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\S 1. Introduction.

Recently, Bang-yen Chen and Kentaro Yano [1] proved the following:
THEOREM 1. In order that a Riemannian manifold M of dimension

n>3 is conformally flat, it is necessary and sufficimt that there exists
a [unique) quadratic form Q on M such that the sectional curvature K(\sigma)

with respect to a plane \sigma is the trace of the restr iction of Q to \sigma, i.e.
K(\sigma)=traceQ/\sigma, the metric being also restricted to \sigma .

The object of this paper is to give the generalization of this theorem,
ipso facto, the characterization of higher order conformally flatness.

We have the following:
THEOREM 2. In order that a Riemannian manifold M of dimmsion

n\geqq 4p is p-conformally flat, it is necessary and sufficimt that there exists
a [unique) quadratic form Q, which satisfies the gmeralized first Bianchi
idmtity as double form of type (2p-1,2p-1), on the bundle \Lambda^{2p-1}(M) of
(2p-1)-vectors of M such that the 2p-th sectional curvature K_{2p}(\sigma) with
respect to an 2pplane \sigma is the trace of the restriction of Q to \Lambda^{2p-1}(\sigma), i.e.
K_{2p}(\sigma)=traceQ/\Lambda^{2p-1}(\sigma) .

\S 2. Preliminaries.

Let M be an n-dimensional Riemannian manifold with the Riemannian
metric g, let \mathfrak{F}(M) be the algebra of functions on M and let \mathfrak{X}(M) be
the Lie algebra of vector fields on M. In what follows we write g=\langle, \rangle ,
where it is convenient.

For p an integer between 1 and n, let \Lambda^{p}(M) denote the bundle of p-
vectors of M and let \Lambda^{p}(m) be the fiber over m\in M. \Lambda^{p}(M) is a Rieman-
nian vector bundle, with the inner product on the fiber \Lambda^{p}(m) over m
related to the inner product on the tangent space M_{m} of M at m by
(2. 1) \langle X_{1}\Lambda X_{2}\Lambda\cdots\Lambda X_{p}, Y_{1}\Lambda Y_{2}\Lambda\cdots\Lambda Y_{p}\rangle=\det[\langle X_{t}, Y_{f}\rangle] , (X_{i}, Y_{f}\in M_{m}) .
We define a double form of type [p, q) on M to be an \mathfrak{F}(M)-multilinear
map
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\omega : \mathfrak{X}(M)^{p}\cross \mathfrak{F}(M)^{q}arrow \mathfrak{X}(M) ,

which is skew-symmetric in the first p-variables and also in the last q-
variables. We shall use the notation

\omega(X_{1}, \cdots, X_{p})(Y_{1}, \cdots, Y_{q})

to denote the value of \omega on the vector fields X_{1} , \cdots , X_{p} , Y_{1} , \cdots , Y_{q}\in \mathfrak{X}(M) .
If p=q and

\omega(X_{1}, \cdots, X_{p})(Y_{1}, \cdots, Y_{p})=\omega(Y_{1}, \cdots, Y_{p})(X_{1}, \cdots, X_{p}) ,

we say that \omega is symmetric.
Let \omega be a symmetric double form of type (p,p). Hence, at each point
m\in M, we may regard \omega as aquadratic form on \Lambda^{p}(m), i.e.

\omega(X_{1}, \cdots, X_{p})(Y_{1}, \cdots, Y_{p})=\omega(X_{1}\Lambda\cdots\Lambda X_{p}, Y_{1}\wedge\cdots\wedge Y_{p}) , (X_{i}, Y_{j}\in M_{m}) .
Next, let \omega be a double form of type (p, q) and let \theta be of type (r, s)

respectively. The exterior product \omega\Lambda\theta of \omega and \theta is defined by the
formula

(\omega\Lambda\theta)(X_{1}, \cdots, X_{p+r})(Y_{1}, \cdots, Y_{q+s})

(2. 2) = \sum \mathcal{E}_{\sigma}\mathcal{E}_{\tau}\omega(X_{\sigma 1)}‘, \cdots,X_{\sigma(p)})(Y_{\tau(1)}, \cdots, Y_{\tau(q)})

\sigma\in sh\tau\epsilon sh\{_{q,S)}^{p,r)}\cross\theta(X_{\sigma(p+1)^{ }},\cdots,X_{\sigma(p+r)})(Y_{\tau(q+1)}, \cdots, Y_{\tau(q+s)}) , (X_{i}, Y_{f}\in \mathfrak{X}(M)) .

Here, Sh(p, r) denotes the set of all (p, r)-shuffies ; specifically

Sh(p, r)=\{\sigma\in S_{p+r}|\sigma(1)<\cdots<\sigma(p) and \sigma(p+1)<\cdots<\sigma(p+r)\} ,

where S_{p+r} is the symmetric group of degree p+r.
It is easy to show that \Lambda is an associative multiplication and

(2. 3) \omega\Lambda\theta=(-1)^{pr+qs}\theta\Lambda\omega

where \omega has type (p, q) and \theta has type (r, s).
Let \omega^{k} denote the k-th exterior power of \omega . Then we can rewrite the
inner product on \Lambda^{p}(m) over m\in M as follows;

(2. 4) \langle X_{1}\Lambda\cdots\Lambda X_{p}, Y_{1}\Lambda\cdots\Lambda Y_{p}\rangle=\frac{1}{p!}g^{p}(X_{1}, \cdots, X_{p})(Y_{1}, \cdots , Y_{p}\grave{)} .

We define the double form c\omega of type (p– 1, q-1) for \omega of type (p,
q) as follows. With p=0 or q=0, we put c\omega=0 . If both p and q\geqq 1 ,

then we put
c\omega(X_{1}, \cdots, X_{p-1})(Y_{1}, \cdots, Y_{q-1})

(2. 5)
= \sum_{k=1}^{n}\omega(E_{k}, X_{1}, \cdots, X_{p-1})(E_{k}, Y_{1}, \cdots, Y_{q-1}) ,
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where \{E_{1}, \cdots, E_{n}\} is a locally defined orthonormal frame field with respect
to g . We call this map c the contraction.

The double form b\omega of type (p+1, q-1) for \omega of type (p q) is defined
as follows. With q=0, we put b\omega=0 . If q\geqq 1 , then we put

b\omega(X_{1}, \cdots, X_{p+1})(Y_{1}, \cdots, Y_{q-1})

(2. 6)
= \sum_{f=1}^{p+1}(-1)^{f}\omega(X_{1}, \cdots,\check{X}_{j}, \cdots, X_{p+1})(X_{f}, Y_{1}, \cdots, Y_{q-1}) ,

where the symbol \vee denotes omission.
Note that b\omega=0 for any quadratic form \omega on M. Of course, we have

bg=0. If b\omega=0, we call \omega adouble form satisfying the generalized first
Bianchi identity. We know that the double form of type (p,p) satisfying
the generalized first Bianchi identity is symmetric.
Concerning these operators, the following lemmas are well known (cf. see
[2] and [3] ) .

LEMMA 1. Let \omega and \theta be the double forms on M of types (p, q) and
(r, s)\backslash respectively. Then we have the following formulas:
(2. 7) c(g\Lambda\omega)=g\Lambda c\omega+(n-p-q)\omega ,

(2. 8) b(\omega\Lambda\theta)=b\omega\Lambda\theta+(-1)^{p+q}\omega\Lambda b\theta ,

(2. 9) bc=cb .
Lemma 2. Let \omega be a double form of type (p,p) on M. Suppose that

b\omega=0 and \omega(X_{1}, \cdots, X_{p})(X_{1}, \cdots, X_{p})=0 for all X_{1} , \cdots , X_{p}\in M_{m} at each
point m\in M. Thm \omega=0 .

Let R_{XY} be the curvature operator given by the formula:

(2. 10) R_{XY}=[\nabla_{X}, \nabla_{Y}]-\nabla_{[X,Y]} , (X, Y\in \mathfrak{X}(M)) .

Then we define a curvature double form R of type (2, 2) by the formula:

(2. 11) R(X, Y)(Z, W)=\langle R_{XY}Z, W\rangle , (X, Y, Z, W\in \mathfrak{X}(M))

Note that bR=0 reduces to the first Bianchi identity.
The Weyl conformal curvature tensor C is a double form of type (2, 2)

is given by

(2. 12) C=R-^{\frac{1}{n-2}}g \Lambda cR+\frac{c^{2}R}{2(n-2)(n-1)}g^{2} .

As the generalization of the conformal curvature tensor C, we define the
p-th conformal curvature tensor C_{p} by the formula [2]:

(2. 13) C_{p}=R^{p}+ \sum_{k=1}^{2p}\frac{(-1)^{k}}{k!\Pi_{f=0}^{k-1}(n-4p+2+j)}g^{k}\Lambda c^{k}R^{p} , (n\geqq 4p-1) .
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The manifold M is called p-conformally flat if n>4p-1 and C_{p}=0 . Of
course, if p=1, then M is conformally fiat.

Let G_{2p}(M) be a Grassman bundle of oriented tangent 2p-planes of M.
The 2p-th sectional curvature K_{2p}(\sigma) with respect to \sigma=(m, P^{t})\in G_{2p}(M) is
given by the formula [3] :

(2. 14) K_{2p}( \sigma)=\frac{(-2)^{p}R^{p}(X_{1},\cdots,X_{2p})(X_{1},\cdots,X_{2p})}{(2p)!||X_{1}\Lambda\cdots\Lambda X_{2p}||^{2}} ,

where P is spanned by X_{1} , \cdots , X_{2p}\in M_{m} .

\S 3. Proof of Theorem 2.

Suppose that M is a p-conformally flat Riemannian manifold of dimen-
sion n\geqq 4p . Then we have

(3. 1) C_{p}=0 ,

that is

(3. 2) R^{p}= \sum_{k=1}^{2p}\frac{(-1)^{k-1}}{k!\Pi_{f=0}^{k-1}(n-4p+2+j)}g^{k}\wedge c^{k}R^{p} .

The 2p-th sectional curvature K_{2p}(\sigma) with respect to 2p-plane \sigma=(m, P)\in

G_{2p}(M) is given by

K_{2p}( \sigma)=\frac{1}{||X_{1}\Lambda\cdots\Lambda X_{2p}||^{2}}

(3. 3)
\cross\{_{i,f=1}\sum^{2p}g(X_{i}, X_{f})Q(X_{1}, \cdots,\check{X}_{i}, \cdots, X_{2p})(X_{1}, \cdots,\check{X}_{f}, \cdots, X_{2p})\}

where Q \frac{(-2)^{p}}{-(2p)!}\sum_{k=1}^{2p}\frac{(-1)^{k-1}}{k!\Pi_{f=0}^{k-1}(n-4p+2+j)}g^{k-1}\wedge c^{k}R^{p}

and P is spanned by X_{1} , \cdots , X_{2p}\in M_{m} .
Thus if \{X_{1}, \cdots, X_{2p}\} is any orthonormal basis for P, then we obtain

(3. 4) K_{2p}( \sigma)=\sum_{f=1}^{2p}Q(X_{1}\Lambda\cdots\Lambda\check{X}_{f}\Lambda\cdots\Lambda X_{2p})(X_{1}\Lambda\cdots\Lambda\check{X}_{f}\Lambda\cdots\Lambda X_{2p}) ,

that is, the 2p-th sectional curvature K_{2p}(\sigma) with respect to \sigma is given by
the trace of the restriction of Q to \sigma .

From Lemma 1, the generalized fiirst Bianchi identity bQ=0 for Q is
straightforward.

Conversely, suppose that the 2p-th sectional curvature K_{2p}(\sigma) with
respect to \sigma=(m, P)\in G_{2p}(M) is given by

(3. 5) K_{2p}(\sigma)=traceQ/\Lambda^{2p-1}(\sigma) ,
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where Q is a certain quadratic form on \Lambda^{2p-1}(m) which satisfies the gen-
eralized first Bianchi identity as a double form of type (2p-1,2p-1). The
expression trace Q/\Lambda^{2p-1}(\sigma) being independent of the choice, of the orthonormal
basis \{U_{1}, \cdots, U_{2p}\} of \Lambda^{2p-1}(m) respected to P, we put

U_{1}= \frac{\tilde{X}_{1}}{||\overline{X}_{1}||} ,

(3. 6) U_{2}.\cdot.\wedge^{=\frac{||\tilde{X}_{1}||^{2}\tilde{X}_{2}-\langle\tilde{X}_{1}}{||\acute{\check{X}}_{1}||||\acute{\check{X}}_{1}}\frac{\tilde{X}_{2}\rangle\tilde{X}_{1}}{\hat{\dot{X}}_{2}||}}’-

\sum(-1)^{k}\langle\tilde{X}_{1}\Lambda\cdots\Lambda\tilde{X}_{2p-1}2p,\tilde{X}_{1}\Lambda\cdots\Lambda x_{k}\Lambda\cdots\Lambda\tilde{X}_{2p}\rangle\tilde{X}_{k}

U_{2p}= \frac{k=1}{||\overline{X}_{1}\Lambda\cdots\Lambda\check{X}_{2p-1}||||\tilde{X}_{1}\Lambda\cdots\Lambda\tilde{X}_{2p}||}

where \overline{X}_{i}=X_{1}\Lambda\cdots\Lambda\check{X}_{i}\Lambda\cdots\Lambda X_{2p}\in\Lambda^{2p-1}(m) and \Lambda is an exterior multipli-
cation on \Lambda^{2p-1}(m) .
Then from (3. 5) and (3. 6), we have

\frac{(-2)^{p}R^{p}(X_{1},\cdots,X_{2p})(X_{1},\cdots,X_{2p})}{(2p)!||X_{1}\Lambda\cdots\Lambda X_{2p}||^{2}}

(3. 7)
= \frac{\sum_{i,f=1}^{2p}(-1)^{i+f}\langle\tilde{X}_{1^{\wedge\cdots\Lambda i}}\check{\frac{}{X}}\Lambda\cdots\Lambda\tilde{X}_{2p},\overline{X}_{1}\Lambda\cdots\Lambda{?}_{J\Lambda\cdots\Lambda\overline{X}_{2p}\rangle Q(\overline{X}_{i},\tilde{X}_{f})}{||\check{X}_{1}\Lambda\cdots\Lambda\overline{X}_{2p}||^{2}}

Here we use the following identities;

||\tilde{X}_{1}\Lambda\cdots\Lambda\tilde{X}_{2p}||^{2}=||X_{1}\Lambda\cdots\Lambda X_{2p}||^{4p-2} ,

(3. 8) \langle\tilde{X}_{I}\Lambda\cdots\Lambda\check{\frac{}{X}}\Lambda i\ldots\Lambda\tilde{X}_{2p},\tilde{X}_{1}\Lambda\cdots\Lambda^{>}X_{f}\Lambda\cdots\Lambda\tilde{X}_{2p}\rangle

=||X_{1}\Lambda\cdots\Lambda X_{2p}||^{4p-4}\langle X_{i}, X_{f}\rangle .

Using this fact, we find

(3. 9)
\frac{(-2)^{p}}{(2p)!}R^{p}(X_{1}, \cdots, X_{2p})(X_{1}, \cdots, X_{2p})

=(g\Lambda Q)(X_{1}, \cdots, X_{2p})(X_{1}, \cdots, X_{2p}) .

From Lemm 2, we obtain

(3. 10) R^{p}=g\Lambda L ,

where L= \frac{(2p)!}{(-2)^{p}}Q .

From (3. 10) and Lemma 1, we have
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cR=g\Lambda cL+(n-4p+2)L ,

(3. 11.)
c^{k}.\cdot

.
R^{p}=g\Lambda c^{k}L+k(n-4p+k+1)c^{k-1}L ,

c^{2p}R^{p}=2p(n-2p+1)c^{2p-1}L\dot{} .
Then it follows that

(3. 12) L= \sum_{k=1}^{2p}\frac{(}{k!\Pi_{f=0}^{k-1}(}\frac{-1)^{k-1}}{-4p+2+j)}g^{k-1}\Lambda c^{k}R^{p}n

’ i.e. (3. 2).

Therefore M is p-conformally flat.
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