On balanced projectives and injectives over linearly compact rings

By Takeshi ONODERA

Dedicated Professor Kiiti Morita on his 60th birthday (Received September 19, 1975)

Introduction

Let $_{\mathbb{R}}M$ be a left R-module over a ring $\mathbb{R}^{(1)}$ and C be the biendomorphism ring of $_{\mathbb{R}}M$. Then there exists a canonical ring homomorphism δ of R into C which is defined by $\delta(r)(m) = rm$, $r \in \mathbb{R}$, $m \in M$. $_{\mathbb{R}}M$ is called balanced if δ is an epimorphism. It is shown that Morita-Suzuki's criterion²⁾ for δ to be an isomorphism is easily generalized for modules from the view point of reflexivity. Thus we have the following

THEOREM (THEOREM 1). Let R, S be two rings. Let $_{R}X$ be a left R-module and $_{R}Z_{s}$ be a two-sided R-S-module. Then the following statements are equivalent:

- (1) $_{R}X$ is Z-reflexive.
- (2) (i) The Z-dual of $_{R}X$ is Z-reflexive
 - (ii) There exists an exact sequence of left R-modules

 $0 \to X \to \Pi Z \to \Pi Z,$

where ΠZ 's denote the direct products of copies of Z, though the index sets are generally different³).

Let $_{R}P$ be a finitely generated projective module and $_{R}Q$ be an injective module with essential socle such that each simple homomorphic image of $_{R}P$ is isomorphic to a submodule of $_{R}Q$ and each simple submodule of $_{R}Q$ is a homomorphic image of $_{R}P$. Let S and T be the endomorphism ring of $_{R}P$ and $_{R}Q$, respectively. Then the left S-module $_{S}Hom_{R}(P,Q)$ is an injective cogenerator with the endomorphism ring T, and the Hom_R (P,Q)-dual of $_{S}P^* = Hom_{R}(P,R)$ is isomorphic to Q_{T}^{4} . It is shown that

¹⁾ In what follows we assume that all rings have an identity element and all modules are unital.

²⁾ Cf. [5].

³⁾ That is, Z-dominant dimension of $X \ge 2$ in the terminology of [5].

⁴⁾ See Lemma 3 and Theorem 1, [8]. There one can easily replace cofinitely generated injectiveness for RQ by injectiveness with essential socle, as T. Kato pointed out to the author.

 ${}_{s}P^{*}$ is $\operatorname{Hom}_{R}(P, Q)$ -reflexive if and only if ${}_{R}Q$ satisfies the F_{h} -condition⁵, that is, $\operatorname{Hom}_{R}(C, Q)$ is canonically isomorphic to Q, C being the biendomorphism ring of ${}_{R}Q$ (Theorem 2). Thus, in this case, the endomorphism rings of ${}_{s}P^{*}$ and Q_{T} are isomorphic (Corollary to Theorem 2).

Let R be a left linearly compact ring. Then it is shown that every injective left R-module with essential socle satisfies the F_{h} -condition (Theorem 3).

As an application of our considerations, we obtain the following theorem which generalizes the results in [3].

THEOREM (THEOREM 4). Let R be a left linearly compact ring. Then the following statements are equivalent:

- (1) Every (faithful) finitely generated projective right R-module is balanced.
- (2) Every (faithful) projective right R-module with small radical is balanced.
- (3) Every (faithful) cofinitely generated injective left R-module is balanced.
- (4) Every (faithful) injective left R-module with essential socle is balanced.

§1. Regular pairing of modules and endomorphism rings

Let R, S be rings and $_{R}X$, $_{R}Z_{s}$, Y_{s} be left R-, two-sided R-S-, right S-modules, respectively. Suppose that there is a bilinear mapping $X \times Y \rightarrow (,) \in \mathbb{Z}$ which satisfies the following condition:

(x, y)=0 for all $x \in X$ implies y=0, and (x, y)=0 for all $y \in Y$ implies x=0.

We call such a pairing a regular pairing. In this case there is a canonical monomorphism $\varphi(\phi)$ of X(Y) into $\operatorname{Hom}_{\mathcal{S}}(Y, Z)(\operatorname{Hom}_{\mathcal{R}}(X, Z))$ which is defined by $\varphi(x)(y) = (x, y)(\varphi(y)(x) = (x, y))$ for $x \in X, y \in Y$.

LEMMA 1. If both φ and ψ are isomorphisms, then the endomorphism rings of _RX and Y_s are isomorphic.

PROOF. 1. Let t be an endomorphism of $_{\mathcal{R}}X$. Then, by assumption, t defines an (unique) endomorphism \hat{t} of Y_s by

$$(x, \hat{t}y) = (xt, y), \quad x \in X, y \in Y.$$

Similarly each endomorphism \hat{t} of Y_s defines an (unique) endomorphism t of $_RX$ by the above relation. This proves our lemma.

⁵⁾ Cf. [5].

§2. A reflexivity condition for modules

Let $_{R}X$ be a left *R*-module and $_{R}Z_{s}$ be a two-sided *R*-S-module. We denote the Z-dual of $_{R}X$ by $X^{*} := \operatorname{Hom}_{R}(X, Z)$, which is considered as a right S-module. Further by X^{**} , X^{***} we denote the Z-dual of X_{s}^{*} , The Z-dual of $_{R}X^{**}$, respectively: $X^{**} = \operatorname{Hom}_{S}(X^{*}, Z)$, $X^{***} = \operatorname{Hom}_{R}(X^{**}, Z)$. Then there exists a natural homomorphism δ_{x} of X into X^{**} which is defined by

$$\delta_{\mathbf{X}}(x)(f) = f(m)$$
 for $x \in X$, $f \in X^*$.

When δ_x is an isomorphism (a monomorphism), X is called Z-reflexive (Z-torsionless).

THEOREM 1. The following statements are equivalent:

- (1) $_{R}X$ is Z-reflexive
- (2) (i) X_s^* is Z-reflexive
 - (ii) There exists an exact sequence of left R-modules $0 \rightarrow X \rightarrow \Pi Z \rightarrow \Pi Z$.

where ΠZ 's denote the direct products of copies of Z, though the index sets are generally different.

PROOF. (1) \Rightarrow (2). As is easily verified we have $\delta_X^* \delta_{X^*} = 1_{X^*}$, where $\delta_X^* = \operatorname{Hom}(\delta_X, 1_Z): X^{***} \to X^*$. Since δ_X is an isomorphism, δ_X^* , whence δ_{X^*} is an isomorphism. Thus X^* is Z-reflexive. Let $F_1 \to F_2 \to X^* \to 0$ be an exact sequence of right S-modules, where F_1, F_2 are free right S-modules. Then we have the exact sequence of left R-modules $0 \to X^{**} \to \operatorname{Hom}_S(F_2, Z) \to \operatorname{Hom}_S(F_1, Z)$. Since X is Z-reflexive and $\operatorname{Hom}_S(F_i, Z), i=1, 2$, are isomorphic to direct products of copies of Z, this proves the assertion (ii).

 $(2) \Rightarrow (1)$. From the exact sequece $0 \rightarrow X \rightarrow \Pi Z \rightarrow \Pi Z$, we have the following commutative diagram with exact rows:

$$\begin{array}{ccc} 0 \to \operatorname{Hom}_{R}(X^{**}, X) \to \Pi \operatorname{Hom}_{R}(X^{**}, Z) \to \Pi \operatorname{Hom}_{R}(X^{**}, Z) \\ \operatorname{Hom}\left(\delta_{X}, 1_{X}\right) & & \Pi \delta_{X}^{*} & & \Pi \delta_{X}^{*} \\ 0 \to \operatorname{Hom}_{R}(X, X) & \to \Pi \operatorname{Hom}_{R}(X, Z) & \to \Pi \operatorname{Hom}_{R}(X, Z) \,. \end{array}$$

Since, by assumption, $\delta_{X'}$, whence δ_X^* is an isomorphism, $\Pi \delta_X^*$'s are isomorphisms. It follows that $\operatorname{Hom}(\delta_X, 1_X)$ is an isomorphism. Let φ be an element of $\operatorname{Hom}_{\mathcal{R}}(X^{**}, X)$ such that $\varphi \cdot \delta_X = 1_X$. Then φ is an epimorphism, and $\delta_X^* \varphi^* = 1_{X^*}$, where $\varphi^* = \operatorname{Hom}(\varphi, 1_Z)$. Since δ_X^* is an isomorphism, together with the relation $\delta_X^* \delta_{X^*} = 1_{X^*}$, we have $\varphi^* = \delta_{X^*}$. Let $g \in X^{**}$ such that $\varphi(g) = 0$. Then we have $f(\varphi(g)) = 0$ for all $f \in X^*$. But $\{f \varphi = \varphi^*(f) | f \in X^*\} = \{\delta_{X^*}(f) | f \in X^*\}$

 $f \in X^* \} = X^{***}$, because δ_{X^*} is an isomorphism. Since X^{**} is, as the Z-dual of X^* , Z-torsionless, it follows that g=0. Thus φ is a monomorphism, whence an isomorphism. It follows that δ_X is an isomorphism, that is, $_{R}X$ is Z-reflexive.

Let $_{R}M$ be a left *R*-module, *S* the endomorphism ring of $_{R}M$, and, *C* be the endomorphism ring of the right *S*-module M_{S} . Then by setting $_{R}X = _{R}R$, $_{R}Z_{S} = _{R}M_{S}$ in Theorem 1 we have the following

COROLLARY (Morita-Suzuki). The following statements are equivalent: (1) $_{R}M$ is faithfull and balanced

- (2) (i) $Hom_R(C, M)$ is isomorphic to M under the mapping $Hom_R(C, M) \ni f \rightarrow f(1) \in M$.
 - (ii) There exists an exact sequence of left R-modules:

 $0 \rightarrow R \rightarrow \Pi M \rightarrow \Pi M$, that is,

M-dominant dimension of $_{R}R \ge 2$.

The condition (i) in (2) is called the F_{h} -condition for $_{R}M$.

§3. Generalized RZ-pairs

Let $_{R}P$ be a finitely generated projective module and $_{R}Q$ be an injective module with an essential socle. We call the pair $\{P, Q\}$ forms a generalized RZ-pair if every simple homomorphic image of $_{R}P$ is isomorphic to a submodule of $_{R}Q$, and, every simple submodule of $_{R}Q$ is a homomorphic image of $_{R}P$.

LEMMA 2. Let $\{P, Q\}$ forms a generalized RZ-pair and S, T be the endomorphism rings of $_{R}P$, $_{R}Q$, respectively. Then the left S-module $_{s}Hom_{R}$ (P, Q) is an injective cogenerator and the endomorphism ring of $_{s}Hom_{R}$ (P, Q) is naturally isomorphic to T. Further, the $Hom_{R}(P, Q)$ -dual of $_{s}P^{*}$ is isomorphic to Q_{T} , where P^{*} is the R-dual of $P_{R}: P^{*} = Hom_{R}(P, R)$.

PROOF. The first assertion follows from Theorem 1, [9], while the latter assertions follows from Lemma 2, [9].

THEOREM 2. Under the same assumptions as in Lemma 2, the following statements are equivalent:

- (1) ${}_{s}P^{*}$ is $Hom_{R}(P, Q)$ -reflexive
- (2) $_{R}Q$ satisfies the F_{h} -condition
- (3) Q_T is $Hom_R(P, Q)$ -reflexive.

PROOF. Let C be the endomorphism ring of Q_T . The Hom_R(P, Q)-

dual of Q_r , $\operatorname{Hom}_r(Q, \operatorname{Hom}_R(P, Q))$ is isomorphic to $\operatorname{Hom}_R(P, Q)^{6}$, and, the $\operatorname{Hom}_R(P, Q)$ -dual of ${}_{\mathcal{S}}\operatorname{Hom}_R(P, C)$ is $\operatorname{Hom}_{\mathcal{S}}(\operatorname{Hom}_R(P, C), \operatorname{Hom}_R(P, Q))$, which is isomorphic to $\operatorname{Hom}_R(C, Q)$ by Lemma 2, [9]. Thus we see that Q_r is $\operatorname{Hom}_R(P, Q)$ -reflexive if and only if ${}_{\mathcal{R}}Q$ satisfies the F_{h} -condition. This proves the equivalence (2) \iff (3).

On the other hand, since ${}_{s}\operatorname{Hom}_{R}(P, Q)$ is an injective cogenerator and Q_{r} is the $\operatorname{Hom}_{R}(P, Q)$ -dual of ${}_{s}P^{*}$, we see that ${}_{s}P^{*}$ is $\operatorname{Hom}_{R}(P, Q)$ -reflexive if and only if Q_{r} is $\operatorname{Hom}_{R}(P, Q)$ -reflexive by Theorem 1. This implies the equivalence $(1) \rightleftharpoons (3)$.

COROLLARY. If one of the equivalence conditions in Theorem 2 is satisfied, then P_R^* is balanced if and only if $_RQ$ is balanced.

PROOF. Since $_{R}P$ is finitely generated projective, the endomorphism ring of P_{R}^{*} is isomorphic to S^{7} . Consider the regular pairing of $_{s}P^{*}$ and Q_{r} in $_{s}\operatorname{Hom}_{R}(P, Q)_{r}$ which is defined by

$$(f, q)(p) = f(p) q, f \in P^*, q \in Q, p \in P.$$

This is a regular pairing by Lemma 3, [9]. Further, by assumption, ${}_{s}P^{*}$, Q_{r} are the Hom_R(P, Q)-dual of each others. The corollary follows then direct from Lemma 1.

§ 4. Injective modules with essential socles over linearly compact rings.

Let $_{R}M$ be a left *R*-module. $_{R}M$ is called linearly compact if every finitely solvable system of congruences

$$x \equiv m_{\alpha} \pmod{\mathscr{U}_{\alpha}}, \ \alpha \in I,$$

is solvable, where m_{α} 's are elements of RM, \mathcal{U}_{α} 's are submodules of RM, and I is an index set. A ring R is called left (right) linearly compact if $RR(R_R)$ is linearly compact. It is known that a one-sided linearly compact ring is a semi-perfect ring⁸.

LEMMA 3. Let R be a left linearly compact ring and $_{R}Q$ be a quasiinjective left R-module with an essential socle. Let S be the endomorphism ring of $_{R}Q$. For every natural number n, we define the bilinear mapping [,] of $R^{(n)} \times Q^{(n)}$ into $_{R}Q_{S}$ by $[(r_{1}, \dots, r_{n}), (q_{1}, \dots, q_{n})] = \sum_{i=1}^{n} r_{i} q_{i} \in Q$, where $R^{(n)}$,

8) Cf. [7], Corolloary to Theorem 5.

⁶⁾ Cf. [1], p. 32, Exercise 4.

⁷⁾ Cf. [6], Folgerung 2, Beweis.

T. Onodera

 $Q^{(n)}$ are the direct sums of n-copies of R, Q, respectively. Then for every S-submodule \mathscr{U} of $Q^{(n)}$, we have Ann $_{Q^{(n)}}(Ann_{R^{(n)}}(\mathscr{U})) = \mathscr{U}$, where, as usual, $Ann_{Y}(X)$ denotes the annihilator of X in Y. with respect to the given bilinear mapping⁹⁾.

PROOF. Let $q = (q_1, \dots, q_n)$ be an element of Ann $_{Q^{(n)}}(Ann_{R^{(n)}}(\mathcal{U}))$. Then we have Ann $_{R^{(n)}}(q) \supseteq Ann_{R^{(n)}}(\mathcal{U}) = \bigcap_{u \in \mathcal{U}} Ann_{R^{(n)}}(u)$. Since $R^{(n)}/Ann_{R^{(n)}}(q)$ is *R*-isomorphic to the submodule $[R^{(n)}, q]$ of Q, which is, as a homomorphic image of $R^{(n)}$, linearly compact¹⁰, whence cofinitely generated¹¹, there exists a finite number of elements u_1, \dots, u_t of \mathcal{U} such that Ann $_{R^{(n)}}(q) \supseteq \bigcap_{i=1}^{t} Ann_{R^{(n)}}(u_i)$. Let $X = \{([r, u_1], \dots, [r, u_t]) | r \in R^{(n)}\}$ and define the well defined *R*-homomorphism φ of *X* into $Q^{(n)}$:

$$X \ni ([r, u_1], \cdots, [r, u_t]) \xrightarrow{\varphi} [r, q] \in Q.$$

Since $_{R}Q$ is quasi-injective, φ is extended to an *R*-homomorphism of $Q^{(n)}$ into Q. Thus there exist elements s_{1}, \dots, s_{n} of S such that $[r, q] = [r, \sum_{i=1}^{t} u_{i} s_{i}]$ for all $r \in R^{(n)}$, and, from which we have $q = \sum_{i=1}^{t} u_{i} s_{i} \in \mathcal{U}$.

THEOREM 3. Let $_{R}Q$ be an injective left R-module with an essential socle over a left linearly compact ring R. Let S be the endomorphism ring of $_{R}Q$ and C the endomorphism ring of Q_{s} . Then Q is isomorphic to $Hom_{R}(C, Q)$ under the mapping $Hom_{R}(C, Q) \ni f \rightarrow f(1)$, that is, $_{R}Q$ satisfies the F_{h} -condition. Further, the left C-module $_{C}Q$ is injective.

PROOF. Let $f \in \operatorname{Hom}_{\mathcal{R}}(C, Q)$. Then for each $c \in C$, we have $f(c) \in cQ$. Because if $f(c) \in cQ$ then by Lemma 3 there exists an element $r \in R$ such that rcQ=0, rf(c)=0. But this is a contradiction. Let $f(c)=cq_c$, $c \in C$, $q_c \in Q$. Then again by Lemma 3 we see that the system of congruences,

$$x \equiv q_c \pmod{\operatorname{Ann}_Q(c)}, \quad c \in C$$

is finitely solvable. Since Q_s is linearly compact¹², there exists an element $q_0 \in Q$ such that $q_0 \equiv q_c \pmod{\operatorname{Ann}_Q(c)}$ for all $c \in C$. This implies that $cq_0 = f(c)$, $c \in C$, and, from which it is easy to see that $_RQ$ satisfies the F_h -condition. The last assertion is also proved in a similar way.

⁹⁾ Cf. [8], Proposition 4.

¹⁰⁾ Cf. [7], Proposition 8.

¹¹⁾ Cf. [7], Proposition 3.

¹²⁾ Cf. [8], Proposition 4.

§5. An application

As an application of our considerations we have the following

THEOREM 4. Let R be aleft linearly compact ring. Then the following statements are equivalent:

- (1) Every (faithful) finitely generated projective right R-module is balanced.
- (2) Every (faithful) projective right R-module with small radical is balanced.
- (3) Every (faithful) cofinitely generated injective left R-module is balanced.
- (4) Every (faithful) injective left R-module with essential socle is balanced.

PROOF. It is obvious that (2) implies (1) and (4) implies (3). $(1) \Rightarrow (2)$. Let P_R be a (faithful) projective right R-module with small radical. P_R is isomorphic to $\bigoplus_{\alpha \in A} e_{\alpha} R$, where e_{α} 's are primitive idempotents of R. Let $e_{\alpha_1}R, \cdots, e_{\alpha_t}R$ be a complete set of representatives of non-isomorphic modules of $\{e_{\alpha} R ; \alpha \in \Lambda\}$. Then $P_0 = \bigoplus_{i=1}^{r} e_{\alpha_i} R$, is a (faithful) finitely generated projective module and $P=P_0 \oplus P_1$, where P_0 generates and cogenerates P_1 . Our assertion follows then from Lemma, [3]. (3) \Rightarrow (1). Let P_R be a (faithful) finitely generated projective right R-module, and, S be the endomorphism ring of P_R . Let $_RQ$ be a cofinitely generated injective left R-module such that $\{{}_{R}P^*, {}_{R}Q\}$ forms an RZ-pair¹³. In this case, if P_{R} is faithful, then ${}_{R}Q$ is also faithful¹⁴). Our assertion follows then from Corollary to Theorem 2, because P_R is R-reflexive and $_RQ$ is balanced. (1) \Rightarrow (3). Let $_RQ$ be a (faithful) injective left R-module with essential socle. Let $_{R}P$ be a finitely generated projective left R-module such that $\{RP, RQ\}$ forms a generalized RZ-pair. In this case, if $_{R}Q$ is faithful, then P_{R}^{*} is also faithful. Further, the endomorphism ring of P_R^* is isomorphic to that of $_RP$ because $_RP$ is finitely generated projective. Since, by Theorem 3, $_{RQ}$ satisfies the F_{h} condition, our assertion follows also from Corollary to Theorem 2.

COROLLARY¹⁵⁾. Let R be a left artinian ring. Then the following statements are equivalent:

15) Cf. [3].

¹³⁾ Cf. [8], §2.

¹⁴⁾ Cf. [8], Lemma 3.

T. Onodera

- (1) Every (faithful) finitely generated projective right R-module is balanced.
- (2) Every (faithful) projective right R-module is balanced.
- (3) Every (faithful) cofinitely generated injective left R-module is balanced.
- (4) Every (faithful) injective left R-module is balanced.

Addendum :

Recently K. Morita has sent the author his unpublished manuscript titled "Localization in category of modules IV", where one can see that our Theorem 1 is also obtained independently.

References

- [1] H. CARTAN and S. EILENBERG: Homological algebra, Princeton (1956).
- [2] K. R. FULLER: On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115-135.
- [3] K. R. FULLER: Double centralizers of injectives and projectives over artinian rings, Illinois J. Math. 14 (1970), 658-664.
- [4] T. KATO: U-distinguished modules, J. Algebra 25 (1973), 15-24,
- [5] K. MORITA: Quotient rings, Ring Theory, Academic Press (1972), 275-285.
- [6] T. ONODERA: Ein Satz über koendlich erzeugte RZ-Moduln, Tohoku Math. J. Vol. 23 (1971), 691-695.
- [7] T. ONODERA: Linearly compact modules and cogenerators, J. Fac. Sci., Hokkaido Univ., Ser. I. No. 3, 4 (1972), 116-125.
- [8] T. ONODERA: Linearly compact modules and cogenerators II, Hokkaido Math. J. Vol. II, No 2 (1973), 243-251.
- [9] H. TACHIKAWA: Quasi-Frobenius rings and generalizations, Lecture Notes in Mathematics, 351 Springer (1973).

Department of Mathematics, Hokkaido University

256