Analytic functions in a neighbourhood of irregular boundary points

By Zenjiro KURAMOCHI (Received April 30, 1975)

The present paper is a continuation of the previous paper with title "Analytic functions in a lacunary end of a Riemann surface"1. We use the same notions and terminologies in the previous one. Let G be an end of a Riemann surface $\in O_g$ (we denote by O_g the class of Riemann surfaces with null boundary) and G' = G - F be a lacunary end and let $p \in \mathcal{A}_1(M)$ be a minimal boundary point relative to Martin's topology M over G with irregularity $\delta(p) = \overline{\lim} G(z, p_0) > 0$, where $G(z, p_0) : p_0 \in G'$ is a Green's function of G'. Then Theorems 2, 3 and 4 in the previous show that analytic functions in G' of some classes have similar behaviour at p as p is an inner point of G'. We shall show these theorems are valid not only for the above domains but also for any Riemann surface $\notin O_{g}$. The extensions of Fatou and Beurling's theorems express the behaviour of analytic functions on almost all boundary points but have no effect on the small set, $\{p \in \mathcal{A}_1(M) : \delta(p) > \delta\}$. The purpose of this paper is to study analytic functions on the small set, to extend theorems in the previous one and to show some examples. Let G be a domain in a Riemann surface R. Through this paper we suppose ∂G consists of at most a countably infinite number of analytic curves clustering nowhere in R. The following lemma is useful.

LEMMA 5²). Let R be a Riemann surface $\in O_g$ and let G be a domain and $U_i(z)$ $(i=1, 2, \dots, i_0)$ be a harmonic function in G such that $D(U_i(z))$ $<\infty$. Then there exists a sequence of curves $\{\Gamma_n\}$ in R such that Γ_n separates a fixed point p_0 from the ideal boundary, $\Gamma_n \rightarrow ideal$ boundary of R and $\int_{\Gamma_n \cap G} \left| \frac{\partial}{\partial n} U_i(z) \right| ds \rightarrow 0$ as $n \rightarrow \infty$ for any i.

Generalized Gree's function²⁾ (abbreviated by G.G.). Let R be a Riemann surface with an exhaustion $\{R_n\}$ $(n=0, 1, 2, \cdots)$ and G be a domain in R. Let $w_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-(G\cap(R_{n+i}-R_n))$ such that $w_{n,n+i}(z)=0$ on $\partial R_{n+i}-G$ and =1 on $G\cap(R_{n+i}-R_n)$. We call $\lim_{n \to \infty} w_{n,n+i}(z)$ a H.M. (harmonic measure) of the boundary determined by G

and denote it by $w(G \cap B, z)$. Let V(z) be a positive harmonic function in R except at most a set of capacity zero where $V(z) = \infty$. If $w(G_{\delta} \cap B, z) = 0$ for any $\delta > 0$ and $D(\min(M, V(z)) \leq M\alpha : \alpha$ is a const. for any M, we call V(z) a G.G., where $G_{\delta} = \{z \in R : V(z) \geq \delta\}$. Then it is known

LEMMA 6. 1)³⁾ Let V(z) be a non const. G.G. Let \hat{G}_{δ} be the symmetric image of G_{δ} with respect to $\partial G_{\delta} = \{z \in R : V(z) = \delta\}$. Identify ∂G_{δ} with $\partial \tilde{G}_{\delta}$. Then we have a Riemann surface \tilde{G}_{δ} called a double of \tilde{G}_{δ} . Then $\tilde{G}_{\delta} \in O_{g}$.

2) By 1) and by Lemma 5, we see there exists a const. α such that $D(\min(M, V(z))) = M\alpha$ and $\int_{\partial G_M} \frac{\partial}{\partial n} V(z) ds = \alpha$ for any M and $\sup_{z \in R} V(z) = \infty$.

3) Let V(z) be a G.G. and let W(z) be a positive harmonic function $\leq V(z)^4$. Then W(z) is a G.G.

4) A Green's function of R is a G.G. with $D(\min(M, G(z, p_0))) = 2\pi M$. Let p_i be a sequence such that $G(z, p_i) \rightarrow a$ non const. harmonic function $G(z, \{p_i\})$. Then $G(z, \{p_i\})$ is a G.G. with $D(\min(M, G(z, \{p_i\}))) \leq 2\pi M$.

G-Martin's topology⁵⁾, *GM*. Let *R* be a Riemann surface $\notin O_g$ and let $G(z, p_0)$ be a Green's function of *R*. Put $R' = \{z \in R : G(z, p_0) > \delta\} : \delta > 0$. Then the doubled surface \tilde{R}' with respect to $\partial R'$ is in O_g . Let $G'(z, p_i)$ be a Green's function of R' and let $\{p_i\}$ be a sequence such that $p_i \rightarrow$ boundary of *R* and $G'(z, p_i)$ converges to a harmonic function. Then we say $\{p_i\}$ determines a boundary point *p* and put $G'(z, p) = \lim G'(z, p_i)$. We denote by B(R') the set of all boundary points. Then *G*-Martin's topology is introduced on $\overline{R}' = R' + B(R')$ as usual with

$$\operatorname{dist}(p_i, p_j) = \sup_{z \in \overline{R}_0} \left| \frac{G'(z, p_i)}{1 + G'(z, p_i)} - \frac{G'(z, p_j)}{1 + G'(z, p_j)} \right| \colon p_i, \ p_i \in \overline{R}'$$

where R_0 is a compact set in R'.

Then we see $G'(z, p): p \in \overline{R}'$ is a G.G. and $\int_{\partial P_M(p)} \frac{\partial}{\partial n} G'(z, p) ds = 2\pi : p \in R'$. Where $V_M(p) = \{z \in R': G'(z, p) > M\}$. Let p and $q \in \overline{R}$. Then $\int_{\partial P_M(q)} G'(\zeta, p) \frac{\partial}{\partial n}$ $G'(\zeta, q) ds \uparrow$ as $M \to \infty$. We define the value of G'(z, p) at q by $\lim_{M \to \infty} \frac{1}{2\pi}$ $\int_{\partial P_M(q)} G'(\zeta, p) \frac{\partial}{\partial n} G'(\zeta, q) ds$ also the mass m(p) of G'(z, p) by $\frac{1}{2\pi} \int_{\partial P_M(p)} \frac{\partial}{\partial n}$ G'(z, p) ds. Then

LEMMA 7. 1) G'(p,q)=G'(q,p), G'(p,q) is lower semicontinuous on $\overline{R}' \times \overline{R}'$, $G'(p,p)=\infty$, if G'(z,p)>0 and G'(z,p) is continuous on $\overline{R}'-p$ for $p \in R'$.

2) m(p)=1 for $p \in R'$ and $m(p) \ge \frac{\eta}{2k}$ for $p \in \overline{G}'_{\eta} \cap B(R')$, $G'_{\eta} = \{z \in R' : G'(z, p_0) > \eta > 0\}$, $k = \sup_{z \in R_0} G'(z, p_0)$, where R_0 is a compact set with $R_0 \ni p_0$.

Energy integral, capacities and transfinite diameters⁵⁾ Let F be a closed set in R'. Let $\{R_n\}$ be an exhaustion of R and let $\omega_n(z)$ be a harmonic function in $(R' \cap R_n) - F$ such that $\omega_n(z) = 1$ on F except capacity zero, =0 on $\partial R' \cap R_n$ and $\frac{\partial}{\partial n} \omega_n(z) = 0$ on $(\partial R_n \cap R') - F$. If there exists a const. M such that $D(\omega_n(z)) < M$ for any n, then $\omega_n(z)$ in mean \rightarrow a function $\omega(F, z)$ called C.P. (capacitary potential). Clearly $\omega(F, z)$ has M.D.I. (minimal Dirichlet integral) among all functions with value 1 on F, =0on $\partial R'$ except capacity zero. In this case, $\widetilde{R}'(\text{of } R') \in O_g$, $\omega(F, z) = w(F, z)$. H.M. (harmonic measure of F). Let K be a compact set in R'. Then evidently there exists a uniquely determined mass μ on K of unity such that the energy integral $I(\mu) = \frac{1}{4\pi^2} \int G'(p,q) d\mu(p) d\mu(q)$ is minimal and its potential U(z) has the following properties: $U(z) = M\omega(K, z), I(\mu) = D(M\omega)$ (K, z) = 2M.We define Cap(K) by $1/I(\mu)=1/2\pi M=D(\omega(K,z))/4\pi^2$. We define Cap(F) of a closed set $F \subset \overline{R}'$ by $\sup_{r \subset F} Cap(K)$. Also we define transfinite diameter D(F) by $1/D(F) = \lim_{n} \inf_{\substack{p_i \in F \\ p_j \notin F}} \sum_{i=1}^n G'(p_i, p_j)/_n C_2$. Put $1/D^M(F) = \lim_n$ $\inf_{\substack{p_{i} \in F_{i=1}^{j>i} \\ p_{j} \notin F_{i=1}^{j}}} G'^{M}(p_{i}, p_{j})/_{n}C_{2} \text{ and } D^{0}(F) = \lim_{M} D^{M}(F), \text{ where } G'^{M}(p_{i}, p_{j}) = \min(M, G'(p_{i}, p_{j}))$

 $p_j \in F_{i=1}^{\circ}$ $p_j)$. Then clearly $D(F) \leq D^0(F)$.

Let $p \in \overline{R'}$. Then by Green's formula and by Lemma 5 we have

$$G'(q, p) = \frac{1}{2\pi} \int_{\partial \mathcal{V}_{M}(p)} G'(\zeta, q) \frac{\partial}{\partial n} G'(\zeta, p) \, ds : \quad q \notin \overline{\mathcal{V}}_{M}(p)$$
$$M = \frac{1}{2\pi} \int_{\partial \mathcal{V}_{M}(p)} G'(\zeta, q) \frac{\partial}{\partial n} G'(\zeta, p) \, ds \; ; \; q \in \mathcal{V}_{M}(p) \, .$$

Put $d\mu_p(\zeta) = \frac{1}{2\pi} \frac{\partial}{\partial n} G'(\zeta, p) ds$ on $\partial V_M(p)$. Then $G'^M(z, p) = M\omega(V_M(p), z)$ $= \int G'(\zeta, z) d\mu_p(\zeta)$ and $\mu_p = 0$ on B(R'). Let p_1, p_2, \dots, p_n . Then $G'^M(z, p_i)$ $= \int G'(z, \zeta) d\mu_{p_i}(\zeta)$ and $\int G'^M(z, p_i) d\mu_{p_j}(z) \leq \int G'(z, p_i) d\mu_{p_j}(z) = G'^M(p_j, p_i)$.

Put $\mu = \sum_{i=1}^{n} \mu_{p_i}/n$, then

$$I(\mu) \leq \frac{1}{n^2} \sum_{\substack{i=1\\j=1}}^n G'^{M}(p_i, p_j).$$
 (1)

LEMMA 8. Let $A \subset \tilde{A}$ be closed sets in \tilde{R}' and suppose there exists a const. M such that $\frac{1}{2\pi} \int_{\partial V_M(p) \cap \tilde{A}} \frac{\partial}{\partial n} G'(z, p) ds \geq \delta_0 > 0$ for any $p \in A$. Then $1/D^{\circ}(A) \geq 1/D^{M}(A) \geq \delta_0^2/\mathring{C}ap(\tilde{A})$.

PROOF. Let $d\mu_{p_i} = \frac{\partial}{\partial n} G'(z, p_i) ds$ on $\partial V_{\mathcal{M}}(p_i) \subset R' : p_i \in A$ and let μ'_n be the restriction $\mu_n = \sum_{i=1}^n \mu_{p_i}/n$ on $\tilde{A} \cap R'$. Then $\int d\mu'_n \ge \delta_0 > 0$ and by (1)

$$I(\mu'_n) \leq \frac{1}{n^2} \sum_{\substack{j=1 \ j=1}}^n G'^{M}(p_i, p_j).$$

By the simmetry of $G^{M}(p_{i}, p_{j})$

$$2\left(\sum_{\substack{i
$$1/D_{n}^{M}(A) = \inf_{p_{i}, p_{j} \in A} \sum_{\substack{i$$$$

Now μ'_n is a mass only on $\tilde{A} \cap R'$ with total mass $\geq \delta_0$. By definition $1/C_a^{a}p(\tilde{A})$ is the infimum of energy integrals of all distributions on $\tilde{A} \cap R'$ of mass unity. Hence $I(\mu'_n) \geq \delta_0^2/C_a^{a}p(\tilde{A})$. Let $n \to \infty$. Then $1/D^{M}(A) \geq \delta_0^2/C_a^{a}p(\tilde{A})$.

Capacity and transfinite diameters of irregular boundary points⁶ $B(R') \cap \overline{G}_{\eta}: G_{\eta} = \{z \in R': G'(z, p_0) > \eta\}$. Put $F_{\eta} = \{z \in \overline{R}': G'(z, p_0) \ge \eta\}$. Then F_{η} is closed in \overline{R}' . Let $\{R_n\}$ be an exhaustion of R(not of R'). Then $Cap(F_{\eta} \cap (\overline{R'-R_n})) = \lim_{i=\infty} Cap(F_{\eta} \cap \overline{R}' \cap (\overline{R_{n+i}-R_n})) \le \frac{1}{4\pi^2} D(\omega(F_{\eta},z)) \le \frac{1}{\eta^2} D$ $(\min(\eta, G'(z, p_0))) \le \frac{2\pi}{\eta} < \infty$. Let $\omega_n(z)$ be C.P. of $F_{\eta} \cap (R'-R_n)$. Then $\omega_n(z)$ in mean \rightarrow a harmonic function $\omega(z)$. Now $\omega(z)=0$ on $\partial R'$ and ≤ 1 . By $\widetilde{R} \in O_q$, $\omega(z)=0$. Hence

$$C_{ap}^{*}(F_{\eta}\cap(R'-R_{n}))\downarrow 0 \text{ as } n\to\infty.$$
 (2)

THEOREM 7. Let $A = F_{\xi} \cap B(R')$: $\xi > 0$. Then $D(A) \leq D^{\circ}(A) = 0$.

PROOF. Let $v(p_0)$ be a neighbourhood of p_0 . Then there exists a const. k such that $G'(z, p_0) \leq k$ in $R' - v(p_0)$. By Green's formula and by Lemma 5

100

$$\frac{1}{2\pi}\int\limits_{\partial V_{M}(p)\cap G^{\frac{\ell}{2}}}G'(\zeta,p_{0})\frac{\partial}{\partial n}G'(\zeta,p)\,ds=G'(p,p_{0})-\frac{1}{2\pi}\int\limits_{\partial V_{M}(p)-G^{\frac{\ell}{2}}}G'(\zeta,p_{0})\frac{\partial}{\partial n}G'(\zeta,p)\,ds.$$

Put
$$m'(p) = \frac{1}{2\pi} \int_{\partial V_M(p) \cap G_2^{\frac{\epsilon}{2}}} \frac{\partial}{\partial n} G'(\zeta, p) \, ds$$
, then $\frac{1}{2\pi} \int_{\partial V_M(p) - G_2^{\frac{\epsilon}{2}}} \frac{\partial}{\partial n} G'(\zeta, p) \, ds = 1 - m'(p).$
(3)

Suppose $p \in \overline{G}_{\epsilon}$, then by (3) we have

$$m'(p) \ge \frac{\xi}{2k}$$
 for any $p \in \overline{G}_{\xi}$ and for any $M < \infty$. (4)

Clearly $\max_{\substack{z \in \partial R_n \cap R' \\ p \in F_{\xi} \cap B(R)'}} G'(z, p) = M_n < \infty$. Hence for any given number *n* there exists a number *M* such that $V(p) \subset R' - R : M \setminus M$ $p \in F \cap B(R')$. Hence we

a number M_n such that $V_M(p) \subset R' - R_n \colon M > M_n$, $p \in F_{\varepsilon} \cap B(R')$. Hence we have

PROPOSITION. Let ξ and n be numbers. Then there exists a number M such that $m(p) \ge \frac{1}{2\pi} \int \frac{\partial}{\partial n} G'(\zeta, p) ds \ge \frac{\xi}{2k}$ for $M \ge M_n$ and for $p \in F_{\xi}$

 $\cap B(R').$

Let $\varepsilon > 0$ be a given positive number. Then by (2) there exists a number *n* such that $C_{ap}^{\circ}(F_{\eta} \cap (R'-R_{n})) < \varepsilon : \eta = \frac{\xi}{2}$. Let $\tilde{A} = F_{\eta} \cap (\overline{R'-R_{n}})$ and $A = F_{\varepsilon} \cap B(R')$. Then by the proposition there exists a number M' such that $\frac{1}{2\pi} \int_{\substack{\partial n \\ \partial n}} \frac{\partial}{\partial n} G'(\zeta, p) ds \ge \frac{\eta}{k} : M \ge M'$ and $p \in A$. Hence by Lemma 8

 $1/D^{\mathcal{M}}(A) \ge \left(\frac{\eta}{k}\right)^{2} \varepsilon. \text{ Let } M \to \infty \text{ and then } \varepsilon \to 0. \text{ Then we have Theorem 7.} \\ \text{Let } \mathcal{Q} \text{ be a domain in the } z \text{-sphere such that } \mathcal{Q} \notin O_{q}. \text{ Let } G(z, p) \text{ be a Green's function of } \mathcal{Q}. \text{ We shall extend the domain of the definition of } \\ G(z, p) \text{ to } \bar{\mathcal{Q}} \times \bar{\mathcal{Q}} \text{ by } G(p, q) = \overline{\lim_{\xi \to p} \lim_{\eta \to q} G(\xi, \eta)} \text{ for } p, q \in \bar{\mathcal{Q}} \times \bar{\mathcal{Q}}. \text{ Then we see at once } G(p, q) = G(q, p) \text{ and } G(z, p) = G(z, p) \colon z \in \mathcal{Q}, \ p \in \bar{\mathcal{Q}} \text{ (in Lemma 4^1)} \\ G(z, p) \colon p \in \bar{\mathcal{Q}} \text{ is defined). Let } F \text{ be a closed set on } \bar{\mathcal{Q}}. \text{ Define } D^*(F) \text{ by } \\ 1/D^*(F) = \lim_n \inf_{p_i, p_j \in F} \sum_{\substack{i < j \\ i < j}}^n G(p_i, p_j)/_n C_2. \end{aligned}$

LEMMA 9. 1) Let Ω be a domain in the z-sphere such that $\Omega \notin O_{g}$. Let G(z, z') be Green's function of Ω . Then there exist consts. M and δ depending on Ω such that

$$G(z, z') \leq \log \frac{1}{|z-z'|} + M,$$

for any points z and z' with spherical distance $<\delta$.

2) Let F be a closed set on $\overline{\Omega}$ such that $D^*(F)=0$. Then F is a set of (logarithmic) capacity zero.

PROOF. By $\mathcal{Q} \notin O_q$, $C\mathcal{Q}$ is a set of positive capacity. We can find two closed sets E_1 and E_2 in $C\mathcal{Q}$ such that both E_1 and E_2 are of positive capacity and spherical distance between E_1 and $E_2 = d > 0$. We denote by [z, z'] the spherical distance betweed z and z'. Put $C(4\delta, z') = \{z : [z, z'] \leq 4\delta\}$: $\delta \leq d/8$. We can find a finite number of points, z_1, z_2, \dots, z_{i_0} such that $\sum_i C(\delta, z_i) \supset z$ -sphere, and $C(4\delta, z_i)$ has common points at most one of E_1 and E_2 . Suppose $[z, z'] < \delta$. Then there exists $C(4\delta, z)$ such that $C(2\delta, z_i) \ni z$ and z' and $C(4\delta, z_i) \cap E_j = 0$ (j=1 or 2). Let $\widetilde{G}(z, z')$ be Green's function of CE_j . Then $\widetilde{G}(z, z') \ge G(z, z')$, $\widetilde{G}(z, z')$ is harmonic in $C(4\delta, z_i) - z'$ and $\widetilde{G}(z, z')$ -log $\frac{1}{|z-z'|}$ is continuous on $C(4\delta, z_i) \times C(4\delta, z_i)$. Hence there exists a const. $M(z_i)$ such that $\widetilde{G}(z, z') \le \log \frac{1}{|z-z'|} + M(z_i)$. Hence we have 1) by putting $M = \max M(z_i)$

Proof of 2). Let $F_k = F \cap C(2\delta, z_k)$. Then it is sufficient to show F_k is a set of capacity zero. By a conformal mapping we can suppose $z_k=0$ and $\delta \leq 1/4$. Then we have $\liminf_{\substack{n \ z_i \in F \ i < j \\ i=1}} \sum_{i=1}^n \log \frac{1}{|z_i - z_j|} / C_2 = \infty$ by $D^*(F_k) = D^*$ (F) = 0. Hence F_k is a set of capacity zero.

Mass distribution of a generalized Green's function Let R be a Riemann surface $\notin O_g$. Let U(z) be a positive harmonic function in R and let G be a domain. Let $U_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-((R_{n+i}$ $-R_n)\cap G)$ such that $U_{n,n+i}(z)=0$ on $\partial R_{n+i}-G$, $U_{n,n+i}(z)=U(z)$ on $G\cap(R_{n,n+i}$ $-R_n)$. Put $\lim_{n \to i} \lim_{i} U_{n,n+i}(z) = {}^{\alpha}_{g}U(z)$. Let $\widetilde{U}_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-((R_{n+i}-R_n)\cap G)$ such that $\widetilde{U}_{n,n+i}(z)=0$ on $(R_{n+i}-R_n)\cap G$, =U(z)on $\partial R_{n+i}-G$. Put $\lim_{n \to i} \lim_{i} \widetilde{U}_{n,n+i}(z) = {}^{\beta}_{g}U(z)$. Then

Lemma 10³⁾. 1) ${}^{\mathfrak{a}}_{G}({}^{\mathfrak{a}}_{G}U(z)) = {}^{\mathfrak{a}}_{G}U(z)$ and ${}^{\mathfrak{a}}_{G}U(z) + {}^{\mathfrak{b}}_{G}U(z) = U(z)$.

2) Let U(z) be a harmonic function which is a G.G. with $D(\min(M, U(z)) \leq Mk\pi$ and let $G_{\delta} = \{z \in R : G(z, p_0) > \delta\}$. Then ${}_{G_{\delta}}{}^{\beta}U(z) \leq k\delta/2$ at $z = p_0$.

We suppose Martin's top. M is defined on $\overline{R} = R + \Delta(\Delta = \Delta_1 + \Delta_0)$. Let $\overline{G}_{\delta}(M)$ be the closure of G_{δ} relative to M-top. Let $F_n = \{z \in \overline{R} : M\text{-dist}(z, \overline{G}_{\delta}(M)) \leq 1/n\}$ and $_{F_n}U(z)$ be the lower envelope of superharmonic functions larger than U(z) on F_n . Put $U_{\delta}^*(z) = \lim_{n \to \infty} _{F_n}U(z)$. Then by Martin's theory $U_{\delta}^*(z)$ is represented by a canonical distribution μ on $\overline{G}_{\delta}(M) \cap \Delta_1$. Clearly

$$U_{\delta}^{*}(z) \geq_{G_{\delta}}^{\alpha} U(z) . \tag{5}$$

LEMMA 11. 1) Let U(z) be a positive harmonic function being a G.G. in R. Then there exists a canonical distribution μ on $\bigcup_{\delta>0} \overline{G}_{\delta}(M) \cap \mathcal{A}_1$ such that

$$U(z) = \int K(z, p) \, d\mu(p) \, .$$

2) If there exists a const. $\delta > 0$ such that $\overline{G}_{\delta}(M) \cap \Delta_1 = \overline{G}_{\delta'}(M) \cap \Delta_1$ for any $\delta' \leq \delta$, then there exists a canonical distribution μ on $\overline{G}_{\delta}(M) \cap \Delta_1$ such that

$$U(z) = \int K(z, p) \, d\mu(p) \, .$$

Proof of 1) Since U(z) is a G.G. there exists a const. k such that $D(\min(M, U(z))) = k M\pi$ for any M. By (5) and by Lemma 10

$$(U(z) - U_{\delta}^{*}(z)) \leq k\delta/2$$
 at $z = p_0$. (6)

Let $\delta = \delta_1 > \delta_2 \cdots \downarrow 0$, $U_{\delta_n}^*(z)$ and μ_n be a canonical mass of $U_{\delta_n}^*(z)$. Then $\mu_n \uparrow$ and $\mu_n - \mu_{n-1}$ is also canonical on $\overline{G}_{\delta_n}(M) \cap \mathcal{A}_1$. Now $U_{\delta_n}^*(z) = U_{\delta_1}^*(z)$ $+ \sum_{i=2}^n (U_{\delta_i}^*(z) - U_{\delta_{i-1}}^*(z))$. Hence by (6) $U(z) = \lim \lim U_n^*(z)$ and U(z) is represented by a canonical distribution μ on $\bigcup \overline{G}_{\delta}(M) \cap \mathcal{A}_1$. 2) is evident by 1). Let $D_1 \supset D_2$ be two domains. Let U(z) be a positive harmonic func-

Let $D_1 \supset D_2$ be two domains. Let U(z) be a positive harmonic function in D_1 . We denote by $\prod_{D_2}^{D_1} U(z)$ the greatest subharmonic function in D_2 vanishing on ∂D_2 not larger than U(z). Let V(z) be a positive harmonic function in D_2 vanishing on ∂D_2 except at most a set of capacity zero. We denoteby $\underset{D_2}{\overset{D_1}{E}} V(z)$ the least positive superharmonic function in D_1 larger than V(z). Then the following are well known.

$$\begin{split} & \prod_{D_2}^{D_1} U(z) \quad \text{and} \quad \prod_{D_2}^{D_1} V(z) (\text{for} \ \underset{D_2}{E}^{D_1} V(z) < \infty) \quad are \ harmonic \ and \\ & \prod_{D_2 D_2 D_2}^{D_1 D_1 D_1} U(z) = \prod_{D_2}^{D_1} U(z) \quad and \quad \underset{D_2 D_2 D_2}{E} V(z) = \prod_{D_2}^{D_1} V(z) \\ & \text{Let } U(z) \ be \ minimal \ in \ D_1. \quad Then \ if \ \underset{D_2}{D_1} U(z) > 0, \ \underset{D_2 D_2}{E} U(z) = U(z) \ and \ \underset{D_2}{D_1} U(z) \\ & \text{is minimal in } D_2. \quad Let \ V(z) \ be \ minimal \ in \ D_2. \quad If \ \underset{D_2}{E} V(z) < \infty, \ \underset{D_2 D_2}{D_2} V(z) \\ & = V(z) \ and \ \underset{D_2}{E} V(z) \ is \ minimal \ in \ D_1. \\ & \text{If } U_n(z) \nearrow U(z), \ \underset{D_2}{D_1} U(z) = \lim_n (\underset{D_2}{D_1} U_n(z)). \end{split}$$

Correspondence between two minimal points Let \tilde{R} be a Riemann surface $\in O_g$ and R be a Riemann surface $\subset \tilde{R}$. Let $\{\tilde{R}_n\}$ be an exhaustion of \tilde{R} and \mathfrak{p} be a boundary component of \tilde{R} . Suppose Martin's topologies \tilde{M} and M are defined over \tilde{R} and R respectively. If $p_i \xrightarrow{\alpha} p : \alpha = \tilde{M}$ or M and $p_i \rightarrow \mathfrak{p}$ (considered in \tilde{R}), we say a point (relative to α -top.) lies over \mathfrak{p} . We denote by $\mathcal{A}(\alpha) \cap V(\mathfrak{p})$ and $\mathcal{A}_1(\alpha) \cap V(\mathfrak{p})$ sets of boundary points, minimal boundary points over \mathfrak{p} respectively. In the present paper boundary components are considered only for \tilde{R} (except special remark). Let $G(z, p_0)$ be a Green's function of R. Let $F_{\mathfrak{s}}(\tilde{M}) = \{z \in \tilde{R} : \lim_{\substack{\zeta \to z \\ M}} G(\zeta, p_0) \geq \delta\}$. Let A be a set relative to \tilde{M} -top.. We denote by $A \cap \mathcal{A}(M)$ the set of point p of A lying over $\mathcal{A}(M)$, i.e. there exists a sequence $\{z_i\}$ such that $z_i \xrightarrow{\widetilde{M}} p$ and $z_i \longrightarrow$ boundary of R. Then

THEOREM 8. 1)⁶ Let $z_i \xrightarrow{\widetilde{M}} p \in (\widetilde{R} + \Delta_1(\widetilde{M})) \cap F_{\delta}(\widetilde{M})) \cap \Delta(M)$ and $G(z_i, p_0) > \varepsilon_0 > 0$. Then $z_i \xrightarrow{\widetilde{M}} a$ uniquely determined point $q \in \Delta_1(M) \cap F_{\delta}(M)$ and $K(z, q) = a \prod_{R}^{\widetilde{R}-p} \widetilde{K}(z, p) : a > 0$. We denote q by $\varphi(p)$.

2) Let $q \in \mathcal{A}_1(M) \cap F_{\delta}(M)$. Then there exists a point $p \in \widetilde{\mathbf{R}} + \mathcal{A}_1(\widehat{M})$ such that $\widetilde{K}(z, p) = a' \underset{R}{\overset{\overline{\mathbf{R}} - p}{\longrightarrow}} K(z, q); a' > 0$, clearly $p = \varphi^{-1}(q)$. Further

$$\begin{split} & \varDelta_1(\widetilde{M}) \cap F_{\delta}(\widetilde{M}) \cap \mathcal{V}(\mathfrak{p}) \approx \mathcal{\Delta}_1(M) \cap F_{\delta}(M) \cap \mathcal{V}(\mathfrak{p}) \,, \\ & F_{\delta}(\widetilde{M}) \cap (\widetilde{R} + \mathcal{\Delta}_1(M)) \cap \mathcal{\Delta}(M) \approx \mathcal{\Delta}_1(M) \cap F_{\delta}(M) \,, \end{split}$$

where \approx means the existence one to one mapping.

Proof of 1) 1) is proved by L. Naim. Let $\widetilde{G}(z, p_0)$ be Green's function of \widetilde{R} and $v(p_0)$ be a neighbourhood of p_0 and put $M = \sup_{z \notin v(p_0)} \widetilde{G}(z, p_0)$. Let $\widetilde{K}(z, p)$ and K(z, q) be kernels in \widetilde{R} and R respectively. Then if $G(z, p_0) > \varepsilon_0$,

$$\frac{\widetilde{G}(z,z_i)}{\varepsilon_0} \ge \widetilde{K}(z,z_i) \ge \frac{\widetilde{G}(z,z_i)}{M} \ge \frac{G(z,z_i)}{M} \ge \frac{\varepsilon_0 K(z,z_i)}{M} \ge \frac{\varepsilon_0 G(z,z_i)}{M^2} \quad (7)$$

Let $z_i \xrightarrow{\widetilde{M}} p$ and let $\{z'_i\}$ be a subsequence of $\{z_i\}$ such that $z'_i \xrightarrow{\widetilde{M}} q$. Then by (7) $\prod_{R}^{\widetilde{R}-p} \widetilde{K}(z,p) > 0$. By the minimality of $\prod_{R}^{\widetilde{R}-p} \widetilde{K}(z,p) = aK(z,q)$: a > 0 and $q \in \mathcal{A}_1(M)$. Since $\{z'_i\}$ is an arbitrary *M*-convergent subsequence, such point *q* is uniquely determined. We denote it by $\varphi(p)$. If $p \in F_{\delta}(\widetilde{M}) \cap V(\mathfrak{p})$, evidently $q \in F_{\delta}(M) \cap V(\mathfrak{p})$. Proof of 2) By 1) if $p \in F_{\delta}(\widetilde{M}) \cap \mathcal{I}_{1}(\widetilde{M}) \cap \mathcal{V}(\mathfrak{p}), q \in F_{\delta}(M) \cap \mathcal{I}_{1}(M) \cap \mathcal{V}(\mathfrak{p}).$ Conversely let $q \in \mathcal{I}_{1}(M) \cap F_{\delta}(M) \cap \mathcal{V}(\mathfrak{p})$. Then there exists a sequence $\{z_{n}\}$ such that $z_{n} \xrightarrow{M} q$ and $G(z_{n}, p_{0}) \geq \delta - \frac{1}{n}$ and $K(z, z_{n}) \leq \frac{2G(z, z_{n})}{\delta} \leq \frac{2\widetilde{G}(z, z_{n})}{\delta}$ for $\frac{1}{n} \leq \frac{\delta}{2}$, hence $\tilde{E}_{R}^{\tilde{R}}K(z, q) < \infty$. By the minimality of K(z, q), there exists a uniquely determined point $p \in \mathcal{I}_{1}(\widetilde{M})$ such that $\tilde{E}_{R}^{\tilde{R}}K(z, q) = a\widetilde{K}(z, p)$: a > 0, clearly $q = \varphi(p)$. We show $p \in F_{\delta}(\widetilde{M})$. Let $\mathcal{Q}_{\epsilon} = \{z \in R : G(z, p_{0}) > \delta - 2\epsilon\}$: $3\epsilon < \delta$ and let $\{z'_{n}\}$ be a subsequence of $\{z_{n}\}$ such that $G'(z, z'_{n})$ converges to $G'(z, \{z'_{n}\})$, where $G'(z, z'_{n})$ is a Green's function of \mathcal{Q}_{ϵ} . Then $\frac{\widetilde{K}(z, p)}{a} \geq K(z, q) \geq \frac{G'(z, \{z'_{n}\})}{M} > 0$ by $G'(p_{0}, z_{n}) = G(z_{n}, p_{0}) - (\delta - 2\epsilon) > \epsilon$ for $\frac{1}{n} < \epsilon$. Hence

$$\prod_{\rho_{\star}}^{\tilde{\kappa}} \tilde{K}(z, p) > 0.$$
(8)

Let $U(z) = \widetilde{K}(z, p)$. Let $V_n(z)$ be a harmonic function in $\Omega_{\iota} \cap \widetilde{R}_n$ such that $V_n(z) = U(z)$ on $\partial \Omega_{\epsilon} \cap \widetilde{R}_n$, =0 on $\partial \widetilde{R}_n \cap \Omega_{\epsilon}$. Then $V_n(z) \nearrow_{C \Omega_{\epsilon}} U(z)$ in Ω_{ϵ} . Let $W_n(z)$ be a harmonic function in $\Omega_i \cap \widetilde{R}_n$ such that $W_n(z) = 0$ on $\partial \Omega_i \cap \widetilde{R}_n$, =U(z) on $\partial \widetilde{R}_n \cap \Omega_{\epsilon}$. Then $W_n(z) \downarrow \prod_{g_i}^{\widetilde{R}} U(z)$. On the other hand, $U(z) = V_n(z)$ $+U_n(z), U(z)=_{CQ_{\epsilon}}U(z)+\prod_{Q}^{\bar{R}}U(z)$ and by (8) $U(z)>_{CQ_{\epsilon}}U(z)$. Hence CQ_{ϵ} is thin at p. Let $v_n(p) = \left\{ z \in \widetilde{R} : \widetilde{M} - dist(z, p) < \frac{1}{n} \right\}$. Then $Cv_n(p)$ is thin at p and $C(v_n(p) \cap \Omega_{\epsilon})$ is thin at p, whence $v_n(p) \cap \Omega_{\epsilon} \neq 0$ for any n and $\epsilon > 0$: $\epsilon < \epsilon$ $\frac{\delta}{3}. \quad \text{Let } \varepsilon > \varepsilon_1 > \varepsilon_2 \cdots \downarrow 0. \quad \text{We choose } z_n \text{ in } v_n(p) \cap \Omega_{\epsilon_n}, \text{ where } \Omega_{\epsilon_n} = \{z \in R : z \in R : z \in R \}$ $G(z, p_0) \ge \delta - 2\varepsilon_n$. Then $z_n \xrightarrow{\widetilde{M}} p$, $\overline{\lim} G(z_n, p_0) \ge \delta$ and $p \in F_{\delta}(\widetilde{M})$. By the assumption we can find a sequence $\{z_n\}$ such that $z_n \xrightarrow{M} q$, $z_n \longrightarrow \mathfrak{p}$. $G(z_n, p_0)$ $> \varepsilon_0 > 0. \quad G(z, z_n) \text{ and } \widetilde{G}(z, z_n) \text{ converge. Then} \\ K(z, q) \leq \frac{G(z, \{z_n\})}{\varepsilon_0} \leq \frac{\widetilde{G}(z, \{z_n\})}{\varepsilon_0}, \quad a\widetilde{K}(z, p) = \frac{\widetilde{R}}{E}K(z, q) \leq \frac{\widetilde{G}(z, \{z_n\})}{\varepsilon_0}; \quad a > 0$ and $\overline{K}(z, p)$ is bounded outside of a neighbourhood $\mathfrak{v}(\mathfrak{p})(\mathfrak{dv}(\mathfrak{p}))$ is supposed compact in \widetilde{R}). Clearly p lies on a boundary component \mathfrak{p}' of \widetilde{R} . Assume $\mathfrak{p}\neq\mathfrak{p}'$. Then $\widetilde{K}(z,p)$ is bounded outside of $\mathfrak{v}(\mathfrak{p}')$ of \mathfrak{p}' such that $\mathfrak{v}(\mathfrak{p})\cap\mathfrak{v}(\mathfrak{p}')$ =0. This implies $\sup_{z \in \hat{R}} \hat{K}(z, p) < \infty$. This is a contradiction. Hence plies over \mathfrak{p} where q lies. Thus we have 2). The latter part is proved similarly.

Let $R \subset \widetilde{R} \notin O_g$ be Riemann surfaces and let $G(z, p_0)$ be a Green's function of R. We suppose Martin's topologies \widetilde{M} and M are defined on \widetilde{R} and R. Let $R' = \{z \in R : G(z, p_0) > \xi\}$ and suppose G-Martin's top. GM is defined on R' + B(R'). Let $w = f(z) : z \in R$ be an analytic function in Rwhose value falls on the w-sphere. If the complementary set Cf(R) of f(R) is of positive capacity, we call f(z) a bounded type in R. In this paper we consider only functions of bounded type in R. Then

THEOREM 9. 1) Let $z_i \xrightarrow{M} q \in \mathcal{A}(M)$, $z_i \in G_{\delta} = \{z \in R : G(z, p_0) > \delta\}$. Then $f(z_i) \rightarrow one \ point \ denoted \ by \ f(q)$.

4) Let $A(\varDelta_1(\widetilde{M}) + \widetilde{R}, \delta) = \{f(p) : p \in (\varDelta_1(\widetilde{M}) + \widetilde{R}) \cap \overline{G}_{\delta}(\widetilde{M}) \cap \varDelta(M)\}, A(\varDelta(M), \delta) = \{f(p) : p \in \varDelta(M) \cap \overline{G}_{\delta}(M)\}$ and $A(B(R'), \delta) = \{f(p) : p \in B(R') \cap \overline{G}_{\delta}(GM) \cap \varDelta(M)\}$. Then $A(\varDelta_1(\widetilde{M}) + \widetilde{R}, \delta) \subset A(\varDelta(M), \delta) = A(B(R'), \delta) : \delta > \xi$ and $A(\varDelta(M), \delta)$ is a closed set of capacity zero and $\bigcup_{\delta > 0} A(\varDelta(M), \delta)$ is an F_{σ} set of capacity zero.

PROOF. Let $z_i \in G_\delta$: $\delta > \xi$ and let $G'(z, z_i)$ be a Green's function of R'. Then $G(z, z_i) \ge G'(z, z_i)$. Let $\{z'_i\}$ be a subsequence of $\{z_i\}$ such that $G(z, z'_i)$ and $G'(z, z'_i)$ converge. Then $G(z, \{z'_i\}) \ge G'(z, \{z'_i\}) > 0$ and $G'(z, \{z'_i\}) = 0$ on $\partial R'$ and is a G.G. in R', whence $\sup_{z \in R'} G'(z, \{z'_i\}) = \infty$. Assume f(z) does not converge as $z_i \longrightarrow q$. Then there exists two subsequences $\{z^k_i\}$ (k=1, 2) of $\{z_i\}$ such that $G(z, z^k_i) \longrightarrow U^k(z), f(z^k_i) \longrightarrow w^k : w^1 \neq w^2$. Now $\frac{G(z, z_i)}{\delta} \ge K(z, z_i) \ge \frac{G(z, z_i)}{M} : M = \sup_{z \notin v(p_0)} G(z, p_0)$ and $\delta K(z, q) \le U^k(z) \le MK(z, q)$.

On the other hand, $U^k(z) \leq G^w(f(z), w^k)$, where $G^w(w, w^k)$ is a Green's function of f(R) and not necessarily $w^k \in f(R)$ but $\in \overline{f(R)}$. Hence

$$\begin{split} K(z,q) &\leq \frac{1}{\delta} \min \left(G^w(f(z),w^1), \ G^w(f(z),w^2) \right) \quad \text{ and by Lemma 4} \\ \infty &= \sup_{z \in \mathcal{R}} \ U^k(z) \leq \frac{M}{\delta} \sup_{z \in \mathcal{R}} \ \min \left(G^w(w,w^1), \ G^w(w,w^2) \right) < \infty \,. \end{split}$$

This is a contradiction, hence $f(z) \rightarrow$ uniquely determined point denoted by f(q).

Proof of 2) By Theorem 8, 1) $z \xrightarrow{\widetilde{M}} p \in (\mathcal{A}_1(\widetilde{M}) + \widetilde{R}) : z \in \overline{G}_{\delta}(\widetilde{M})$ implies $z \xrightarrow{\widetilde{M}} q \in \mathcal{A}_1(M)$ and we have 2). 3) is proved similarly as 1).

Proof of 4) Let $w_n \in A(\mathcal{A}(M), \delta)$ and $w_n \longrightarrow w^*$. Then there exists z_n such that $z_n \in \mathcal{A}(M) \cap \overline{G}_{\delta}(M)$: $w_n = f(z_n)$. Let $\{R_n\}$ be an exhaustion of R. For any z_n we can find z'_n in $(R-R_n) \cap G_{\delta-\frac{1}{n}}$ such that M-dist $(z_n, z'_n) \leq \frac{1}{n}$, $|f(z'_n) - w_n| \leq \frac{1}{n}$. Consider $K(z, z'_n)$. Then we can find a subsequence $\{z''_n\}$ of $\{z'_n\}$ such that $K(z, z''_n)$ converges uniformly. This means there exists a point $z^* \in \mathcal{A}(M) \cap \overline{G}_{\delta}(M)$ such that $z''_n \xrightarrow{M} z^*$ and $f(z''_n) \longrightarrow f(z^*)$. $w^* = f(z^*)$. Hence $w^* \in A(\mathcal{A}(M), \delta)$ and $A(\mathcal{A}(M), \delta)$ is closed. Clearly We can choose ξ so that $\xi < \delta$. Since $A(\mathcal{A}(M), \delta) = A(B(R'), \delta)$ for $\delta > \xi$ is proved easily, it is sufficient to show $A(B(R'), \delta)$ is a set of capacity zero. By Theorem 7 the transfinite diameter of $B(R') \cap \overline{G}_{\delta}(GM)$ is zero. Since for any point $w \in A(B(R'), \delta)$ there exists at least a point z in $B(R') \cap \overline{G}_{\delta}(GM)$ such that w = f(z) and since $G^{w}(f(z), f(z')) \ge G'(z, z')$, transfinite diameter $D^*(A(\mathcal{A}(M), \delta))$ is zero and by Lemma 9 $A(\mathcal{A}(M), \delta)$ is a set of (logarithmic) capacity zero.

We consider the behaviour of f(z) as $z \longrightarrow \mathcal{A}(M)$ of $R \subset \tilde{R}$. We define another Riemann surface R^* as follows. We can find a segment S in Rsuch that f(z) is univalent in a neighbourhood v(S) of S. Put $S^w = f(S)$. Let \mathscr{F} be a leaf such that $\mathscr{F} = f(R)$ and let $\partial \mathscr{F}$ be its boundary. Let $S(\mathscr{F})$ be a slit in \mathscr{F} with $S(\mathscr{F}) = S^w$. Connect $\mathscr{F} - S(\mathscr{F})$ and R - Scrosswise on $S^w(=S)$. Then we have a Riemann surface $R^* = (R - S)$ $+(\mathscr{F} - S(\mathscr{F})) + S$. Put f(z) = projection of z (as R and R^* are considered covering surfaces over the w-sphere) in $\mathscr{F} - S(\mathscr{F})$. Then f(z) is analytic in R^* . In this case, we also denote by $f(z): z \in R^*$. So long as we consider f(z) near the boundary of R, we can use R^* instead of R. Let u(z)be a harmonic measure of $\partial \mathscr{F}$ in R^* . Then by $R \notin O_g u(z)$ is non const.. Put $U(w) = \sum_i u(z_i): f(z_i) = w, z_i \in R^*$. Then by Theorem 1¹

 $U(w) \leq 1$ and U(w) is quasisubharmonic in f(R). (9)

Let $\{R_n\}$ be an exhaustion of R. Then for $R_{n_0} \ni p_0$, there exist const.s N_1 and N_2 such that

$$N_1 G(z, p_0) \leq U(z) \leq N_2 G(z, p_0) \quad \text{in } (R - R_{n_0}). \quad (10)$$

Irregularity of minimal points Irregularity δ of minimal points relative to \widetilde{M} and M tops are defined by

$$\delta(p, \widetilde{M}) = \overline{\lim_{\substack{z \to p \\ \widetilde{M}}}} G(z, p_0) : p \in \widetilde{R} + \mathcal{A}_1(\widetilde{M}), \quad \delta(q, M) = \overline{\lim_{\substack{z \to q \\ M}}} G(z, p_0) : q \in \mathcal{A}_1(M).$$

Then by Theorem 8 $\delta(p, \widetilde{M}) = \delta(q, M)$: $q = \varphi(p)$. Also put $u(p, \widetilde{M}) = \overline{\lim_{\substack{z \to p \\ \widetilde{M}}}}$

 $u(z); p \in \tilde{R} + \tilde{\mathcal{A}}_1(M)$ and $u(q, M) = \overline{\lim_{z \to q}} u(z): q \in \mathcal{A}_1(M)$. Then by Theorem 8, 1) $u(p, \tilde{M}) \leq u(q, M)$. Further $u(p, \tilde{M}) = U(q, M)$ for $p \in \tilde{R}$ and $q = \varphi(p) \in \mathcal{A}_1(M)$. In fact let $p \in \tilde{R}$ and $q \in \mathcal{A}_1(M)$. Then by Brelot's theorem on a point $p \in \tilde{R}$ there exists only one *M*-point *q* which is minimal relative to *M*-top., i. e. $z \xrightarrow{\tilde{M}} p(z \longrightarrow p)$ is equivalent to $z \xrightarrow{M} q$ and we have $u(p, \tilde{M}) = u(q, M)$. We remark u(z) is not harmonic in *R* but harmonic in *R*-*S* and u(z) is the least positive harmonic function in *R*-*S* with value u(z) on *S*. Hence $u(z) = {}_{CG}u(z)$ for any domain $G \subset R - S$. We define u(z) at *S* by $u(z) = \overline{\lim_{\zeta \to z}}$ $u(\zeta)$.

THEOREM 10. 1) Let $\{z_i\}$ be a sequence such that $z_i \xrightarrow{M} q \in \Delta(M)$ with $\varinjlim G(z_i, p_0) > 0$. Then $f(z_i) \longrightarrow f(q)$ (by Theorem 9): $f(q) \in \overline{f(R)}$ and for any \overline{r} there exists a uniquely determined connected piece $\omega_r(q)$ over $C(r, f(q)) = \{|w - f(q)| < r\}$ such that $z_i \in \omega_r(q)$ for $i \ge i(r)$.

2) Let $z_i \xrightarrow{\widetilde{M}} p \in \mathcal{A}_1(\widetilde{M})$ with $\underline{\lim} G(z_i, p_0) > 0$. Then for any r > 0, there exists a uniquely determined connected piece $\omega_r(p)$ over C(r, f(p)) such that $z_i \in \omega_r(p)$ for $i \ge i(r)$.

3) Let w_0 be a point. Then

$$\sum u(q_i) + \sum u(q_j, M) \leq 1: q_i \in R, q_j \in \mathcal{A}_1(M), f(q_i) = f(q_j) = w_0.$$

$$\sum u(p_i) + \sum u(p_j, \widetilde{M}) \leq 1: p_i \in R, p_j \in \mathcal{A}_1(\widetilde{M}), f(p_i) = f(p_j) = w_0.$$

Proof of 1) Case 1. $f(q) \notin S^w$. We can find $r' < \min(r, \delta)$ (where δ is the number defined in Lemma 9) such that any connected piece over C(r', f(q)) has no common points with S_w . We can also suppose $z_i \in R$, $G(z_i, p_0) > \delta' > 0$ and by (10) $u(z_i) \ge \delta''$ and $|f(z_i) - f(q)| < \frac{r'}{2}$ for $i \ge 1$. Let ω be a connected piece containing z_i . Then since $\omega \cap S = 0$, by Lemma 2 we have

$$u(z_i) = \frac{1}{2\pi} \int_{\partial \omega} u(\zeta) \frac{\partial}{\partial n} G^{\omega}(\zeta, z_i) \, ds \, ,$$

where $G^{\omega}(\zeta, z_i)$ is a Green's function of ω and $\partial \omega$ lies over $\partial C(r', f(q))$. Let $G^{\mathcal{C}}(w, w')$ be a Green's function of C(r', f(q)). Then $G^{\mathcal{C}}(f(z), f(z_i)) = 0$ on $\partial \omega$ and $G^{\mathcal{C}}(f(z), f(z_i)) \ge G^{\omega}(z, z_i) \ge 0$, whence

$$\frac{\partial}{\partial n} G^{c}(f(z), f(z_{i})) \geq \frac{\partial}{\partial n} G^{\omega}(z, z_{i}) \geq 0 \text{ on } \partial \omega.$$
(11)

Now there exists a const. K such that

Analytic functions in a neighbourhood of irregular boundary points

$$0 \leq \frac{\partial}{\partial n} G^{c}(w, w') \leq K \frac{\partial}{\partial n} G_{c}(w, f(q))$$

on $\partial C(r', f(q)) \colon |w' - f(q)| < \frac{r'}{2}$ (12)

Suppose $\omega_k(k=1, 2, ..., k_0)$ be a connected piece over C(r', f(q)) containing at least one z_i of $\{z_i\}$. Then by (11), (12) and $U'(w) \leq U(w) \leq 1$ by (9), where $U'(w) = \sum_j u(z_j) z_j \in R$ and $f(z_j) = w$. Then

$$k_{0}\delta'' \leq \frac{1}{2\pi} \sum_{k=1}^{k_{0}} \int_{\partial \omega_{k}} u(\zeta) \frac{\partial}{\partial n} G^{\omega_{k}}(\zeta, z_{i}) ds \leq \sum \frac{1}{2\pi} \int_{\partial \omega_{k}} u(\zeta) \frac{\partial}{\partial n} G^{C}(f(\zeta), f(z_{i})) ds$$
$$\leq \frac{1}{2\pi} \sum \int_{\partial \omega_{k}} u(\zeta) K \frac{\partial}{\partial n} G^{C}(f(\zeta), f(q)) ds \leq \frac{K}{2\pi} \int_{\partial C} U'(\xi) \frac{\partial}{\partial n} G^{C}(\xi, f(q)) ds \leq K$$

and $k_0 \leq \frac{K}{\delta''}$. Hence there exists at least one and at most a finite number of connected pieces ω_k such that ω_k contains a subsequence of $\{z_i\}$. Let ω be a connected piece containing a subsequence $\{z'_i\}$ of $\{z_i\}$. Since $r' < \delta$,

$$G^{w}(w, w') \leq \log \frac{1}{|w-w'|} + M \colon w, w' \in C(r', f(q)).$$

Hence there exists a const. $L < \infty$ such that $G^{w}(w, w') < L$ on $\partial C(r', f(q))$ for $|w - f(q)| < \frac{r'}{2}$. Let $G(z, z'_{i})$ be a Green's function of R. Then $G(z, z'_{i}) \leq G^{w}(f(z), f(z'_{i})) \leq L$ on $\partial \omega$ and $\leq L$ in $R - \omega$ and $K(z, q) = \lim_{i} K(z, z'_{i})$ $\leq \frac{L}{\delta'}$ in $R - \omega$ by (7). Assume there exists another connected piece ω' containing a subsequence of z_{i} . Then $K(z, q) \leq \frac{L}{\delta'}$ in R by $\omega \subset R - \omega'$. On the other hond, $K(z, q) \geq \frac{G(z, \{z'_{i}\})}{M}$ and $\sup_{z \in R} K(z, q) = \infty$, where $\{z'_{i}\}$ is a subsequence of $\{z_{i}\}$ such that $G(z, z'_{i}) \longrightarrow G(z, \{z'_{i}\})$. This is a contradiction. Hence there exists uniquely determined connected piece $\omega_{r'}(q)$ containing z_{i} for $i \geq i(r')$.

Case 2. $f(q) \in S^{\omega}$. Since f(z) is univalent in v(S), we can find $r'(<\delta)$ such that there exists only a connected piece ω^* and connected pieces $\{\omega_j\}$ over C(r', f(q)) such that $\omega^* \cap S \neq 0$, ω^* is compact in R and $\omega_j \cap S = 0$ for $j=1, 2, \cdots$. By $z_i \longrightarrow q \in \mathcal{A}(M)$, there exists a number i_0 such that $z_i \notin \omega^*$ for $i \ge i_0$. Hence it is sufficient to consider only ω_j . Then we have the same conclusion similarly as case 1. Now r > r', there exists only one connected piece ω over C(r, f(q)) containing $\omega_{r'}(q)$. Clearly $\omega \ni z_i$ for $i \ge i(r')$. Thus

we have 1). We denote it by $\omega_r(q)$. We have 2) by 1) and by Theorem 8.

Proof of 3) Case 1. $w_0 \notin S^w$. In this case we can find r' such that any connected piece over $C(r', w_0)$ has no common point with S. Let q_j $(j=1, 2, \cdots)$ be points in $\bigcup_{\delta>0} ((R+\mathcal{A}_1(M)) \cap \overline{G}_\delta(M))$ such that $f(q_j)=w_0$. For any $q_j \in \mathcal{A}_1(M)$, there exists $\omega_{r'}(q_j)=\omega_j$ and by definition of $\omega_{r'}(q_j)$, there exists a sequence $\{z_i\}$ such that $z_i \xrightarrow{M} q_j$, $G(z_i, p_0) > \delta' > 0$, $|f(z_i) - w_0| < \frac{r'}{2}$, $G^{\omega_j}(z, z_i) \longrightarrow G^{\omega_j}(z, \{z_i\}), u(z_i) \longrightarrow u(q_j, M)$ (clearly >0). Then by (11), (12) and by Lebesgue's theorem

$$0 < u(q_j, M) = \frac{1}{2\pi} \int_{\partial w_j} u(\zeta) \frac{\partial}{\partial n} G^{w_j}(\zeta, \{z_i\}) \, ds, \qquad (13)$$

whence $G^{\omega_j}(z, \{z_i\}) > 0$ and $\leq M_{\omega_j}^R K(z, q_j)$ by (7). Hence $G^{\omega_j}(z, \{z_i\})$ is minimal in $\omega_{r'}(q_j)$.

Suppose $q_j \in R$, then we have at once

$$u(q_j) = \frac{1}{2\pi} \int_{\partial \omega_j} u(\zeta) \frac{\partial}{\partial n} G^{\omega_j}(\zeta, q_j) \, ds \tag{13'}$$

and $G^{\omega_j}(z, q_j)$ is minimal in $\omega_j - q_j$.

Let ω be a connected piece over C(r', f(q)) and let q_k $(k=1, 2, \cdots)$ be a subset of q_j such that $\omega_{r'}(q_k) = \omega$. Then $G^{\omega}(z, \{z_i\}^k)$ of q_k (or $G^{\omega}(z, q_k)$) is minimal in $\omega - q_k$ and $\leq G^{\mathcal{C}}(f(z), w_0)$. Hence

$$\sum G^{\omega}(z, \{z_i\}^k) + \sum G^{\omega}(z, q_k) \leq G^{\mathcal{C}}(f(z), w_0) \quad \text{and}$$
$$\sum u(q_k, M) + \sum u(q_k) \leq \frac{1}{2\pi} \int_{\partial \mathcal{C}} U^{\omega}(w) \frac{\partial}{\partial n} G^{\mathcal{C}}(w, w_0) \, ds,$$

where $U^{\omega}(w) = \sum_{t} u(z_t)$ and $f(z_t) = w_0, z_t \in \partial \omega$.

Summing up all connected pieces over $C(r', w_0)$, we have by $U'(W) \leq U(W) \leq 1$

$$\sum_{j} u(q_{j}, M) + \sum_{i} u(q_{i}) \leq 1$$

where $f(q_i) = f(q_j) = w_0$, $q_i \in R$, $q_j \in \bigcup_{\delta > 0} (\mathcal{I}_1(M) \cap G_{\delta}(M))$.

Case 2. $w_0 \in S^w$. In this case, we use R^* instead of R. We can find r' over $C(r', w_0)$ there exist at most two connected pieces ω_k in R^* , which are compact in R^* and $\omega_k \cap S^w \neq 0$ and there exist connected pieces ω_m in R such that $\omega_m \cap S^w = 0$. For ω_k , $G^{wk}(z, z_0^k)$ is minimal $(f(z_0^k) = w_0, z_0^k \in S)$ and (13') holds, for ω_m (13)or (13') hold. Hence $\sum_{k=1}^{2} u(z_0^k) + \sum u(q_i) + \sum u(q_j, M) \leq 1. \quad \text{Now } u(z_0^1) + u(z_0^2) \geq u(z_0) = \lim_{\substack{z \to z_0 \\ z \in R}} u(z)$ for $z_0 \in S$. Put $z_0 = q_0$ (considered as a point in R). Then

$$\sum u(q_i) + \sum u(q_j, M) \leq 1$$
.

The latter part is proved by Theorem 8. 1).

Kindredness of points Let $p_i \in \mathcal{A}_1(\widetilde{M}) \cap \overline{G}_{\delta}(\widetilde{M})$ (or $\in \mathcal{A}(M) \cap \overline{G}_{\delta}(M)$). If there exists a sequence of curves $\{\Gamma_n\}$ $(n=1, 2, \cdots)$ with two endpoints $\{z_n^i\}$ (i=1, 2) such that $z_n^i \xrightarrow{\widetilde{M}} p_i$ and $\inf_{z \in \Gamma_n} G(z, p_0) > \delta_1 > 0$ $(n=1, 2, \cdots)$ and $\Gamma_n \longrightarrow \mathcal{A}(\widetilde{M})$, we say p_1 and p_2 are chained. If p_i and p_{i+1} $(i=1, 2, \cdots, m-1)$ are chained, we say p_1 and p_m are kindred. We see at once p_1 and p_m lie on the same boundary component of R. Then

THEOREM 11. 1) Let $q_j \in \Delta(M) \cap \overline{G}_{\delta}(M)$ (j=1,2) be kindred, then $f(q_1) = f(q_2)$ and $\omega_r(q_1) = \omega_r(q_2)$, where $\omega_r(q_j)$ is a connected piece over $C(r, f(q_j))$. 2) Let $p_j \in \Delta_1(\widetilde{M}) \cap \overline{G}_{\delta}(\widetilde{M})$ be kindred. then $f(p_1) = f(p_2)$ and $\omega_r(p_1) = \omega_r(p_2)$.

3) Let q_1 and q_2 be two points in $\Delta(M) \cap \overline{G}_{\delta}(M)$ such that there exists a const. $\alpha > 0$ and that $K(z, q_1) \ge \alpha K(z, q_2)$. Then $f(q_1) = f(q_2)$ and $\omega_r(q_1) = \omega_r(q_2)$.

4) Let $q_1 \in \mathcal{A}_0(M) \cap \overline{\mathcal{G}}_{\delta}(M)$ (set of non minimal points) and μ be its canonical mass of K(z, q). If μ has a positive mass α at $q_2 \in \mathcal{A}_1(M)$, then $f(q_1) = f(q_2)$ and $\omega_r(q_1) = \omega_r(q_2)$.

Proof of 1) Suppose q_1 and q_2 are chained. Let $\delta^* = \min(\delta, \delta_1)$. Then $f(q_i)$ exists and $\in A(\Delta(M), \delta^*)$. Assume $f(q_1) \neq f(q_2)$. Since $A(\Delta(M), \delta^*)$ is a closed set of capacity zero, we can find an analytic curve Γ enclosing only $f(q_1)$ and $\Gamma \cap A(\Delta(M), \delta^*) = 0$. Consider $f(\Gamma_n)$. Then since $f(z_n^i) \longrightarrow f(q_i), f(\Gamma_n)$ intersects Γ at least one at ξ_n . Let η_n such that $f(\eta_n) = \xi_n \eta_n \in \Gamma_n$. Then $\eta_n \longrightarrow \Delta(M)$ and $G(\eta_n, p_0) \ge \delta^*$. We can find a subsequence $\{\eta'_n\}$ of $\{\eta_n\}$ such that $f(\eta'_n) \longrightarrow \xi^*$ and $\eta'_n \longrightarrow \eta \in \Delta(M) \cap \overline{G}_{\delta^*}(M)$ and $f(\eta) \in A(\Delta(M), \delta^*)$. This contradicts $\xi^* \in \Gamma$. Hence $f(q_1) = f(q_2)$. Also we see $f(\Gamma_n) \longrightarrow f(q_1) = f(q_2)$. This implies $\omega_r(q_1) \cap \omega_r(q_2) \supset \Gamma_n$ and $\omega_r(q_1) = \omega_r(q_2)$ for two kindred points q_1 and q_2 for any r > 0.

Proof of 2) is evident by (1) and by Therem 8.

Proof of 3) By Theorem 10 there exist connected pieces $\omega_r(q_1)$ and $\omega_r(q_2)$. Then (see the proof of Theorem 10, 2)) sup $K(z, q_i) < \infty$ in $R - \omega_r(q_i)$: $i \neq 1, 2$. Assume $\omega_r(q_1) \cap \omega_r(q_2) = 0$. Then sup $K(z, q_2) < \infty$ in R by the assumption of this theorem. This is a contradiction. Hence $\omega_r(q_1)$

111

 $=\omega_r(q_2)$ for any r>0, whence $f(q_1)=f(q_2)$.

Proof of 4) Let $z_i \xrightarrow{M} q_i$. Then there exists a subsequence $\{z'_i\}$ of $\{z_i\}$ such that $G(z, z'_i) \longrightarrow G(z, \{z'_i\})$, whence $K(z, q_i) \leq \frac{G(z, \{z'_i\})}{\delta}$. By Lemma 6 $K(z, q_1)$ is a G.G. in R and by Lemma 11 there exists a const. $\delta' > 0$ such that $q_2 \in \mathcal{A}_1(M) \cap \overline{G}_{\delta'}(M)$. Hence by the assumption we have $K(z, q_1)$ $\geq \alpha K(z, q_2)$: $\alpha > 0$ and 4) by 3).

Application to lacunary domain Let \tilde{R} be an end of a Riemann surface with relative boundary $\partial \tilde{R}$. Let F_i $(i=1, 2, \dots)$ be a compact connected set such that $F_i \cap F_j = 0$, F_i clusters nowhere in $\widetilde{R} + \partial R$ and $R = \widetilde{R}$ $-F:F=\sum F_i$ is connected. Then we call R a lacunary end. Let \mathfrak{p} be an ideal boundary component of \mathbb{R} . Let $\{\mathfrak{v}_n(\mathfrak{p})\}$ be a determining sequence of \mathfrak{p} . If there exists $\mathfrak{v}_n(\mathfrak{p})$ such that $\partial \mathfrak{v}_n(\mathfrak{p})$ is a dividing cut and $\inf G(z, p_0)$ $>\delta>0$ $(n=1, 2, \cdots)$, we say F is completely thin at \mathfrak{p} , where $G(z, p_0)$ is a Green's function of R. It is desirable to formulate the behaviour of analytic functions of bounded type in R relative to M-top. \widetilde{M} over \widetilde{R} not to M-top over R. It is easily seen if F is completely thin at $\mathfrak{p}, \delta(\mathfrak{p}, \widetilde{\mathfrak{M}})$ $\geq \delta$ for $p \in \mathcal{A}_1(\widetilde{M}) \cap \mathcal{V}(\mathfrak{p})$ and any points in $\mathcal{A}_1(\widetilde{M}) \cap \mathcal{V}(\mathfrak{p})$ are chained.

THEOREM 12. Let w = f(z) be an analytic function of bounded type in a lacunary end R of \tilde{R} . 1) If there exists a number $\delta > 0$ such that $\Delta_1(\widetilde{M}) \cap \overline{G}_{\delta}(\widetilde{M}) \cap \overline{V}(\mathfrak{p}) = \Delta_1(\widetilde{M}) \cap \overline{G}_{\delta'}(\widetilde{M}) \cap \overline{V}(\mathfrak{p}) \text{ for any } \delta' \leq \delta, \text{ then}$

$$\bigcap_{\bullet>0} \bigcup_{n} \overline{(f(G_{\bullet}\widetilde{M}) \cap \mathfrak{b}_{n}(\mathfrak{p}))} = A = \left\{ w = f(p) : p \in \mathcal{A}_{1}(\widetilde{M}) \cap \overline{G}_{\bullet}(\widetilde{M}) \cap \mathcal{V}(\mathfrak{p}) \right\}$$

2) If $\bigcup_{s>0} (\mathcal{A}_1(\widehat{\mathcal{M}}) \cap \overline{G}_s(\widehat{\mathcal{M}}) \cap \mathcal{V}(\mathfrak{p}))$ consists of a finite number of points p_i $\begin{array}{ll} (i=1,\,2,\,\cdots,\,i_0), \ \bigcup_{\epsilon>0} \bigcap_{n} \overline{f(G_{\epsilon}) \cap \mathfrak{v}_n(\mathfrak{p}))} = \bigcup_{i=1}^{i_0} f(p_i) \\ 3) \quad If \ F \ is \ completely \ thin \ at \ \mathfrak{p}, \ then \ \bigcup_{\epsilon>0} (\mathcal{A}_1(\widetilde{M}) \cap \overline{G}_{\epsilon}(\widetilde{M}) \cap \overline{V}(\mathfrak{p})) \ consists \end{array}$

of a finite number of points p_1, p_2, \dots, p_{i_0} and

$$\bigcup_{n \to 0} \bigcap_{n} (f(\overline{G}_{\bullet}(\widetilde{M}) \cap \mathfrak{v}_{n}(\mathfrak{p})) = f(p_{1}) = f(p_{2}) = \cdots = f(p_{i_{0}}).$$

REMARK. The former part of 3) is proved under the condition that spherical area of $f(R) < \infty$ in the previous paper. Suppose the spherical area of $f(R) < \infty$. Then we can find a neighbourhood $\mathfrak{v}(\mathfrak{p})$ of \mathfrak{p} such that f(z) is bounded type in $\mathfrak{v}(\mathfrak{p}) \cap R$. Hence 3) is an extension of the theorem in the previous one.

Proof of 1) By Theorem 8 $z_i \xrightarrow{\widetilde{M}} p \in \mathcal{A}_{\mathfrak{l}}(\widetilde{M}) \cap \overline{G}_{\mathfrak{d}}(\widetilde{M})$ implies $z_i \xrightarrow{M} q \in \mathcal{A}_{\mathfrak{l}}$ $(M) \cap \overline{G}_{\mathfrak{s}}(M): q = \varphi(p). \quad \text{By } f(z_i) \longrightarrow f(p) \text{ and } \longrightarrow f(q) \text{ we have } f(p) = f(\varphi(p)).$

Hence if $A \approx^{\varphi} A'$ we have at once f(A) = f(A'). For simplicity put $F_{\delta}(\alpha) \cap \mathcal{I}_{1}(\alpha) \cap \mathcal{V}(\mathfrak{p}) = F_{\delta}(\alpha)$: $\alpha = \widetilde{M}$ or M and $\overline{G}_{\delta}(\alpha) \cap \mathcal{I}_{1}(\alpha) \cap \mathcal{V}(\mathfrak{p}) = \overline{G}_{\delta}(\alpha)$. By definition we have

$$\overline{G}_{\delta-\epsilon}(\alpha) \supset F_{\delta}(\alpha) \supset \overline{G}_{\delta}(\alpha) \quad \text{for} \quad 0 < \epsilon < \frac{\delta}{2} .$$

By $\overline{G}_{\delta}(\widetilde{M}) \subset F_{\delta}(\widetilde{M}) \subset \overline{G}_{\delta-\epsilon}(\widetilde{M}) \subset \overline{G}_{\delta-\epsilon}(\widetilde{M}) \subset \overline{G}_{\delta-2\epsilon}(\widetilde{M}) = \overline{G}_{\delta}(\widetilde{M})$
$$\overline{G}_{\delta}(\widetilde{M}) = F_{\delta}(\widetilde{M}) = F_{\delta-\epsilon}(\widetilde{M}) .$$
(14)

By (14) and Theorem 8 $F_{\delta}(M) \approx F_{\delta}(\widetilde{M}) = F_{\delta-\epsilon}(\widetilde{M}) \approx F_{\delta-\epsilon}(M) \supset \overline{G}_{\delta-\epsilon}(M) \supset F_{\delta}(M)$ and

$$\overline{G}_{\delta-\epsilon}(M) = F_{\delta}(M), \qquad 0 < \epsilon < \frac{\delta}{2}.$$
(15)

By (14) and (15)

$$f(\overline{G}_{\mathfrak{s}}(\widetilde{M})) = f(F_{\mathfrak{s}}(M)) = f(\overline{G}_{\mathfrak{s}-\mathfrak{s}}(M)) = A.$$

Hence it is sufficient to study f(z) relative to M-top not \overline{M} -top. Let $\{z_i\}$ be a sequence such that $z_i \longrightarrow \mathfrak{P}$, $G(z_i, p_0) > \varepsilon > 0$, $G(z, z_i)$ converges and $f(z_i) \longrightarrow w_0$. We show $w_0 \in A$. We can find a subsequence $\{z'_i\}$ of $\{z_i\}$ such that $z'_i \xrightarrow{M} q \in \mathcal{A}(M) \cap \overline{G}_i(M) \cap \overline{V}(\mathfrak{p})$, K(z, q) is representable by a canonical mass μ on $\mathcal{A}_1(M) \cap \overline{V}(\mathfrak{p}')$, where \mathfrak{p}' is the ideal boundary component of R (not of \tilde{R}) on which q lies. Now R is a lacunary end. We can find a determining sequence $\mathfrak{v}_n(\mathfrak{p})$ of \mathfrak{p} such that $\partial \mathfrak{v}_n(\mathfrak{p}) \cap F = 0$ and $\mu = 0$ except on \mathfrak{p} . Hence $\mu > 0$ only on $\mathcal{A}_1(M) \cap \overline{V}(\mathfrak{p})$. On the other hand, $K(z, q) \leq \frac{G(z, \{z'_i\})}{\varepsilon}$ and by Lemma 6 K(z, q) is a G.G. in R. By Lemma 11 and by (15) μ is a mass on $\mathcal{A}_1(M) \cap \overline{F}_\delta(M) \cap \overline{V}(\mathfrak{p}) = \mathcal{A}_1(M) \cap \overline{G}_{\delta'}(M) \cap \overline{V}(\mathfrak{p})$ for any $\delta' < \delta$. Let $t \in \mathcal{A}_1(M) \cap \overline{G}_{\delta'}(M)$, then $K(z, t) \leq \frac{G^w(f(z), f(t))}{\delta'}$, where $G^w(w, w')$ is a Green's function of f(R) and δ' is a const. $<\delta$. Hence

$$K(z,q) \leq \frac{1}{\delta'} \int G^w(f(z),f(t)) \, d\mu(t) < \infty \quad \text{by } \int d\mu \leq 1 \, .$$

Since the mapping w = f(q) is continuous relative to *M*-top., there exists a mass ν such that

$$\int G^{w}(f(z), f(t)) d\mu(t) = \int G^{w}(w, s) d\nu(s) \text{ and } \nu > 0 \text{ on } A.$$

Let $E^* K(z, q)$ be the lower envelope of superharmonic functions larger than K(z, q) in f(R). Then $E^*K(z, q) = aG^w(w, f(q))$: a > 0. Now by

 $E^*K(z,q) \leq \frac{1}{\delta'} \int G^w(w,s) d\nu(s), \ \nu \text{ has a point mass at } f(q) \text{ by Lemma 4,}$ whence $f(q) \in A$. Hence $\bigcap_n \overline{f(G_{\epsilon}) \cap \mathfrak{v}_n(\mathfrak{p})} \subset A$ for any $\epsilon > 0$ and we have 1).

Proof of 2) Let $\delta = \min_{i} (\delta(p_i, \widetilde{M}))$. Then $\mathcal{A}_1(\widetilde{M}) \cap \overline{G}_{\delta}(\widetilde{M}) \cap \overline{\mathcal{V}}(\mathfrak{p}) = \mathcal{A}_1(\widetilde{M}) \cap G_{\delta'}(\widetilde{M}) \cap \overline{\mathcal{V}}(\mathfrak{p})$ for any $\delta' < \delta$ and $A = \sum f(p_i)$. Thus we have 2).

Proof of 3) Let p_i and p_j in $\mathcal{A}_1(\widetilde{M}) \cap \mathcal{V}(\mathfrak{p})$. Then $\delta(p_i, \widetilde{M}) \geq \delta > 0$, where δ is the number such that $G(z, p_0) \geq \delta$ on $\partial \mathfrak{v}_n(\mathfrak{p})$ and p_i and p_j are chained, hence $f(p_i) = f(p_j)$ and $= f(p_1) = \cdots = f(p_{i_0})$. By (10) there exists a number N such that $u(p_i, \widetilde{M}) \geq N\delta(p_i, \widetilde{M})$. Then by Theorem 10

$$\sum_{i=1}^{i_0} \delta(p_i, \widetilde{M}) \leq \frac{1}{N}. \quad \text{Hence } i_0 \leq \frac{1}{N\delta} \text{ and by } 2) \text{ we have } 3).$$

As a consequence of 3) we have following

COROLLARLY. Let \tilde{R} be an end of a Riemann surface $\in O_g$. If F is completely thin at a boundary component \mathfrak{P} of harmonic dimension $=\infty$. Then there exists no analytic function in $\tilde{R}-F$ of bounded type in $\tilde{R}-F$. We shall give some examples.

EXAMPLE 1. Let $1/2 > a_1 > b_1 > a_2 > b_2 \cdots \downarrow 0$. Let S_n^+ and $S_n^ (n=1, 2, \cdots)$ be slits as follows:

$$S_{n}^{+} = \left\{ 1 + a_{n} \ge \operatorname{Re} z \ge 1 + b_{n}, \ \operatorname{Im} z = 0 \right\}$$
$$S_{n}^{-} = \left\{ -1 - b_{n} \ge \operatorname{Re} z \ge -1 - a_{n}, \ \operatorname{Im} z = 0 \right\}.$$

Let \mathscr{T}_0 be a circle |z| < 2 with slits $\sum_{1}^{\infty} S_n^+ + \sum_{1}^{\infty} S_n^-$. We suppose a_n, b_n are chosen as

1)
$$\log \frac{b_n}{a_{n+1}} > \varepsilon_0 > 0, \quad n = 1, 2, \cdots$$

2) $z=\pm 1$ are irreguar points in \mathscr{F}_0 .

Let \mathscr{F}_n be a whole z-plane with slits S_n^+ and S_n^- . We shall construct an end of a Riemann surface $\in O_q$. We connect \mathscr{F}_9 with \mathscr{F}_n $(n=1,2,\cdots)$ on $S_n^+ + S_n^-$ crosswise. Then we have an end denoted by \widetilde{R} with relative boundary $\partial \widetilde{R}$ lying on |z|=2 on \mathscr{F}_0 . Let $\Gamma_n^+ = \{|z-1| = \sqrt{a_{n+1}b_n}\}, \Gamma_n^- =$ $\{|z+1| = \sqrt{a_{n+1}b_n}\}$ on \mathscr{F}_0 and $D_n = \mathscr{F}_0 - \{|z-1| \le \sqrt{a_{n+1}b_n}\} - \{|z+1| \le \sqrt{a_{n+1}b_n}\}.$ Put $\widetilde{R}_n = D_n + \mathscr{F}_1 + \cdots + \mathscr{F}_n$. Then \widetilde{R}_n is an n+1 sheeted covering surface, $\{\widetilde{R}_n\}$ $(n=1,2,\cdots)$ is an exhaustion of \widetilde{R} , $\partial \widetilde{R}_n = \partial \widetilde{R} + \Gamma_n^+ + \Gamma_n^-$, \widetilde{R} has only one ideal boundary component \mathfrak{p} and $\{\widetilde{R} - \widetilde{R}_n\}$ is an determining sequence of \mathfrak{p} . Let F be a connected closed set of positive capacity in |z| > 3 and let F_n be a set on \mathscr{F}_n whose projection is F. Then $R = \widetilde{R} - \sum F_n$ is a lacunary end. \overline{R} and R have following properties.

1) \tilde{R} is an end of a Riemann surface $\in O_g$. Let $G(z, p_0)$ be a Green's function of R and put $G_{\delta} = \{z \in R : G(z, p_0) > \delta\}$

and \overline{M} and M-top.s over \overline{R} and R are defined. Then

2) $\mathcal{I}_1(\widetilde{M}) \cap \mathcal{V}(\mathfrak{p})$ consists of two points p_1 and p_2 and $\delta(\widetilde{M}, p_i) > 0$. Let $w = f(z) = \text{proj. } z(z \in R)$. Then f(z) is bounded type in R and $f(p_i)$ exists: $\sum f(p_i) = \{z = \pm 1\}$ and p_1 and p_2 are not kindred.

3) Let $\{z_n\}$ be a sequence such that $z_n \in \mathscr{F}_n - F_n$ and proj. $|z_n - 1| > \delta'$ >0. Then $\lim G(z_n, p_0) = 0$.

Proof of 1) Let $H_n^+ = \{b_n > |z-1| > a_{n+1}\}$ and $H_n^- = \{b_n > |z+1| > a_{n+1}\}$ on \mathscr{F}_0 . Then $H_n^+ + H_n^-$ separates \mathfrak{p} from $\partial \widetilde{R}$ and by mod $H_n^+ = \mod H_n^-$, $\sum_n \mod H_n^+ = \infty$ and \widetilde{R} is a end of a Riemann surface $\in O_g$.

Proof of 2) Without loss of generality we can suppose p_0 lies on z=3/2 in \mathscr{F}_0 . Let $G'(z, p_0)$ be a Green's function of \mathscr{F}_0 . Put $U(z) = G'(z, p_0)$ and consider U(z) in \mathscr{F}_0 . Then U(z)=0 on $\sum (S_n^+ + S_n^-)$ and subharmonic in |z| < 3/2. Let $C_n^+ = \{|z-1| < \sqrt{a_{n+1}b_n}\}$ and $C_n^- = \{|z+1| < \sqrt{a_{n+1}b_n}\}$ on \mathscr{F}_0 and let $M_n = \max_{z \in \mathcal{C}_n^{+-}} U(z)$. Then $M_n = \max_{z \in \mathscr{C}_n^{+-}} U(z)$ and $M_n \downarrow$. Assume $M_n \downarrow 0$. Then $U(z) \longrightarrow 0$ as $z \longrightarrow 1$. This means z=1 is regular and contradicts 2). Hence $\lim M_n = \delta > 0$. By condition 1) and Harnack's theorem there exists a const. K for any positive harmonic function V(z) in $b_n > |z| > a_{n+1}$ such that $\max_{z \in \mathscr{C}_n^{+-}} V(z) \le K \min_{z \in \mathscr{C}_n^{+-}} V(z)$. Hence

$$\min_{z \in \partial C_n^+} G'(z, p_0) \ge \frac{\delta}{K} \quad \text{similarly} \min_{z \in \partial C_n^-} G'(z, p_0 \ge \frac{\delta}{K}.$$
(1)

By Brelot's theorem there exist only a point q_1 which is minimal on z=1(=-1) relative to Martin's top. M' over \mathscr{K}_0 and there exists a path $\Lambda(q_1)$ M'-tending to q_1 . $\Lambda(q_1)$ intersects $\partial C_n^+(n \ge n(\Lambda, q_1))$. Hence there exists a sequence $\{z_i\}$ on $\sum_n C_n^+$ such that $z_n \xrightarrow{M'} q_1 : K'(z, z_n) \longrightarrow K'(z, q_1)$. By (1) $\frac{\tilde{E}}{\mathcal{K}}K'(z, q_1) < \infty$ and there exists a point $p_1 \in \mathcal{A}_1(\tilde{M}) \cap V(\mathfrak{p})$ corresponding to q_1 . Hence $\mathcal{A}_1(\tilde{M}) \cap V(\mathfrak{p})$ consists of at least two point p_1 and p_2 . Let $p \in \mathcal{A}_1(\tilde{M})$ $\cap V(\mathfrak{p})$. Then $\Lambda(p)$ corresponding to p must intersect $\partial C_n^+ + \partial C_n^-$. Then there exists a sequence $z_i \xrightarrow{\tilde{M}} p$ and $z_n \in \partial C_n^+$ or $\in \partial C_n^-$. Now $\prod_{\mathscr{K}_0} K(z, p) \ge \frac{\lim G'(z, z_i)}{M} > 0$, where $M = \max \tilde{G}(z, p_0)$ for |z| < 1 on \mathscr{K}_0 and $\tilde{G}(z, p_0)$ is a Green's function of \tilde{R} and $\prod_{\mathscr{K}_0} K(z, p_1) = aK'(z, q_1)$ or $K'(z, q_2) : a > 0$. Hence

 $\Delta_1(\widetilde{M}) \cap V(\mathfrak{p})$ consists of at most two points p_1 and p_2 . Let $G(z, p_0)$ be a Green's function of R. Then by $G(z, p_0) \ge G'(z, p_0)$, $\delta(\widetilde{M}, p_i) \ge \frac{\delta}{K}$. Hence any analytic function of bounded type in R has limit as $z \xrightarrow{\widetilde{M}} p_i$ in $G_{\delta'}$ $= \{z \in R : G(z, p_0) > \delta'\}$. The remaining part of 2) and 3) are the consequence of Theorem 11 and 12.

EXAMPLE 2. Let $1/2 > b_0 > a_1 > b_1 > a_2 > b_2 \cdots \downarrow 0$ and S_n^+ and S_n^- be slits:

$$S_n^+ = \{ b_n \leq Re \ z \leq a_n, Im \ z = 0 \}, \quad S_n^- = \{ -b_n \geq Re \ z \geq -a_n, Im \ z = 0 \}$$

Let $w(S_n^{+-}, z)$ be a harmonic measure of S_n^{+-} in |z| < 2. We choose a_n, b_n so that 1) and 2) may satisfied.

- 1) $\log(a_n/b_{n+1}) > \varepsilon > 0$, $(n=1, 2, \cdots)$
- 2) $\sup_{Re \, z=0} w(S_n^{+-}, z) \leq 1/2^{n+3}$.

(clearly z=0 is an irregular point in $\{|z|<2\}-\sum S_n^{+-}$).

We shall construct an end \tilde{R} of a Riemann surface $\in O_g$ and a lacunary end R. Let \mathscr{I}_0 be a circle |z| < 2 with slits $\sum_{n=1}^{\infty} S_n^+$.

 \mathscr{T}_n be the whole z-plane with slits $\sum_{i=n}^{\infty} S_i^+ + \sum_{i=n+1}^{\infty} S_i^-$ (n = odd)

 \mathscr{F}_n be the whole z-plane with slits $\sum_{i=n+1}^{\infty} S_i^+ + \sum_{i=n}^{\infty} S_i^-$ (n = even)

Connect \mathscr{F}_0 with \mathscr{F}_1 on $\sum_{n=1}^{\infty} S_n^+$ crosswise. Connect \mathscr{F}_n and \mathscr{F}_{n+1} on $\sum_{i=n+1}^{\infty} S_i^-$ (n=odd) on $\sum_{i=n+1}^{\infty} S_i^+$ (n=even). Then we have a Riemann surface \widetilde{R} being a covering surface. Let F_m $(m=1, 2, \cdots)$ the part of \mathscr{F}_m over |z| > 1 and let $R = \widetilde{R} - \sum_{m=1}^{\infty} F_m$. Then R is a lacunary end. Let $\Gamma_n = \{|z| = \sqrt{a_{n+1}b_n}, H_n = \{b_n \ge |z| \ge a_{n+1}\}$ $(n=0, 1, 2, \cdots)$. Let Γ_n^m be a circle in \mathscr{F}_m whose projection is Γ_n and H_n^m be a ring in \mathscr{F}_m whose projection is H_n .

 D_n^0 be the part of \mathscr{F}_0 over $2 > |z| > a_n$.

 D_n^m be the part of \mathscr{T}_m over $\infty \ge |z| > a_n : 1 \le m \le n-1$.

Put $\widetilde{R}_n = D_n^0 + D_n^1 + D_n^2 + \cdots + D_n^{n-1}$, Then \widetilde{R}_n (an *n*-sheeted covering surface) has relative boundary |z| = 2 on \mathscr{F}_0 and $\{|z| = a_n\}$ over $\mathscr{F}_1 + \mathscr{F}_2 + \cdots + \mathscr{F}_{n-1}$ and $\{\widetilde{R}_n\}$ is an exhaustion of \widetilde{R} , \widetilde{R} has only one ideal boundary component \mathfrak{p} . R and R have the following properties.

1) R is an end of a Riemann surface $\in O_g$.

2) $\Delta_1(\widetilde{M}) \cap V(\mathfrak{p})$ consists of a countably infinite number of points p_1 , p_2 , \cdots with positive irregularity.

3) p_i and p_{i+1} are chained : $i=1, 2, \cdots$

Proof of 1) H_n is a ring with module $\log(a_n/b_{n+1})$ and $\sum_{m=0}^n H_n^m$ sepa-

rates $\partial \tilde{R}$ from \mathfrak{p} and $\sum \frac{1}{n+1} \log \frac{a_n}{b_{n+1}} = \infty$. Hence \tilde{R} is an end of a Riemann surface $\in O_g$. Let S(z) be a positive harmonic function in $a_{n+1} < |z| < b_n$. Then by condition 1) there exists a const. K such that

$$\max_{z \in \Gamma_n} S(z) \leq K \min_{z \in \Gamma_n} S(z) : \quad \Gamma_n = \left\{ |z| = \sqrt{a_{n+1}b_n} \right\}.$$

Let $G(z, p_0)$ be a Green's function of R with pole p at z=3/2 in \mathscr{F}_0 . Then there exists a const. M such that $G(z, p_0) \leq M$ in R over |z| < 1. Let V(z) be a positive harmonic function in $\left\{ |z| < \frac{1}{2} \right\} - \sum_{i=m}^{\infty} S_i^+ - \sum_{i=m}^{\infty} S_i^$ such that $V(z) \geq N$ on |z| = 1/2. Then

$$V(z) \ge N(1 - \sum_{m}^{\infty} w'(S_i^+, z) - \sum_{m}^{\infty} w'(S_i^-, z)), \qquad (1)$$

where $w'(S_i^{+-}, z)$ is H.M. of S_i^{+-} relative to $|z| \leq 1/2$ and $w'(S_i^{+-}, z) \leq w(S_i^{+-}, z)$. By $\max_{Re\ z=0}\sum_{i=m}^{\infty} (w(S_i^+, z) + w(S_i^-, z)) \leq 1/2^{m+1}$ we have

$$V(z) \ge N(1 - 1/2^{m+1}) \text{ for } Re \, z = 0 \text{ and } V(z) \ge \frac{N}{K}(1 - 1/2^{m+1}) \text{ on } \sum_{i=1}^{\infty} \Gamma_i \quad (2)$$

Consider $G(z, p_0)$ in \mathscr{K}_m over $\{|z| < 1/2\}$. Then there exists a const. N_m such that $G(z, p_0) \ge N_m$ on |z| = 1/2. Hence by (2)

$$G(z, p_0) \ge \frac{N_m}{K} (1 - 1/2^{m+1})$$
 for $Re z = 0$ and on $\sum_{i=1}^{\infty} \Gamma_i$. (3)

Similarly we have

13

$$G(z, p_0) \leq K(M/2^{m+1}) \quad \text{for } Re \, z = 0 \text{ and on } \sum_{i=1}^{\infty} \Gamma_i. \qquad (4)$$

Let G_m be the part of \mathscr{T}_m on $\{\sqrt{a_{n+1}b_n} < |z| < \sqrt{a_nb_{n-1}}, -\pi/2 \le \arg z \le \pi/2\}$ G_{m-1} be the part of \mathscr{T}_{m-1} on $\{\sqrt{a_{n+1}b_n} < |z| < \sqrt{a_nb_{n-1}}, -\pi/2 \le \arg z \le \pi/2\}$ Then G_m and G_{m-1} are connected at S_n^+ and $G_m + G_{m-1}$ is bounded by two boundary components B on \mathscr{T}_m and B' on \mathscr{T}_{m-1} for $n \ge m$, where B is the part of \mathscr{T}_m over $(|z| = \sqrt{a_nb_{n-1}}, -\pi/2 \le \arg z \le \pi/2) + (\sqrt{a_{n+1}b_n} < |z| < \sqrt{a_nb_{n-1}})$ $\arg z = \pi/2) + (|z| = \sqrt{a_{n+1}b_n}, -\pi/2 \le \arg z \le \pi/2) + (\sqrt{a_{n+1}b_n} < |z| < \sqrt{a_nb_{n-1}})$ arg $z = \pi/2$

 $\begin{aligned} & -\pi/2 \rangle \text{. and } B' \text{ is a set on } \mathscr{F}_{m-1} \text{ whose projection is that of } B. \text{ Then by} \\ & (3) \ G(z,p_0) \geqq \frac{N_m}{K} (1-1/2^{m+1}) \text{ on } B \text{ and } \geqq \frac{N_{m-1}}{K} (1-1/2^{m+1}) \text{ on } B'. \text{ Hence} \\ & G(z,p_0) \geqq \frac{1}{K} (1-1/2^{m+1}) \min (N_m,N_{m-1}) \text{ and similarly } G(z,p_0) \geqq \frac{1}{K} (1-1/2^{m+1}) \\ & \min (N_m,N_{m+1}) \text{ in the part of } \mathscr{F}_m \text{ over } \sqrt{a_{n+1}b_n} > |z| > \sqrt{a_nb_{n-1}}, \ \pi/2 \leqq \arg z \leqq \\ & 3\pi/2. \text{ Hence } G(z,p_0) \geqq \frac{1}{K} (1-1/2^{m+1}) \min (N_{m-1},N_m,N_{m+1}) \text{ in } \mathscr{F}_m \text{ over } |z| \\ & <\sqrt{a_mb_{m-1}}. \text{ Now } G_m \text{ (for } n \leqq m) \text{ is bounded by only one boundary component } B \text{ on which } G(z,p_0) \geqq \frac{N_m}{K} (1-1/2^{m+1}). \text{ Thus} \end{aligned}$

$$G(z, p_0) \ge \frac{\min(N_{m-1}, N_m, N_{m+1})}{K} (1 - 1/2^{m+1}) \text{ in } \mathscr{I}_m \text{ over } |z| < 1/2. \quad (5)$$

For m is even, the same result is obtained. Similarly we have

$$G(z, p_0) \leq \frac{KM}{2^m} \text{ in } \mathscr{F}_m \text{ over } |z| < 1.$$
 (6)

Let $\mathscr{X}'_m = \mathscr{X}_m - F_m$, i.e. unit circle with slits $\sum_{m=1}^{\infty} S_i^{+-} + \sum_{m+1}^{\infty} S_i^{-+}$ according as m = odd or even. Then there exists only one point q_m at z = 0 which is minimal relative to Martin's top. over \mathscr{I}'_m . Let Λ be a curve tending to q_m . Then Λ intersects Γ_n^m : $n \ge n(\Lambda)$. There exists a sequence $\{z_i\}$ on $\sum_{i} \Gamma_{i}^{m}$ with $K'(z, z_{i}) \longrightarrow K'(z, q_{m})$, where $K'(z, q_{m})$ is a kernel in \mathscr{F}'_{m} . Let $G'(z, p_0)$ be a Green's function of \mathscr{K}'_m . Then by (1) it is easily seen lim $G'(z_i, p_0) > 0$ and $\mathop{E}\limits_{x'_m} K'(z, q_m) < \infty$ and there exists apoint p_m in $\mathcal{L}_1(\widetilde{M}) \cap V(\mathfrak{p})$ with $\underset{\mathscr{F}'m}{\overset{R}{\longrightarrow}} K'(z, q_m) = aK(z, q_m)$. Clearly by (5) $\delta(\widetilde{M}, p_m) > 0$. By $\mathscr{F}'_m \cap \mathscr{F}'_m = 0$, $q_m \neq q_{m'}$ and $p_m \neq p_{m'}$ for $m \neq m'$. Hence there exist p_1, p_2, \cdots in $\mathcal{A}_1(\widetilde{M}) \cap \mathcal{V}(\mathfrak{p})$. Conversely let $p \in \mathcal{A}_1(\widetilde{M}) \cap \mathcal{F}(\mathfrak{p})$ with $\delta(\widetilde{M}, p) > 0$. Then there exists a path $\Lambda \widetilde{M}$ -tending to p. By (6) there exists a number k_0 and an endpart Λ' of Λ such that Λ' has no common points with $\mathscr{F}_k: k \ge k_0$. Now $\sum_{i=1}^n \Gamma_n^i$ separates $\partial \tilde{R}$ from \mathfrak{p} for any n and Λ intersects $\sum_{i=1}^{\kappa_0} \Gamma_n^i$ for $n > n(\Lambda)$ and there exists a sequence $\{z_i\}$ and a number m such that $\{z_i\} \subset \sum_{n=1}^{\infty} \Gamma_n^m$ and $z_i \xrightarrow{\widetilde{M}} p$. By (5) $\lim G'(z_i, p_0) > 0$, $\prod_{x'_m}^{\bar{n}} K(z, p) > 0$. Hence p_m corresponds q_m . Hence there exists no point with positive irregularity except p_1, p_2, \cdots . Let p_m ,

 $p_{m+1} \in \mathcal{A}_1(\widetilde{M}) \cap \overline{V}(\mathfrak{p})$. Then there exist sequences $\{z_i^m\}$, $\{z_i^{m+1}\}$ such that $\{z_i^m\} \subset \sum_{n=1}^{\infty} \Gamma_n^m$, $\{z_i^{m+1}\} \subset \sum_{n=1}^{\infty} \Gamma_n^{m+1}$, $z_i^m \longrightarrow p_m$, $z_i^{m+1} \longrightarrow p_{m+1}$. By (5) p_m and p_{m+1} are chained.

References

- [1] Z. KURAMOCHI: Analytic functions in a lacunary end of a Riemann surface. to appear in Ann. Inst. Fourier, Fas 3, tome 25 (1975).
- [2] Z. KURAMOCHI: Mass distributions on the ideal boundaries of abstract Riemann surfaces, 1. Osaka Math. J., 8. 119-137 (1956).
- [3] Z. KURAMOCHI: On harmonic functions representable by Poisson's integral, Osaka Math. J. 10, 103-117 (1958).
- [4] CONSTANTINESCU und CORNEA: Ideale R\u00e4nder Riemannscher Fl\u00e4chen; Springer (1958).
- [5] Z. KURAMOCHI: On the existence of functions of Evans's type, J. Fac. Sci. Hokkaido Univ. 19. 1-27 (1965).
- [6] L. NAIM : Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Ann. Inst. Fourier. 7, 183-281 (1957)

Department of Mathematics Hokkaido University