime}}{2}$ for $i \geqq 1$. Let ω be a connected piece containing z_{i}. Then since $\omega \cap S=0$, by Lemma 2 we have

$$
u\left(z_{i}\right)=\frac{1}{2 \pi} \int_{\partial \omega} u(\zeta) \frac{\partial}{\partial n} G^{\omega}\left(\zeta, z_{i}\right) d s
$$

where $G^{\omega}\left(\zeta, z_{i}\right)$ is a Green's function of ω and $\partial \omega$ lies over $\partial C\left(r^{\prime}, f(q)\right)$. Let $G^{c}\left(w, w w^{\prime}\right)$ be a Green's function of $C\left(r^{\prime}, f(q)\right)$. Then $G^{C}\left(f(z), f\left(z_{i}\right)\right)=0$ on $\partial \omega$ and $G^{c}\left(f(z), f\left(z_{i}\right)\right) \geqq G^{\omega}\left(z, z_{i}\right) \geqq 0$, whence

$$
\begin{equation*}
\frac{\partial}{\partial n} G^{c}\left(f(z), f\left(z_{i}\right)\right) \geqq \frac{\partial}{\partial n} G^{\omega}\left(z, z_{i}\right) \geqq 0 \text { on } \partial \omega . \tag{11}
\end{equation*}
$$

Now there exists a const. K such that

$$
\begin{align*}
& 0 \leqq \frac{\partial}{\partial n} G^{c}\left(w, w^{\prime}\right) \leqq K \frac{\partial}{\partial n} G_{C}(w, f(q)) \\
& \text { on } \quad \partial C\left(r^{\prime}, f(q)\right):\left|w^{\prime}-f(q)\right|<\frac{r^{\prime}}{2} \tag{12}
\end{align*}
$$

Suppose $\omega_{k}\left(k=1,2,,,,,, k_{0}\right)$ be a connected piece over $C\left(r^{\prime}, f(q)\right)$ containing at least one z_{i} of $\left\{z_{i}\right\}$. Then by (11), (12) and $U^{\prime}(w) \leqq U(w) \leqq 1$ by (9), where $U^{\prime}(w)=\sum_{j} u\left(z_{j}\right) z_{j} \in R$ and $f\left(z_{j}\right)=w$. Then

$$
\begin{aligned}
k_{0} \delta^{\prime \prime} & \leqq \frac{1}{2 \pi} \sum_{k=1}^{k_{0}} \int_{\partial \omega_{k}} u(\zeta) \frac{\partial}{\partial n} G^{\omega_{k}}\left(\zeta, z_{i}\right) d s \leqq \sum \frac{1}{2 \pi} \int_{\partial \omega_{k}} u(\zeta) \frac{\partial}{\partial n} G^{C}\left(f(\zeta), f\left(z_{i}\right)\right) d s \\
& \leqq \frac{1}{2 \pi} \sum \int_{\partial \omega_{k}} u(\zeta) K \frac{\partial}{\partial n} G^{C}(f(\zeta), f(q)) d s \leqq \frac{K}{2 \pi} \int_{\partial C} U^{\prime}(\xi) \frac{\partial}{\partial n} G^{C}(\xi, f(q)) d s \leqq K
\end{aligned}
$$

and $k_{0} \leqq \frac{K}{\delta^{\prime \prime}}$. Hence there exists at least one and at most a finite number of connected pieces ω_{k} such that ω_{k} contains a subsequence of $\left\{z_{i}\right\}$. Let ω be a connected piece containing a subsequence $\left\{z_{i}^{\prime}\right\}$ of $\left\{z_{i}\right\}$. Since $r^{\prime}<\delta$,

$$
G^{w}\left(w, w^{\prime}\right) \leqq \log \frac{1}{\left|w-w^{\prime}\right|}+M: w, w^{\prime} \in C\left(r^{\prime}, f(q)\right) .
$$

Hence there exists a const. $L<\infty$ such that $G^{w}\left(w, w^{\prime}\right)<L$ on $\partial C\left(r^{\prime}, f(q)\right)$ for $|w-f(q)|<\frac{r^{\prime}}{2}$. Let $G\left(z, z_{i}^{\prime}\right)$ be a Green's function of R. Then $G\left(z, z_{i}^{\prime}\right) \leqq G^{w}\left(f(z), f\left(z_{i}^{\prime}\right)\right) \leqq L$ on $\partial \omega$ and $\leqq L$ in $R-\omega$ and $K(z, q)=\lim _{i} K\left(z, z_{i}^{\prime}\right)$ $\leqq \frac{L}{\delta^{\prime}}$ in $R-\omega$ by (7). Assume there exists another connected piece ω^{\prime} containing a subsequence of z_{i}. Then $K(z, q) \leqq \frac{L}{\delta^{\prime}}$ in R by $\omega \subset R-\omega^{\prime}$. On the other hond, $K(z, q) \geqq \frac{G\left(z,\left\{z_{i}^{\prime}\right\}\right)}{M}$ and $\sup _{z \in R} K(z, q)=\infty$, where $\left\{z_{i}^{\prime}\right\}$ is a subsequence of $\left\{z_{i}\right\}$ such that $G\left(z, z_{i}^{\prime}\right) \longrightarrow G\left(z,\left\{z_{i}^{\prime}\right\}\right)$. This is a contradiction. Hence there exists uniquely determined connected piece $\omega_{r^{\prime}}(q)$ containing z_{i} for $i \geqq i\left(r^{\prime}\right)$.

Case 2. $f(q) \in S^{w}$. Since $f(z)$ is univalent in $v(S)$, we can find $r^{\prime}(<\delta)$ such that there exists only a connected piece ω^{*} and connected pieces $\left\{\omega_{j}\right\}$ over $C\left(r^{\prime}, f(q)\right)$ such that $\omega^{*} \cap S \neq 0, \omega^{*}$ is compact in R and $\omega_{j} \cap S=0$ for $j=1,2, \cdots$. By $z_{i} \longrightarrow q \in \Delta(M)$, there exists a number i_{0} such that $z_{i} \notin \omega^{*}$ for $i \geqq i_{0}$. Hence it is sufficient to consider only ω_{j}. Then we have the same conclusion similarly as case 1 . Now $r>r^{\prime}$, there exists only one connected piece ω over $C(r, f(q))$ containing $\omega_{r^{\prime}}(q)$. Clearly $\omega \ni z_{i}$ for $i \geqq i\left(r^{\prime}\right)$. Thus
we have 1). We denote it by $\omega_{r}(q)$. We have 2) by 1) and by Theorem 8 .
Proof of 3) Case 1. $w_{0} \nsubseteq S^{w}$. In this case we can find r^{\prime} such that any connected piece over $C\left(r^{\prime}, w_{0}\right)$ has no common point with S. Let q_{j} $(j=1,2, \cdots)$ be points in $\bigcup\left(\left(R+\Lambda_{1}(M)\right) \cap \bar{G}_{\delta}(M)\right)$ such that $f\left(q_{j}\right)=w_{0}$. For any $q_{j} \in \Lambda_{1}(M)$, there exists $\omega_{r^{\prime}}\left(q_{j}\right)=\omega_{j}$ and by definition of $\omega_{r^{\prime}}\left(q_{j}\right)$, there exists a sequence $\left\{z_{i}\right\}$ such that $z_{i} \xrightarrow{M} q_{j}, G\left(z_{i}, p_{0}\right)>\delta^{\prime}>0,\left|f\left(z_{i}\right)-w_{0}\right|<\frac{r^{\prime}}{2}$, $G^{\omega_{j}}\left(z, z_{i}\right) \longrightarrow G^{\omega_{j}}\left(z,\left\{z_{i}\right\}\right), u\left(z_{i}\right) \longrightarrow u\left(q_{j}, M\right)$ (clearly >0). Then by (11), (12) and by Lebesgue's theorem

$$
\begin{equation*}
0<u\left(q_{j}, M\right)=\frac{1}{2 \pi} \int_{\partial \omega_{j}} u(\zeta) \frac{\partial}{\partial n} G^{\omega_{j}}\left(\zeta,\left\{z_{i}\right\}\right) d s, \tag{13}
\end{equation*}
$$

whence $G^{\omega_{j}}\left(z,\left\{z_{i}\right\}\right)>0$ and $\leqq M_{\omega_{j}}^{R} K\left(z, q_{j}\right)$ by (7). Hence $G^{\omega_{j}}\left(z,\left\{z_{i}\right\}\right)$ is minimal in $\omega_{r^{\prime}}\left(q_{j}\right)$.
Suppose $q_{j} \in R$, then we have at once

$$
u\left(q_{j}\right)=\frac{1}{2 \pi} \int_{\partial \omega_{j}} u(\zeta) \frac{\partial}{\partial n} G^{\omega_{j}}\left(\zeta, q_{j}\right) d s
$$

and $G^{\omega_{j}}\left(z, q_{j}\right)$ is minimal in $\omega_{j}-q_{j}$.
Let ω be a connected piece over $C\left(r^{\prime}, f(q)\right)$ and let $q_{k}(k=1,2, \cdots)$ be a subset of q_{j} such that $\omega_{r^{\prime}}\left(q_{k}\right)=\omega$. Then $G^{\omega}\left(z,\left\{z_{i}\right\}^{k}\right)$ of q_{k} (or $\left.G^{\omega}\left(z, q_{k}\right)\right)$ is minimal in $\omega-q_{k}$ and $\leqq G^{c}\left(f(z), w_{0}\right)$. Hence

$$
\begin{gathered}
\sum G^{\omega}\left(z,\left\{z_{i}\right\}^{k}\right)+\sum G^{\omega}\left(z, q_{k}\right) \leqq G^{c}\left(f(z), w_{0}\right) \text { and } \\
\sum u\left(q_{k}, M\right)+\sum u\left(q_{k}\right) \leqq \frac{1}{2 \pi} \int_{o c} U^{\omega}(w) \frac{\partial}{\partial n} G^{c}\left(w, w_{0}\right) d s,
\end{gathered}
$$

where $U^{\omega}(w)=\sum_{t} u\left(z_{t}\right)$ and $f\left(z_{t}\right)=w_{0}, z_{t} \in \partial \omega$.
Summing up all connected pieces over $C\left(r^{\prime}, w_{0}\right)$, we have by $U^{\prime}(W) \leqq$ $U(W) \leqq 1$

$$
\sum_{j} u\left(q_{j}, M\right)+\sum_{i} u\left(q_{i}\right) \leqq 1,
$$

where $f\left(q_{i}\right)=f\left(q_{j}\right)=w_{0}, q_{i} \in R, q_{j} \in \bigcup_{j>0}\left(\Lambda_{1}(M) \cap G_{\delta}(M)\right)$.
Case 2. $w_{0} \in S^{w}$. In this case, we use R^{*} instead of R. We can find r^{\prime} over $C\left(r^{\prime}, w_{0}\right)$ there exist at most two connected pieces ω_{k} in R^{*}, which are compact in R^{*} and $\omega_{k} \cap S^{\omega} \neq 0$ and there exist connected pieces ω_{m} in R such that $\omega_{m} \cap S^{w}=0$. For $\omega_{k}, G^{\omega k}\left(z, z_{0}^{k}\right)$ is minimal $\left(f\left(z_{0}^{k}\right)=w_{0}\right.$, $z_{0}^{k} \in S$) and (13) holds, for ω_{m} (13)or (13') hold. Hence
$\sum_{k=1}^{2} u\left(z_{0}^{k}\right)+\sum u\left(q_{i}\right)+\sum u\left(q_{j}, M\right) \leqq 1$. Now $u\left(z_{0}^{1}\right)+u\left(z_{0}^{2}\right) \geqq u\left(z_{0}\right)=\lim _{\substack{z \rightarrow z_{0} \\ z \in R}} u(z)$
for $z_{0} \in S$. Put $z_{0}=q_{0}$ (considered as a point in R). Then

$$
\sum u\left(q_{i}\right)+\sum u\left(q_{j}, M\right) \leqq 1
$$

The latter part is proved by Theorem 8, 1).
Kindredness of points Let $p_{i} \in \Delta_{1}(\widetilde{M}) \cap \bar{G}_{\dot{b}}(\widetilde{M})$ (or $\in \Delta(M) \cap \bar{G}_{\dot{b}}(M)$). If there exists a sequence of curves $\left\{\Gamma_{n}\right\}(n=1,2, \cdots)$ with two endpoints $\left\{z_{n}^{i}\right\} \quad(i=1,2)$ such that $z_{n}^{i} \xrightarrow{\widehat{M}} p_{i}$ and $\inf _{z \in \Gamma_{n}} G\left(z, p_{0}\right)>\delta_{1}>0 \quad(n=1,2, \cdots)$ and $\Gamma_{n} \longrightarrow \Delta(\widetilde{M})$, we say p_{1} and p_{2} are chained. If p_{i} and $p_{i+1}(i=1,2, \cdots, m-1)$ are chained, we say p_{1} and p_{m} are kindred. We see at once p_{1} and p_{m} lie on the same boundary component of R. Then

Theorem 11. 1) Let $q_{j} \in \Delta(M) \cap \bar{G}_{j}(M)(j=1,2)$ be kindred, then $f\left(q_{1}\right)$ $=f\left(q_{2}\right)$ and $\omega_{r}\left(q_{1}\right)=\omega_{r}\left(q_{2}\right)$, where $\omega_{r}\left(q_{j}\right)$ is a connected piece over $C\left(r, f\left(q_{j}\right)\right)$.
2) Let $p_{j} \in \Delta_{1}(\widetilde{M}) \cap \bar{G}_{\dot{\delta}}(\widetilde{M})$ be kindred. then $f\left(p_{1}\right)=f\left(p_{2}\right)$ and $\omega_{r}\left(p_{1}\right)=$ $\omega_{r}\left(p_{2}\right)$.
3) Let q_{1} and q_{2} be two points in $\Delta(M) \cap \bar{G}_{\dot{b}}(M)$ such that there exists a const. $\quad \alpha>0$ and that $K\left(z, q_{1}\right) \geqq \alpha K\left(z, q_{2}\right)$. Then $f\left(q_{1}\right)=f\left(q_{2}\right)$ and $\omega_{r}\left(q_{1}\right)$ $=\omega_{r}\left(q_{2}\right)$.
4) Let $q_{1} \in \Delta_{0}(M) \cap \bar{G}_{\delta}(M)$ (set of non minimal points) and μ be its canonical mass of $K(z, q)$. If μ has a positive mass α at $q_{2} \in \Delta_{1}(M)$, then $f\left(q_{1}\right)=f\left(q_{2}\right)$ and $\omega_{r}\left(q_{1}\right)=\omega_{r}\left(q_{2}\right)$.

Proof of 1) Suppose q_{1} and q_{2} are chained. Let $\delta^{*}=\min \left(\delta, \delta_{1}\right)$. Then $f\left(q_{i}\right)$ exists and $\in A\left(\Delta(M), \delta^{*}\right)$. Assume $f\left(q_{1}\right) \neq f\left(q_{2}\right)$. Since $A\left(\Delta(M), \delta^{*}\right)$ is a closed set of capacity zero, we can find an analytic curve Γ enclosing only $f\left(q_{1}\right)$ and $\Gamma \cap A\left(\Delta(M), \delta^{*}\right)=0$. Consider $f\left(\Gamma_{n}\right)$. Then since $f\left(z_{n}^{i}\right) \longrightarrow$ $f\left(q_{i}\right), f\left(\Gamma_{n}\right)$ intersects Γ at least one at ξ_{n}. Let η_{n} such that $f\left(\eta_{n}\right)=\xi_{n} \eta_{n} \in \Gamma_{n}$. Then $\eta_{n} \longrightarrow \Delta(M)$ and $G\left(\eta_{n}, p_{0}\right) \geqq \delta^{*}$. We can find a subsequence $\left\{\eta_{n}^{\prime}\right\}$ of $\left\{\eta_{n}\right\}$ such that $f\left(\eta_{n}^{\prime}\right) \longrightarrow \xi^{*}$ and $\eta_{n}^{\prime} \xrightarrow{M} \eta \in \Delta(M) \cap \bar{G}_{\dot{o}^{*}}(M)$ and $f(\eta) \in A\left(\Delta(M), \delta^{*}\right)$. This contradicts $\xi^{*} \in \Gamma$. Hence $f\left(q_{1}\right)=f\left(q_{2}\right)$. Also we see $f\left(\Gamma_{n}\right) \longrightarrow f\left(q_{1}\right)=f\left(q_{2}\right)$. This implies $\omega_{r}\left(q_{1}\right) \cap \omega_{r}\left(q_{2}\right) \supset \Gamma_{n}$ and $\omega_{r}\left(q_{1}\right)=\omega_{r}\left(q_{2},\right)$ because $\partial \omega_{r}\left(q_{i}\right)$ lies on $\partial C\left(r, f\left(q_{i}\right)\right)$. Hence we have $f\left(q_{1}\right)=f\left(q_{2}\right)$ and $\omega_{r}\left(q_{1}\right)=\omega_{r}\left(q_{2}\right)$ for two kindred points q_{1} and q_{2} for any $r>0$.

Proof of 2) is evident by (1) and by Therem 8.
Proof of 3) By Theorem 10 there exist connected pieces $\omega_{r}\left(q_{1}\right)$ and $\omega_{r}\left(q_{2}\right)$. Then (see the proof of Theorem 10, 2)) sup $K\left(z, q_{i}\right)<\infty$ in R $\omega_{r}\left(q_{i}\right): i \neq 1,2$. Assume $\omega_{r}\left(q_{1}\right) \cap \omega_{r}\left(q_{2}\right)=0$. Then $\sup K\left(z, q_{2}\right)<\infty$ in R by the assumption of this theorem. This is a contradiction. Hence $\omega_{r}\left(q_{1}\right)$
$=\omega_{r}\left(q_{2}\right)$ for any $r>0$, whence $f\left(q_{1}\right)=f\left(q_{2}\right)$.
Proof of 4) Let $z_{i} \xrightarrow{M} q_{1}$. Then there exists a subsequence $\left\{z_{i}\right\}$ of $\left\{z_{i}\right\}$ such that $G\left(z, z_{i}^{\prime}\right) \longrightarrow G\left(z,\left\{z_{i}^{\prime}\right\}\right.$, whence $K\left(z, q_{1}\right) \leqq \frac{G\left(z,\left\{z_{i}^{\prime}\right\}\right)}{\delta}$. By Lemma 6 $K\left(z, q_{1}\right)$ is a G.G. in R and by Lemma 11 there exists a const. $\delta^{\prime}>0$ such that $q_{2} \in \Delta_{1}(M) \cap \bar{G}_{s^{\prime}}(M)$. Hence by the assumption we have $K\left(z, q_{1}\right)$ $\geqq \alpha K\left(z, q_{2}\right): \alpha>0$ and 4$)$ by 3).

Application to lacunary domain Let \widetilde{R} be an end of a Riemann surface with relative boundary $\partial \widetilde{R}$. Let $F_{i}(i=1,2, \cdots)$ be a compact connected set such that $F_{i} \cap F_{j}=0, F_{i}$ clusters nowhere in $\widetilde{R}+\partial R$ and $R=\widetilde{R}$ $-F: F=\sum F_{i}$ is connected. Then we call R a lacunary end. Let \mathfrak{p} be an ideal boundary component of \widetilde{R}. Let $\left\{\mathfrak{b}_{n}(\mathfrak{p})\right\}$ be a determining sequence of \mathfrak{p}. If there exists $\mathfrak{v}_{n}(\mathfrak{p})$ such that $\partial \mathfrak{v}_{n}(\mathfrak{p})$ is a dividing cut and $\inf _{z \in \mathfrak{o}_{n}} G\left(z, p_{0}\right)$ $>\delta>0(n=1,2, \cdots)$, we say F is completely thin at \mathfrak{p}, where $G\left(z, p_{0}\right)$ is a Green's function of R. It is desirable to formulate the behaviour of analytic functions of bounded type in R relative to M-top. $\widetilde{\boldsymbol{M}}$ over \widetilde{R} not to M-top over R. It is easily seen if F is completely thin at $\mathfrak{p}, \delta(p, \widetilde{M})$ $\geqq \delta$ for $p \in \Lambda_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p})$ and any points in $\Delta_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p})$ are chained.

Theorem 12. Let $w=f(z)$ be an analytic function of bounded type in a lacunary end R of \widetilde{R}. 1) If there exists a number $\delta>0$ such that $\Delta_{1}(\widetilde{M}) \cap \bar{G}_{\delta}(\widetilde{M}) \cap \nabla(\mathfrak{p})=\Delta_{1}(\widetilde{M}) \cap \bar{G}_{\delta^{\prime}}(\widetilde{M}) \cap \nabla(\mathfrak{p})$ for any $\delta^{\prime} \leqq \delta$, then

$$
\bigcap_{s>0} \cup \overline{\left(f\left(G_{s} \widetilde{M}\right) \cap \mathfrak{v}_{n}(\mathfrak{p})\right)}=A=\left\{w=f(p): p \in \Delta_{1}(\widetilde{\mathbb{M}}) \cap \bar{G}_{\delta}(\widetilde{M}) \cap \nabla(\mathfrak{p})\right\}
$$

2) If $\bigcup_{\gg 0}\left(\Delta_{1}(\widehat{M}) \cap \bar{G}_{s}(\widetilde{M}) \cap \nabla(\mathfrak{p})\right)$ consists of a finite number of points p_{i}

3) If F is completely thin at \mathfrak{p}, then $\bigcup_{\bullet>0}\left(\Lambda_{1}(\widetilde{M}) \cap \overline{G_{\bullet}}(\widetilde{M}) \cap \nabla(\mathfrak{p})\right)$ consists of a finite number of points $p_{1}, p_{2}, \cdots, p_{i_{0}}$ and

$$
\cup_{\bullet>0} \cap_{n}\left(f\left(\bar{G}_{\bullet}(\widetilde{M}) \cap \mathfrak{v}_{n}(\mathfrak{p})\right)=f\left(p_{1}\right)=f\left(p_{2}\right)=\cdots=f\left(p_{i_{0}}\right) .\right.
$$

Remark. The former part of 3) is proved under the condition that spherical area of $f(R)<\infty$ in the previous paper. Suppose the spherical area of $f(R)<\infty$. Then we can find a neighbourhood $\mathfrak{b}(\mathfrak{p})$ of \mathfrak{p} such that $f(z)$ is bounded type in $\mathfrak{b}(\mathfrak{p}) \cap R$. Hence 3) is an extension of the theorem in the previous one.

Proof of 1) By Theorem 8 $z_{i} \xrightarrow{\widetilde{M}} p \in \Lambda_{\mathrm{I}}(\widetilde{M}) \cap \bar{G}_{\delta}(\widetilde{M})$ implies $z_{i} \xrightarrow{M} q \in \Lambda_{1}$ $(M) \cap \bar{G}_{s}(M): q=\varphi(p) . \quad$ By $f\left(z_{i}\right) \longrightarrow f(p)$ and $\longrightarrow f(q)$ we have $f(p)=f(\varphi(p))$.

Hence if $A \stackrel{\varphi}{\approx} A^{\prime}$ we have at once $f(A)=f\left(A^{\prime}\right)$. For simplicity put $F_{\dot{\delta}}(\alpha)$ $\cap \Delta_{1}(\alpha) \cap \nabla(\mathfrak{p})=F_{\dot{\delta}}(\alpha): \alpha=\widetilde{M}$ or M and $\bar{G}_{\dot{\delta}}(\alpha) \cap \Delta_{1}(\alpha) \cap \nabla(\mathfrak{p})=\bar{G}_{\dot{\delta}}(\alpha)$. By definition we have

$$
\bar{G}_{\dot{\delta}-\epsilon}(\alpha) \supset F_{\delta}(\alpha) \supset \bar{G}_{\dot{\delta}}(\alpha) \quad \text { for } \quad 0<\varepsilon<\frac{\delta}{2} .
$$

By $\bar{G}_{\boldsymbol{j}}(\widetilde{M}) \subset F_{\dot{\delta}}(\widetilde{M}) \subset \bar{G}_{\dot{\delta} \boldsymbol{\prime}}(\widetilde{M}) \subset F_{\delta-؛}(\widetilde{M}) \subset \bar{G}_{\dot{\delta}-2 \iota}(\widetilde{M})=\bar{G}_{\boldsymbol{j}}(\widetilde{M})$

$$
\begin{equation*}
\bar{G}_{\delta}(\widetilde{M})=F_{\delta}(\widetilde{M})=F_{\delta-\epsilon}(\widetilde{M}) . \tag{14}
\end{equation*}
$$

By (14) and Theorem 8
$F_{\delta}(M) \approx F_{\delta}(\widetilde{M})=F_{\delta-\varepsilon}(\widetilde{M}) \approx F_{\delta-\iota}(M) \supset \bar{G}_{\delta-\epsilon}(M) \supset F_{\delta}(M)$ and

$$
\begin{equation*}
\bar{G}_{\delta-\varepsilon}(M)=F_{\dot{\delta}}(M), \quad 0<\varepsilon<\frac{\delta}{2} . \tag{15}
\end{equation*}
$$

By (14) and (15)

$$
f\left(\bar{G}_{\dot{\delta}}(\widetilde{M})\right)=f\left(F_{\dot{\delta}}(M)\right)=f\left(\bar{G}_{\partial-\iota}(M)\right)=A .
$$

Hence it is sufficient to study $f(z)$ relative to M-top not \widetilde{M}-top. Let $\left\{z_{i}\right\}$ be a sequence such that $z_{i} \longrightarrow \mathfrak{p}, G\left(z_{i}, p_{0}\right)>\varepsilon>0, G\left(z, z_{i}\right)$ converges and $f\left(z_{i}\right) \longrightarrow w_{0}$. We show $w_{0} \in A$. We can find a subsequence $\left\{z_{i}^{\prime}\right\}$ of $\left\{z_{i}\right\}$ such that $z_{i}^{\prime} \xrightarrow{M} q \in \Delta(M) \cap \bar{G}_{s}(M) \cap \nabla(\mathfrak{p}), K(z, q)$ is representable by a canonical mass μ on $\Delta_{1}(M) \cap \nabla\left(\mathfrak{p}^{\prime}\right)$, where \mathfrak{p}^{\prime} is the ideal boundary component of R (not of \widetilde{R}) on which q lies. Now R is a lacunary end. We can find a determining sequence $\mathfrak{v}_{n}(\mathfrak{p})$ of \mathfrak{p} such that $\partial \mathfrak{b}_{n}(\mathfrak{p}) \cap F=0$ and $\mu=0$ except on \mathfrak{p}. Hence $\mu>0$ only on $\Delta_{1}(M) \cap \nabla(\mathfrak{p})$. On the other hand, $K(z, q)$ $\leqq \frac{G\left(z,\left\{z_{i}^{\prime}\right\}\right)}{\varepsilon}$ and by Lemma 6 $K(z, q)$ is a G.G. in R. By Lemma 11 and by (15) μ is a mass on $\Delta_{1}(M) \cap F_{\dot{\delta}}(M) \cap \nabla(\mathfrak{p})=\Delta_{1}(M) \cap \bar{G}_{\dot{z}^{\prime}}(M) \cap \nabla(\mathfrak{p})$ for any $\delta^{\prime}<\delta$. Let $t \in \Delta_{1}(M) \cap \bar{G}_{\delta^{\prime}}(M)$, then $K(z, t) \leqq \frac{G^{w}(f(z), f(t))}{\delta^{\prime}}$, where $G^{w}\left(w, w^{\prime}\right)$ is a Green's function of $f(R)$ and δ^{\prime} is a const. < δ. Hence

$$
K(z, q) \leqq \frac{1}{\delta^{\prime}} \int G^{w}(f(z), f(t)) d \mu(t)<\infty \quad \text { by } \int d \mu \leqq 1
$$

Since the mapping $w=f(q)$ is continuous relative to M-top., there exists a mass ν such that

$$
\int G^{w}(f(z), f(t)) d \mu(t)=\int G^{w}(w, s) d \nu(s) \text { and } \nu>0 \text { on } A .
$$

Let $E^{*} K(z, q)$ be the lower envelope of superharmonic functions larger than $K(z, q)$ in $f(R)$. Then $E^{*} K(z, q)=a G^{w}(w, f(q)): a>0$. Now by
$E^{*} K(z, q) \leqq \frac{1}{\delta^{\prime}} \int G^{w}(w, s) d \nu(s), \nu$ has a point mass at $f(q)$ by Lemma 4, whence $f(q) \in A$. Hence $\cap_{n} \overline{\left.f\left(G_{t}\right) \cap \mathfrak{v}_{n}(\mathfrak{p})\right)} \subset A$ for any $\varepsilon>0$ and we have 1).

Proof of 2) Let $\delta=\min _{i}\left(\delta\left(p_{i}, \widetilde{M}\right)\right)$. Then $\Delta_{1}(\widetilde{M}) \cap \bar{G}_{s}(\widetilde{M}) \cap \nabla(\mathfrak{p})=\Delta_{1}(\widetilde{M})$ $\cap G_{b^{\prime}}(\widetilde{M}) \cap \nabla(\mathfrak{p})$ for any $\delta^{\prime}<\delta$ and $A=\Sigma f\left(p_{i}\right)$. Thus we have 2).

Proof of 3) Let p_{i} and p_{j} in $\Delta_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p})$. Then $\delta\left(p_{i}, \widetilde{M}\right) \geqq \delta>0$, where δ is the number such that $G\left(z, p_{0}\right) \geqq \delta$ on $\partial \mathfrak{b}_{n}(\mathfrak{p})$ and p_{i} and p_{j} are chained, hence $f\left(p_{i}\right)=f\left(p_{j}\right)$ and $=f\left(p_{1}\right)=\cdots=f\left(p_{i_{0}}\right)$. By (10) there exists a number N such that $u\left(p_{i}, \widetilde{M}\right) \geqq N \delta\left(p_{i}, \widetilde{M}\right)$. Then by Theorem 10

$$
\sum^{i_{0}} \delta\left(p_{i}, \widetilde{M}\right) \leqq \frac{1}{N} . \text { Hence } i_{0} \leqq \frac{1}{N \delta} \text { and by 2) we have 3). }
$$

As a consequence of 3) we have following
Corollarly. Let \widetilde{R} be an end of a Riemann surface $\in O_{g}$. If F is completely thin at a boundary component \mathfrak{p} of harmonic dimension $=\infty$. Then there exists no analytic function in $\widetilde{R}-F$ of bounded type in $\widetilde{R}-F$. We shall give some examples.

Example 1. Let $1 / 2>a_{1}>b_{1}>a_{2}>b_{2} \cdots \downarrow 0$. Let S_{n}^{+}and $S_{n}^{-}(n=1,2, \cdots)$ be slits as follows:

$$
\begin{aligned}
& S_{n}^{+}=\left\{1+a_{n} \geqq \operatorname{Re} z \geqq 1+b_{n}, \operatorname{Im} z=0\right\} \\
& S_{n}^{-}=\left\{-1-b_{n} \geqq \operatorname{Re} z \geqq-1-a_{n}, \operatorname{Im} z=0\right\} .
\end{aligned}
$$

Let \mathscr{F}_{0} be a circle $|z|<2$ with slits $\sum_{1}^{\infty} S_{n}^{+}+\sum_{1}^{\infty} S_{n}^{-}$. We suppose a_{n}, b_{n} are chosen as
1)

$$
\log \frac{b_{n}}{a_{n+1}}>\varepsilon_{0}>0, \quad n=1,2, \cdots
$$

2) $z= \pm 1$ are irreguar points in \mathscr{F}_{0}.

Let \mathscr{F}_{n} be a whole z-plane with slits S_{n}^{+}and S_{n}^{-}. We shall construct an end of a Riemann surface $\in O_{g}$. We connect \mathscr{F}_{9} with $\mathscr{F}_{n}(n=1,2, \cdots)$ on $S_{n}^{+}+S_{n}^{-}$crosswise. Then we have an end denoted by \widetilde{R} with relative boundary $\partial \widetilde{R}$ lying on $|z|=2$ on \mathscr{F}_{0}. Let $\Gamma_{n}^{+}=\left\{|z-1|=\sqrt{a_{n+1} b_{n}}\right\}, \quad \Gamma_{n}^{-}=$ $\left\{|z+1|=\sqrt{a_{n+1} b_{n}}\right\}$ on \mathscr{F}_{0} and $D_{n}=\mathscr{F}_{0}-\left\{|z-1| \leqq \sqrt{a_{n+1} b_{n}}\right\}-\left\{|z+1| \leqq \sqrt{a_{n+1} b_{n}}\right\}$. Put $\tilde{R}_{n}=D_{n}+\mathscr{F}_{1}+\cdots+\mathscr{F}_{n}$. Then \widetilde{R}_{n} is an $n+1$ sheeted covering surface, $\left\{\widetilde{R}_{n}\right\}(n=1,2, \cdots)$ is an exhaustion of $\widetilde{R}, \partial \widetilde{R}_{n}=\partial \widetilde{R}+\Gamma_{n}^{+}+\Gamma_{n}^{-}, \widetilde{R}$ has only one ideal boundary component \mathfrak{p} and $\left\{\widetilde{R}-\widetilde{R}_{n}\right\}$ is an determining sequence of \mathfrak{p}. Let F be a connceted closed set of positive capacity in $|z|>3$ and let F_{n} be a set on \mathscr{F}_{n} whose projection is F. Then $R=\widetilde{R}-\sum F_{n}$ is
a lacunary end. \widetilde{R} and R have following properties.

1) \widetilde{R} is an end of a Riemann surface ϵO_{g}.

Let $G\left(z, p_{0}\right)$ be a Green's function of R and put $G_{0}=\left\{z \in R: G\left(z, p_{0}\right)>\delta\right\}$ and \widetilde{M} and M-top.s over \widetilde{R} and R are defined. Then
2) $\Delta_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p})$ consists of two points p_{1} and p_{2} and $\delta\left(\widetilde{M}, p_{i}\right)>0$. Let $w=f(z)=$ proj. $z(z \in R)$. Then $f(z)$ is bounded type in R and $f\left(p_{i}\right)$ exists: $\sum f\left(p_{i}\right)=\{z= \pm 1\}$ and p_{1} and p_{2} are not kindred.
3) Let $\left\{z_{n}\right\}$ be a sequence such that $z_{n} \in \mathscr{F}_{n}-F_{n}$ and proj. $\left|z_{n}-1\right|>o^{\prime}$ >0. Then $\lim _{n} G\left(z_{n}, p_{0}\right)=0$.

Proof of 1) Let $H_{n}^{+}=\left\{b_{n}>|z-1|>a_{n+1}\right\}$ and $H_{n}^{-}=\left\{b_{n}>|z+1|>a_{n+1}\right\}$ on \mathscr{F}_{0}. Then $H_{n}^{+}+H_{n}^{-}$separates \mathfrak{p} from $\partial \widetilde{R}$ and by $\bmod H_{n}^{+}=\bmod H_{n}^{-}$, $\sum_{n} \bmod H_{n}^{+}=\infty$ and \widetilde{R} is a end of a Riemann surface ϵO_{g}.

Proof of 2) Without loss of generality we can suppose p_{0} lies on $z=3 / 2$ in \mathscr{F}_{0}. Let $G^{\prime}\left(z, p_{0}\right)$ be a Green's function of \mathscr{F}_{0}. Put $U(z)$ $=G^{\prime}\left(z, p_{0}\right)$ and consider $U(z)$ in \mathscr{H}_{0}. Then $U(z)=0$ on $\Sigma\left(S_{n}^{+}+S_{n}^{-}\right)$and subharmonic in $|z|<3 / 2$. Let $C_{n}^{+}=\left\{|z-1|<\sqrt{a_{n+1} b_{n}}\right\}$ and $C_{n}^{-}=\{|z+1|<$ $\sqrt{a_{n+1} b_{n}}$ on \mathscr{F}_{0} and let $M_{n}=\max _{z \in C_{n}^{+}} U(z)$. Then $M_{n}=\max _{z \in \sigma_{n}^{+}} U(z)$ and $M_{n} \downarrow$. Assume $M_{n} \downarrow 0$. Then $U(z) \longrightarrow 0$ as $z \longrightarrow 1$. This means $z=1$ is regular and contradicts 2). Hence $\lim M_{n}=\delta>0$. By condition 1) and Harnack's theorem there exists a const. K for any positive harmonic function $V(z)$ in $b_{n}>|z|>a_{n+1}$ such that $\max _{z \in \mathcal{C O}_{n_{-}^{+}}} V(z) \leqq K_{z \in \mathcal{C O}_{n}^{+}} V(z)$. Hence

$$
\begin{equation*}
\min _{z \in \sigma \sigma_{n}^{+}} G^{\prime}\left(z, p_{0}\right) \geqq \frac{\delta}{K} \text { similarly } \min _{z \in \sigma \sigma_{n}^{-}} G^{\prime}\left(z, p_{0} \geqq \frac{\delta}{K} .\right. \tag{1}
\end{equation*}
$$

By Brelot's theorem there exist only a point q_{1} which is minimal on $z=1$ $(=-1)$ relative to Martin's top. M^{\prime} over \mathscr{F}_{0} and there exists a path $\Lambda\left(q_{1}\right)$ M^{\prime}-tending to q_{1}. $\Lambda\left(q_{1}\right)$ intersects $\partial C_{n}^{+}\left(n \geqq n\left(\Lambda, q_{1}\right)\right)$. Hence there exists a sequence $\left\{z_{i}\right\}$ on $\sum_{n} C_{n}^{+}$such that $z_{n} \xrightarrow{M^{\prime}} q_{1}: K^{\prime}\left(z, z_{n}\right) \longrightarrow K^{\prime}\left(z, q_{1}\right)$. By (1) $\underset{\mathcal{F}_{0}}{\tilde{E}} K^{\prime}\left(z, q_{1}\right)<\infty$ and there exists a point $p_{1} \in \Delta_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p})$ corresponding to q_{1}. Hence $\Delta_{1}(\widetilde{M}) \cap \nabla(p)$ consists of at least two point p_{1} and p_{2}. Let $p \in \Delta_{1}(\widetilde{M})$ $\cap \nabla(\mathfrak{p})$. Then $\Lambda(p)$ corresponding to p must intersect $\partial C_{n}^{+}+\partial C_{n}^{-}$. Then there exists a sequence $z_{i} \xrightarrow{\widehat{M}} p$ and $z_{n} \in \partial C_{n}^{+}$or $\in \partial C_{n}^{-}$. Now $\underset{z_{0}}{\stackrel{\rightharpoonup}{I}} K(z, p) \geqq$ $\frac{\lim G^{\prime}\left(z, z_{i}\right)}{M}>0$, where $M=\max \widetilde{G}\left(z, p_{0}\right)$ for $|z|<1$ on \mathscr{T}_{0} and $\widetilde{G}\left(z, p_{0}\right)$ is a Green's function of \widetilde{R} and ${\underset{\mathscr{F}}{0}}_{R}^{R} K\left(z, p_{1}\right)=a K^{\prime}\left(z, q_{1}\right)$ or $K^{\prime}\left(z, q_{2}\right): a>0$. Hence
$\Delta_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p})$ consists of at most two points p_{1} and p_{2}. Let $G\left(z, p_{0}\right)$ be a Green's function of R. Then by $G\left(z, p_{0}\right) \geqq G^{\prime}\left(z, p_{0}\right), \delta\left(\widetilde{M}, p_{i}\right) \geqq \frac{\delta}{K}$. Hence any analytic function of bounded type in R has limit as $z \xrightarrow{\widetilde{M}} p_{i}$ in $G_{z^{\prime}}$ $=\left\{z \in R: G\left(z, p_{0}\right)>\delta^{\prime}\right\}$. The remaining part of 2) and 3) are the consequence of Theorem 11 and 12.

Example 2. Let $1 / 2>b_{0}>a_{1}>b_{1}>a_{2}>b_{2} \cdots \downarrow 0$ and S_{n}^{+}and S_{n}^{-}be slits :

$$
S_{n}^{+}=\left\{b_{n} \leqq \operatorname{Re} z \leqq a_{n}, \operatorname{Im} z=0\right\}, \quad S_{n}^{-}=\left\{-b_{n} \geqq \operatorname{Re} z \geqq-a_{n}, \operatorname{Im} z=0\right\}
$$

Let $w\left(S_{n}^{+-}, z\right)$ be a harmonic measure of S_{n}^{+-}in $|z|<2$. We choose a_{n}, b_{n} so that 1) and 2) may satisfied.

$$
\log \left(a_{n} / b_{n+1}\right)>\varepsilon>0, \quad(n=1,2, \cdots)
$$

2) $\sup _{R e z=0} w\left(S_{n}^{+-}, z\right) \leqq 1 / 2^{n+3}$.
(clearly $z=0$ is an irregular point in $\{|z|<2\}-\sum S_{n}^{+-}$).
We shall construct an end \widetilde{R} of a Riemann surface $\in O_{g}$ and a lacunary end R. Let \mathscr{F}_{0} be a circle $|z|<2$ with slits $\sum_{n=1}^{\infty} S_{n}^{+}$.
\mathscr{T}_{n} be the whole z-plane with slits $\sum_{i=n}^{\infty} S_{i}^{+}+\sum_{i=n+1}^{\infty} S_{i}^{-} \quad(n=$ odd $)$
\mathscr{T}_{n} be the whole z-plane with slits $\sum_{i=n+1}^{\infty} S_{i}^{+}+\sum_{i=n}^{\infty} S_{i}^{-} \quad(n=$ even $)$
Connect \mathscr{F}_{0} with \mathscr{F}_{1} on $\sum_{n=1}^{\infty} S_{n}^{+}$crosswise. Connect \mathscr{F}_{n} and \mathscr{F}_{n+1} on $\sum_{i=n+1}^{\infty} S_{i}^{-}(n=$ odd $)$ on $\sum_{i=n+1}^{\infty} S_{i}^{+}(n=$ even $)$. Then we have a Riemann surface $\stackrel{i=n+1}{\mathbb{R}}$ being a covering surface. Let $F_{m}(m=1,2, \cdots)$ the part of \mathscr{T}_{m} over $|z|>1$ and let $R=\widetilde{R}-\sum_{m=1}^{\infty} F_{m}$. Then R is a lacunary end. Let $\Gamma_{n}=\{|z|$ $=\sqrt{a_{n+1} b_{n}}, H_{n}=\left\{b_{n} \geqq|z| \geqq a_{n+1}\right\} \quad(n=0,1,2, \cdots)$. Let Γ_{n}^{m} be a circle in \mathscr{F}_{m} whose projection is Γ_{n} and H_{n}^{m} be a ring in \mathscr{F}_{m} whose projection is H_{n}. Let
D_{n}^{0} be the part of \mathscr{F}_{0} over $\quad 2>|z|>a_{n}$.
D_{n}^{n} be the part of \mathscr{F}_{m} over $\quad \infty \geqq|z|>a_{n}: 1 \leqq m \leqq n-1$.
Put $\widetilde{R}_{n}=D_{n}^{0}+D_{n}^{1}+D_{n}^{2}+, \cdots+D_{n}^{n-1}$, Then $\widetilde{R}_{n}($ an n-sheeted covering surface) has relative boundary $|z|=2$ on \mathscr{F}_{0} and $\left\{|z|=a_{n}\right\}$ over $\mathscr{R}_{1}+\mathscr{F}_{2}+\cdots+\mathscr{R}_{n-1}$ and $\left\{\widetilde{R}_{n}\right\}$ is an exhaustion of $\widetilde{R}, \widetilde{R}$ has only one ideal boundary component
p. $\quad \widetilde{R}$ and R have the following properties.
3) R is an end of a Riemann surface $\in O_{g}$.
4) $\Delta_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p})$ consists of a countably infinite number of points p_{1}, p_{2}, \cdots with positive irregularity.
5) p_{i} and p_{i+1} are chained: $i=1,2, \cdots$

Proof of 1) H_{n} is a ring with module $\log \left(a_{n} / b_{n+1}\right)$ and $\sum_{m=0}^{n} H_{n}^{m}$ separates $\partial \widetilde{R}$ from \mathfrak{p} and $\sum \frac{1}{n+1} \log \frac{a_{n}}{b_{n+1}}=\infty$. Hence \widetilde{R} is an end of a Riemann surface $\in O_{g}$. Let $S(z)$ be a positive harmonic function in a_{n+1} $<|z|<b_{n}$. Then by condition 1) there exists a const. K such that

$$
\max _{z \in \Gamma_{n}} S(z) \leqq K \min _{z \in \Gamma_{n}} S(z): \quad \Gamma_{n}=\left\{|z|=\sqrt{a_{n+1} b_{n}}\right\} .
$$

Let $G\left(z, p_{0}\right)$ be a Green's function of R with pole p at $z=3 / 2$ in \mathscr{R}_{0}. Then there exists a const. M such that $G\left(z, p_{0}\right) \leqq M$ in R over $|z|<1$. Let $V(z)$ be a positive harmonic function in $\left\{|z|<\frac{1}{2}\right\}-\sum_{i=m}^{\infty} S_{i}^{+}-\sum_{i=m}^{\infty} S_{i}^{-}$ such that $V(z) \geqq N$ on $|z|=1 / 2$. Then

$$
\begin{equation*}
V(z) \geqq N\left(1-\sum_{m}^{\infty} w^{\prime}\left(S_{i}^{+}, z\right)-\sum_{m}^{\infty} w^{\prime}\left(S_{i}^{-}, z\right)\right), \tag{1}
\end{equation*}
$$

where $w^{\prime}\left(S_{i}^{+-}, z\right)$ is H.M. of S_{i}^{+-}relative to $|z| \leqq 1 / 2$ and $w^{\prime}\left(S_{i}^{+-}, z\right) \leqq$ $w\left(S_{i}^{+-}, z\right)$. By $\max _{R_{e}} \sum_{i=0}^{\infty}\left(w\left(S_{i}^{+}, z\right)+w\left(S_{i}^{-}, z\right)\right) \leqq 1 / 2^{m+1}$ we have

$$
\begin{equation*}
V(z) \geqq N\left(1-1 / 2^{m+1}\right) \text { for } \operatorname{Re} z=0 \text { and } V(z) \geqq \frac{N}{K}\left(1-1 / 2^{m+1}\right) \text { on } \sum_{i=1}^{\infty} \Gamma_{i} \tag{2}
\end{equation*}
$$

Consider $G\left(z, p_{0}\right)$ in \mathscr{F}_{m} over $\{|z|<1 / 2\}$. Then there exists a const. N_{m} such that $G\left(z, p_{0}\right) \geqq N_{m}$ on $|z|=1 / 2$. Hence by (2)

$$
\begin{equation*}
G\left(z, p_{0}\right) \geqq \frac{N_{m}}{K}\left(1-1 / 2^{m+1}\right) \text { for Re } z=0 \text { and on } \sum_{i=1}^{\infty} \Gamma_{i} . \tag{3}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
G\left(z, p_{0}\right) \leqq K\left(M / 2^{m+1}\right) \quad \text { for } \operatorname{Re} z=0 \text { and on } \sum_{i=1}^{\infty} \Gamma_{i} . \tag{4}
\end{equation*}
$$

Let G_{m} be the part of \mathscr{F}_{m} on $\left\{\sqrt{a_{n+1} b_{n}}<|z|<\sqrt{a_{n} b_{n-1}},-\pi / 2 \leqq \arg z \leqq \pi / 2\right\}$ G_{m-1} be the part of \mathscr{F}_{m-1} on $\left\{\sqrt{a_{n+1} b_{n}}<|z|<\sqrt{a_{n} b_{n-1}},-\pi / 2 \leqq \arg z \leqq \pi / 2\right\}$ Then G_{m} and G_{m-1} are connected at S_{n}^{+}and $G_{m}+G_{m-1}$ is bounded by two boundary components B on \mathscr{F}_{m} and B^{\prime} on \mathscr{F}_{m-1} for $n \geqq m$, where B is the part of \mathscr{T}_{m} over $\left(|z|=\sqrt{a_{n} b_{n-1}},-\pi / 2 \leqq \arg z \leqq \pi / 2\right)+\left(\sqrt{a_{n+1} b_{n}}<|z|<\sqrt{a_{n} b_{n-1}}\right.$ $\arg z=\pi / 2)+\left(|z|=\sqrt{a_{n+1} b_{n}},-\pi / 2 \leqq \arg z \leqq \pi / 2\right)+\left(\sqrt{a_{n+1} b_{n}}<|z|<\sqrt{a_{n} b_{n-1}} \arg z=\right.$
$-\pi / 2)$. and B^{\prime} is a set on \mathscr{F}_{m-1} whose projection is that of B. Then by (3) $G\left(z, p_{0}\right) \geqq \frac{N_{m}}{K}\left(1-1 / 2^{m+1}\right)$ on B and $\geqq \frac{N_{m-1}}{K}\left(1-1 / 2^{m+1}\right)$ on B^{\prime}. Hence $G\left(z, p_{0}\right) \geqq \frac{1}{K}\left(1-1 / 2^{m+1}\right) \min \left(N_{m}, N_{m-1}\right)$ and similarly $G\left(z, p_{0}\right) \geqq \frac{1}{K}\left(1-1 / 2^{m+1}\right)$ $\min \left(N_{m}, N_{m+1}\right)$ in the part of \mathscr{F}_{m} over $\sqrt{a_{n+1} b_{n}}>|z|>\sqrt{a_{n} b_{n-1}}, \pi / 2 \leqq \arg z \leqq$ $3 \pi / 2$. Hence $G\left(z, p_{0}\right) \geqq \frac{1}{K}\left(1-1 / 2^{m+1}\right) \min \left(N_{m-1}, N_{m}, N_{m+1}\right)$ in \mathscr{F}_{m} over $|z|$ $<\sqrt{a_{m} b_{m-1}}$. Now G_{m} (for $n \leqq m$) is bounded by only one boundary component B on which $G\left(z, p_{0}\right) \geqq \frac{N_{m}}{K}\left(1-1 / 2^{m+1}\right)$. Thus

$$
\begin{equation*}
G\left(z, p_{0}\right) \geqq \frac{\min \left(N_{m-1}, N_{m}, N_{m+1}\right.}{K}\left(1-1 / 2^{m+1}\right) \text { in } \mathscr{T}_{m} \text { over }|z|<1 / 2 . \tag{5}
\end{equation*}
$$

For m is even, the same result is obtained.
Similarly we have

$$
\begin{equation*}
G\left(z, p_{0}\right) \leqq \frac{K M}{2^{m}} \text { in } \mathscr{F}_{m} \text { over }|z|<1 \tag{6}
\end{equation*}
$$

Let $\mathscr{F}_{m}^{\prime}=\mathscr{F}_{m}-F_{m}$, i. e. unit circle with slits $\sum_{m}^{\infty} S_{i}^{+-}+\sum_{m+1}^{\infty} S_{i}^{-+}$according as $m=$ odd or even. Then there exists only one point q_{m} at $z=0$ which is minimal relative to Martin's top. over \mathscr{F}_{n}^{\prime}. Let Λ be a curve tending to q_{n}. Then Λ intersects $\Gamma_{n}^{m}: n \geqq n(\Lambda)$. There exists a sequence $\left\{z_{i}\right\}$ on $\sum_{i} \Gamma_{i}^{m}$ with $K^{\prime}\left(z, z_{i}\right) \longrightarrow K^{\prime}\left(z, q_{m}\right)$, where $K^{\prime}\left(z, q_{m}\right)$ is a kernel in \mathscr{F}_{m}^{\prime}. Let $G^{\prime}\left(z, p_{0}\right)$ be a Green's function of \mathscr{F}_{m}^{\prime}. Then by (1) it is easily seen lim $G^{\prime}\left(z_{i}, p_{0}\right)>0$ and $\underset{\mathcal{F}^{\prime} \cdot m}{\tilde{\tilde{R}}} K^{\prime}\left(z, q_{m}\right)<\infty$ and there exists apoint p_{m} in $\Delta_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p})$ with $\underset{夕^{\prime} \prime_{n}}{\stackrel{\rightharpoonup}{E}} K^{\prime}\left(z, q_{m}\right)=a K\left(z, q_{m}\right)$. Clearly by (5) $\delta\left(\widetilde{M}, p_{m}\right)>0$. By $\mathscr{F}_{m}^{\prime} \cap \mathscr{F}_{m}^{\prime}=0$, $q_{m} \neq q_{m^{\prime}}$, , ${ }^{\prime \prime} p_{m} \neq p_{m^{\prime}}$ for $m \neq m^{\prime}$. Hence there exist p_{1}, p_{2}, \cdots in $\Delta_{1}(\widetilde{M}) \cap \nabla(p)$. Conversely let $p \in \Delta_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p})$ with $\delta(\widetilde{M}, p)>0$. Then there exists a path $\Lambda \widetilde{M}$-tending to p. By (6) there exists a number k_{0} and an endpart Λ^{\prime} of Λ such that Λ^{\prime} has no common points with $\mathscr{T}_{k}: k \geqq k_{0}$. Now $\sum_{i=1}^{n} \Gamma_{n}^{i}$ separates $\partial \tilde{R}$ from \mathfrak{p} for any n and Λ intersects $\sum_{i=1}^{k_{0}} \Gamma_{n}^{i}$ for $n>n(\Lambda)$ and there exists a sequence $\left\{z_{i}\right\}$ and a number m such that $\left\{z_{i}\right\} \subset \sum_{n=1}^{\infty} \Gamma_{n}^{m}$ and $z_{i} \xrightarrow{\widetilde{M}} p$. By (5) $\lim G^{\prime}\left(z_{i}, p_{0}\right)>0,{\underset{\boldsymbol{q}_{m}^{\prime}}{I}}_{\stackrel{\rightharpoonup}{\vec{n}}}^{I} K(z, p)>0$. Hence p_{m} corresponds q_{m}. Hence there exists no point with positive irregularity except p_{1}, p_{2}, \cdots. Let p_{m},
$p_{m+1} \in \Delta_{1}(\widetilde{M}) \cap \nabla(\mathfrak{p})$. Then there exist sequences $\left\{z_{i}^{m}\right\},\left\{z_{i}^{m+1}\right\}$ such that $\left\{z_{i}^{m}\right\}$ $\subset \sum_{n}^{\infty} \Gamma_{n}^{m},\left\{z_{i}^{m+1}\right\} \subset \sum_{n}^{\infty} \Gamma_{n}^{m+1}, z_{i}^{m} \longrightarrow p_{m}, z_{i}^{m+1} \longrightarrow p_{m+1} . \quad$ By (5) p_{m} and p_{m+1} are chained.

References

[1] Z. Kuramochi: Analytic functions in a lacunary end of a Riemann surface. to appear in Ann. Inst. Fourier, Fas 3, tome 25 (1975).
[2] Z. Kuramochi : Mass distributions on the ideal boundaries of abstract Riemann surfaces, 1. Osaka Math. J., 8. 119-137 (1956).
[3] Z. Kuramochi: On harmonic functions representable by Poisson's integral, Osaka Math. J. 10, 103-117 (1958).
[4] Constantinescu und Cornea: Ideale Ränder Riemannscher Flächen; Springer (1958).
[5] Z. Kuramochi: On the existence of functions of Evans's type, J. Fac. Sci. Hokkaido Univ. 19. 1-27 (1965).
[6] L. NAim : Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Ann. Inst. Fourier. 7, 183-281 (1957)

