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\S 1. Introduction

In [1], Cohen has shown that the following:

THEOREM A. Let E be a normed space. Then E is an inner product
space iff for all Banach spaces F and for all 2-absolutely summing opera-
tors T mapping E into F, the conjugate operator T^{*} is 2-absolutely sum-
ming and JI_{2}(T^{*})\leqq I1_{2}(T) .

In [2], Kwapien has given a similar characterization of spaces isomor-
phic to inner product spaces. That is the following:

THEOREM B. Let E be a Banach space, then the following conditions
are equivdent :

(1) E is isomorphic ( =linearly hmemorphic) to an inner pmduct
space.

(2) If T\in \mathbb{I}_{2}(E, l_{?}), thmT^{*}\in \mathbb{I}_{2}(l_{2}, E^{*}).
Theorem A and Theorem B suggest the following (^{*}) :
(^{*}) Let E be a Banach space, and 1\leqq p<\infty . Thm the following con-

ditions are equivalmt.
(1) For all Banach spaces F,

if T\in\Pi_{p}(E, F) , then T^{*}\in II_{p}(F^{*}, E^{*}) .
(2) If T\in 11_{p}(E, l_{p}), then T^{*}\in II_{p}(l_{p^{*}}, E^{*}) .
In this paper, we shall prove this fact is true, and furthermore, using

weakly p-summable sequences, we shall characterize Banach spaces E which
satisfy the condition (1) (or equivalently condition (2)).

Notation.
and E^{*} and F^{*} the continuous dual spaces. The space of continuous
linear operators mapping E into F will be denoted by L(E, F).

Throughout the paper E and F will denote Banach spaces

\S 2. Basic definitions and well known results

Let E and F be Banach spaces, and 1\leqq p\leqq\infty .
A sequence \{x_{i}\} with values in E is called weakly p-summable (l_{p}(E))

if for all x^{*}\in E^{*} , the sequence \{x^{*}(x_{i})\}\in l_{p} . The space l_{p}(E) is a normed
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space; the norm is given by

\epsilon_{p}(\{x_{i}\})=

’ \sup\{(\sum_{i=1}^{\infty}|x^{*}(x_{i})|^{p})^{1/p} : ||x^{*}||\leqq 1\} , 1\leqq p<\infty

\backslash \sup_{i}\{\sup\{|x^{*}(x_{i})|:||x^{*}||\leqq 1\}\} , p=\infty .

The following theorem, due to Grothendieck (c.f. [6]), provides a useful
characterization of l_{p}(E) .

THEOREM 2.1. For 1<p\leqq\infty and 1/p+1/p^{*}=1 , trere is an isometric
isomorphism between l_{p}(E) and L(l_{p^{*}}, E) . For p=1, l_{1}(E) is isometrically
isomorphic with L(c_{0}, E) . In both cases, a sequence \{x_{i}\} in l_{p}(E) is identi-
fified with the operator

T( \{c_{i}\})=\sum_{i=1}^{\infty}c_{i}x_{i} .

A sequence \{x_{i}\} is called absolutely p-summable (l_{p}\{E\}) if the sequence
\{||x_{i}||\}\in 1_{p} . The space l_{p}\{E\} is a normed space; the norm is given by

\alpha_{p}(\{x_{i}\})=\{

( \sum_{i=1}^{\infty}||x_{i}||^{p})^{1/p},

,
1\leqq p<\infty

\sup_{i}||x_{i}||’. p=\infty 1

A sequence \{x_{i}\} is called strongly p-summable (l_{p}\langle E\rangle) if for all se-
quences \{x_{i}^{*}\}\in l_{p^{*}}(E^{*}) , 1/p+1/p^{*}=1 , the series \sum_{i=1}^{\infty}x_{i}^{*}(x_{i}) converges.

The space l_{p}\langle E\rangle is a normed space; the norm is given by

\sigma_{p}(\{x_{i}\})=\sup\{|\sum_{i=1}^{\infty}x_{i}^{*}(x_{i})|:\epsilon_{p^{*}}(\{x_{i}^{*}\})\leqq 1\} .

DEFINITION 2.1. Let 1\leqq p, q\leqq\infty . An operator T mapping E into F
is (p, q)-absolutely summing (\Pi_{p,q}(E, F)) if there exists a constant c\geqq 0, such
that for all fifinite sets x_{1} , \cdots , x_{n}, the inequality

\alpha_{p}(\{Tx_{i}\})\leqq c\epsilon_{q}(\{x_{i}\})

is satisfified. The smallest number c, such that the above inequality is
satisfified, is called the (p, q)-absolutely summing norm (II_{p,q}(T)) of T.

We shall say p-absolutely summing instead of (p,p)-absolutely summing,
and absolutely summing instead of 1-absolutely summing, respectively.

It is easily seen that the following:
THEOREM 2.2. A linear operator T mapping E into F is (p, q)-absO-

lutely summing iff for each \{x_{i}\}\in l_{q}(E), \{Tx_{i}\}\in l_{p}\{F\}(
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DEFINITION 2.2. Let 1\leqq p, q\leqq\infty . An operator T mapping E into F
is (p, q)-strongly summing (D_{p,q}(E, F)) if there exists a constant c\geqq 0 such
that for all fifinite sets x_{1} , \cdots , x_{n}, the inequality

\sigma_{p}(\{Tx_{i}\})\leqq c\alpha_{q}(\{x_{i}\})

is satisfified. The smallest number c, such that the above inequality is
satisfified, is called the (p, q)-strongly summing norm(D_{p,q}(T)) of T.

We shall say p-strongly summing instead of (p,p)-strongly summing.
Next, we shall introduce an \mathscr{L}_{p\lambda}-space. The definition of this space

is due to Lindenstrauss and Pelczy\acute{n}ski (c.f. [7]).
Let E and F be Banach spaces. The distance d(E, F) between E and

F is defined by d(E, F)= \inf\{||T||\cdot||T^{-1}||\} , where the infimum is taken over
all invertible operators in L(E, F). If no such T exists, i.e. , if E and F
are not isomorphic, d(E, F) is taken as \infty .

DEFINITION 2.3. Let 1\leqq p\leqq\infty , and 1\leqq\lambda<\infty . A Banach space E is
called an \mathscr{L}_{p\lambda} space iffor dl fifinite dimensional subspaces M\subset E there exists
a fifinite dimensional subspace N containing M such that d(N, l_{p}^{n})\leqq\lambda, where
n=dim(N).

It can be shown (c.f. [7]) that every L_{p}(\mu) space is an \mathscr{L}_{p\lambda} space for
all \lambda>1 and every space of type C(K), where K is a compact Hausdorff
space, is an \mathscr{L}_{\infty\lambda}-space for all \lambda>1 . More generally, every Banach space
whose dual is isometric to an L_{1}(\mu) space (e.g. every M space in the sence
of Kakutani [8] ) is an \mathscr{L}_{\infty\lambda}-space for every \lambda>1(c. f. [9]) .

The following theorems are due to J. S. Cohen (c.f. [3]).
THEOREM 2.3. Let 1/p+1/q=1.
(1) Let 1\leqq p<\infty . An operator T belongs to \Pi_{p}(E, F) iff the conju-

gate operator T^{*} belongs to D_{q}(F^{*}, E^{*}).
(2) Let 1<q\leqq\infty . An operator T belongs to D_{q}(E, F) iff the conju-

gate operator T^{*} belongs to \Pi_{p}(F^{*}, E^{*}) .
THEOREM 2.4. Let 1<p\leqq\infty and 1/p+1/q=1.
(1) Let E be an \mathscr{L}_{p\lambda}-space. Then, \Pi_{q}(E, F)\subset D_{p}(E, F) .
(2) Let F be an \mathscr{L}_{q\lambda}-space. Then, D_{p}(E, F)\subset\Pi_{q}(E, F) .
The following theorem are due to M. Kato (c.f. [4]), and this is a

generalization of the Theorem 2.3..
THEOREM 2.5. Let 1/p+1/p^{*}=1,1/q+1/q^{*}=1 .
(1) Let 1\leqq p, q<\infty . An operator T belongs \Pi_{p,q}(E, F) iff the conju-

gate operator T^{*} belongs to D_{q^{*},p^{*}}(F^{*}, E^{*}) .
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(2) Let 1<p<\infty and 1\leqq q<\infty . An operator T belongs D_{q^{*},p^{*}}(E, F)

iff the conjugate operator T^{*} belongs to \Pi_{p,q}(F^{*}, E^{*}) .

\S 3. Main theorems and other results

Throughout this section, let X be a set and \mathfrak{B} be a \sigma-algebra in X,

and let \mu be a positive measure such that there exist positive constants
C_{1} , C_{2} and pairwise disjoint measurable subsets \{X_{n}\} , which satisfy the
following conditions :

C_{1}\leqq\mu(X_{n})\leqq C_{2} , for all n=1,2, \cdots

Let L_{p}(X, \mu) be a usual Banach space, then l_{p} (usual sequence space) is
a L_{p}(X, \mu)-space which satisfies the above conditions.

We shall denote L_{p} instead of L_{p}(X, \mu) in the ensuing discussions.
THEOREM 3.1. Let E be a Banach space, 1\leqq p\leqq q\leqq r<\infty . Thm the

following conditions are equivalent.
(1) For all Banach spaces F,

if T\in\Pi_{q,p}(E, F), then T^{*}\in\Pi_{r,q}(F^{*}, E^{*}) .
(2) If T\in\Pi_{q.p}(E, L_{q}), then T^{*}\in\Pi_{r,q}(L_{q^{*}}, E^{*}) (1/q+1/q^{*}=1) .
(3) For any \{x_{n}^{*}\}\subset E^{*} with ||x_{n}^{*}||=1 (n=1,2, \cdots),

\bigcap_{\alpha}1_{q}(\rho_{n,\alpha})\subset 1_{r}

there \rho_{n,\alpha}=\sum_{i=1}^{\infty}|x_{n}^{*}(x_{i})|^{q} , with \{x_{i}\}\in 1_{p}(E) .

PROOF.
(1)\Rightarrow(2) : It is obvious.
(2)\Rightarrow(3) : Assume the contrary, then there exist \{x_{n}^{*}\}\subset E^{*} with ||x_{n}^{*}||

=1(n=1,2, \cdots), and complex sequence \{b_{n}\} such that \sum_{n=1}^{\infty}|b_{n}|^{q}\rho_{n,\alpha}<\infty for

all \rho_{n,\alpha}, and \sum_{n=1}^{\infty}|b_{n}|^{r}=\infty .
From the assumption of \mu, there exist positive constants C_{1} , C_{2} and

pairwise disjoint measurable subsets \{X_{n}\} in X such that

C_{1}\leqq\mu(X_{n})\leqq C_{2} (n=1,2, \cdots) .
Let

f_{n}(s)=\{
1 for s\in X_{n}

0 for s\in X_{n}^{c} (complment of X_{n}),

then obviously \langle f_{n}\}\subset L_{q} .
Now, we shall define an operator T mapping E into L_{q} such that
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Tx= \sum_{n=1}^{\infty}b_{n}x_{n}^{*}(x)f_{n} for x\in E .

Claim (a) : T is (q,p)-absolutely summing.
For each \{x_{i}\}\in 1_{p}(E),

||Tx_{t}||^{q}= \int_{X}|\sum_{n=1}^{\infty}b_{n}x_{n}^{*}(x_{i})f_{n}|^{q}d\mu

= \sum_{n=1}^{\infty}\int_{x_{n}}|b_{n}x_{n}^{\star}(x_{i})|^{q}d\mu

= \sum_{n=1}^{\infty}|b_{n}x_{n}^{*}(x_{i})|^{q}\mu(X_{n})

\leqq C_{2}\sum_{n=1}^{\infty}|b_{n}x_{n}^{*}(x_{i})|^{q}

therefore, we have

\sum_{i=1}^{\infty}||Tx_{i}||^{q}\leqq\sum_{i=1}^{\infty}\sum_{n=1}^{\infty}C_{2}|b_{n}x_{n}^{*}(x_{i})|^{q}

=C_{2} \sum_{n=1}^{\infty}|b_{n}|^{q}\rho_{n,\alpha}<\infty .

That is the assertion.
Next, let g_{i}^{*}(s)=f_{i}(s) for s\in X, then \{g_{i}^{*}\}\subset L_{q^{*}} .
Claim (b): \{g_{i}^{*}\} is weakly q-summable in L_{q^{*}} .
If q=1, then for any g\in(L_{\infty})^{*} , there exists complex sequence \{\alpha_{i}\} such

that |\alpha_{i}|=1 , |g(g_{i}^{*})|=\alpha_{i}g(g_{t}^{*}) .
Therefore, for positive integer N, we have

\sum_{i=1}^{N}|g(g_{i}^{*})|=g(\sum_{i=1}^{N}\alpha_{i}g_{i}^{*})

\leqq||g||_{(L_{\infty})^{*}}’||\sum_{i=1}^{N}\alpha_{i}g_{i}^{*}||_{L_{\infty}}

=||g||_{(L_{\infty})^{*}} .
Thus, we have the assertion.

If q>1 , then L_{q} is reflexive. For any g\in L_{q},

|g(g_{i}^{*})| \leqq\int_{X}|g(s)g_{i}^{*}(s)|d\mu(s)

\leqq(\int_{x_{i}}|g|^{q}d\mu)^{1/q}(\int_{x_{i}}|g_{i}^{*}|^{q^{*}}d\mu)^{1/q^{*}}

\leqq(C_{2})^{1/q^{*}}(\int_{x_{i}}|g|^{q}d\mu)^{1/q}

therefore, we have
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\sum_{i=1}^{\infty}|g(g_{i}^{*}.)|^{q}\leqq(C_{2})^{q/q^{*}}||g||_{L_{q}}^{q}<\infty .

Thus, we have the assertion.
Claim (c): T^{*}g_{i}^{*}=\mu(X_{i})b_{i}x_{i}^{*} .
For any x\in E, it is easily seen that the following:

T^{**}g_{i}(x)=\mu(X_{i})b_{t}x_{i}^{*}(x) .
Thus, we have the assertion.

Finally, if the condition (2) is satisfied, then by claim (a), T^{*} must be
(r, q)-absolutely summing. Therefore, by claim (b) and claim (c), we have

\sum_{n=1}^{\infty}|b_{n}|^{r}<\infty .

That is a contradiction.
(3)\Rightarrow(1) : Let T be a (q,p)-absolutely summing operator mapping E

into F. For any \{y_{n}^{*}\}\in 1_{q}(F^{*}), it is easily seen that

C= \sup\{\sum_{n=1}^{\infty}|y_{n}^{*}(y)|^{q} : ||y||_{F}\leqq 1\}<\infty .

Without loss of generality, we assume that T^{*}y_{n}* is non-zero elements,
and so we put

x_{n}^{*}= \frac{T^{**}y_{n}}{||T^{*}y_{n}|*|} ,

then, ||x_{n}^{*}||=1(n=1,2, \cdots) .
In order to show that \{T^{*}y_{n}^{*}\}\in l_{r}\{E^{*}\} , by the condition (3), it is

sufficient to show that the following (^{*}) :

(^{*}) \sum_{n=1}^{\infty}||T^{**}y_{n}||^{q}\rho_{n,\alpha}<\infty for all \rho_{n,\alpha}

where \rho_{n,\alpha}=\sum_{i=1}^{\infty}|x_{n}^{*}(x_{i})|^{q}, \{x_{i}\}\in l_{p}(E) .

Proof of (^{*}) : \sum_{n=1}^{\infty}||T^{*}y_{n}^{*}||^{q}\rho_{n,\alpha}=\sum_{n=1}^{\infty}||T^{**}y_{n}||^{q}\sum_{i=1}^{\infty}|x_{n}^{*}(x_{i})|^{q}

= \sum_{n=1}^{\infty}\sum_{i=1}^{\infty}|T^{*\star}y_{n}(x_{i})|^{q}

= \sum_{n=1}^{\infty}\sum_{i=1}^{\infty}|y_{n}^{*}(Tx_{i})|^{q}

\leqq C\sum_{i=1}^{\infty}||Tx_{i}||^{q}

from this and the assumptions of T and \{x_{i}\} , we have the assertion.
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Hence, T^{*} is (r, q)-absolutely summing, that completes the proof.
From the above Theorem and Theorem 2.5., we have the following:
THEOREM 3. 2. Let 1\leqq p\leqq q\leqq r<\infty . Then the following conditions

are equivalent.
(1) For all Banach spaces F, \prod_{q,p}(E, F)\subset D_{q^{*},r^{*}}(E, F).
(1)’ For all Banach spaces F, D_{p^{*},q^{*}}(F^{*}, E^{*})\subset\Pi_{r,q}(F^{*}, E^{*}).
(2) II q,p(E, L_{q})\subset D_{q^{*}.r^{*}}(E, L_{q}) .
(2)’ D_{p^{*},q^{*}}(L_{q^{*}}, E^{*})\subset II_{r,q}(L_{q^{1}}, E^{*}) .
Next, by Theorm 2.1. and Theorem 3.1., we have the following main

Theorem.
THEOREM3.3. Let 1\leqq p<\infty . Then the following conditions are

equivalent.
(1) For all Banach spaces F,

if T\in f1p(E, F), then T^{*}\in II_{p}(F^{*}, E^{*}) .
(2) If T\in 11_{p}(E, L_{p}), then T^{*}\in 1I_{p}.(L_{p^{*}}, E^{*}) .
(3) For any \{x_{n}^{*}\}\subset E^{*} with ||x_{n}^{*}||=1(n=1,2, \cdots),

\bigcap_{\tau\epsilon L(F,E)}l_{p}(||T^{*}x_{n}^{*}||^{p})=l_{p}

where if p>1 , F=l_{p^{*}}; if p=1, F=c_{0}(1/p+1/p^{*}=1) .
Proof is easy.
In the above Theorem, if a Banach space E satisfies the condition (3)

(or equivalently (1), (2)), we shall call that E has a (^{*})_{p} conditions
In this sense, it is easily seen that if E^{*} is isomorphic to a subspace

of l_{p}, then E has a (^{*})_{p} conditions More generally, by the Theorem 2.3.
and Theorem 2.4., \mathscr{L}_{p^{*}\lambda} space has a (^{*})_{p}-condition.

In particular, every space of type C(K)(K is a compact Hausdorff
space), every M space in the sence of Kakutani has a (^{*})_{1} conditions and
every L_{p^{*}}(\mu) space has a (^{*})_{p} conditions

Now, by Theorem B and Theorem 3.3, we obtain a characterization of
inner product spaces. That is the following:

THEOREM 3.4. Let E be a Banach space, then the following condi-
tions are equivdent:

(1) E is isomorphic to an inner product space.
(2) For every separable subspace H of E, H is isomorphic to l_{2} .
(3) For any \{x_{n}^{*}\}\subset E^{*} with ||x_{n}^{*}||=1(n=1,2, \cdots),

\bigcap_{\tau\epsilon L(l_{2},E)}l_{2}(||T^{*}x_{n}^{*}||^{2})=l_{2} .
Proof is easy.
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\S 4. Application

In this section, as an application of a Banach space E which satisfies
a (^{*})_{p}-conditions, we shall give the Sazonov’s theorem concerning Gaussian
measure. (For details, c.f. [10], [11], [12])

THEOREM 4.1. Let E be a Banach space which satisfifies a(^{*})_{p}-condi-
tions for 1\leqq p\leqq 2, and let \mu be a Gaussian measure on E^{*} . Then, the fol-
lowing conditions are equivalent:

(1) \mu is countably additive.
(2) \mu is continuous relative to the Hilbert-Schmidt topology.
Proof is omitted.
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