
Q-connections and their changes on an
almost quaternion manifold

By Shigeyoshi FUJIMURA
(Received September 16, 1975)

Affine connections of certain types on an almost quaternion manifold
were studied by M. Obata ([9], [10]), and the existence of affine connections
such that the almost quaternion structure is covariantly constant with
respect to their connections, the transformations preserving the almost
quaternion structure, and so forth were discussed. Recently, S. Ishihara
([6]) has defined the quaternion K\"ahlerian manifold by using the tensor
calculus, and interesting results have been obtained by several authors ([1],
[2], [3], [4], [6], [7], [8], [12] ).

In the present paper, we shall define Q-connections satisfying the
condition which the Riemannian connection on the quaternion K\"ahlerian

manifold is imposed on, and show the existence of Q-connections and the
change of Q-connections preserving the Q-projective curvature tensor field
which is analogous to the H-projective change ([5], [11], [14]).

Throughout this paper, we assume that manifolds, fields and connec-
tions are differentiable and of class C^{\infty}, the indices a, b, c, \cdots,j, k, l run over
the range \{1, \cdots, n\} and the summation convension will be used.

\S 1. Q-connections.

Let M be a manifold of dimension n(=4m), and assume that there is
a 3-dimensional vector bundle V consisting of tensors of type (1, 1) over
M satisfying the following condition:

In any coordinate neighborhood of M, there is a local base \{F, G, H\}

of V such that

(1. 1) \{

F^{2}=G^{2}=H^{2}=-I ,

FG=-GF=H,\cdot GH=-HG=F , HF=-FH=G ,

where we denote by I the identity tensor field of type (1, 1) on M. Then,
the bundle V is called an almost quaternion structure on M, and (M, V)
an almost quaternion manifold. From now on, we shall discuss in the
local and use this local base \{F, G, H\} of V, whose local components are
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denoted by F_{i}^{h} , G_{i}^{h} and H_{i}^{h} respectively. Then, (1.1) is written in the form

(1. 2)

’

F_{a}^{h}F_{i}^{a}=G_{a}^{h}G_{i}^{a}=H_{a}^{h}H_{i}^{a}=-I_{i}^{h} ,

F_{a}^{h}G_{i}^{a}=-G_{a}^{h}F_{i}^{a}=H_{i}^{h},\cdot G_{a}^{h}H_{i}^{a}=-H_{a}^{h}G_{i}^{a}=F_{i}^{h} ,

-

H_{a}^{h}F_{i}^{a}=-F_{a}^{h}H_{i}^{a}=G? ,

where I_{i}^{h} denote local components of I.
Let \Gamma be an affine connection on an almost quaternion manifold (M, V),

which will be called a Q-connection if it satisfies the following condition:

(1. 3)

JF_{ijf}^{h}= G_{i}^{h}\alpha_{f}-H_{i}^{h}\beta_{f} ,

G_{ijf}^{h}=-F_{i}^{h}\alpha_{f} +H_{i}^{h}\gamma_{f} ,

. H_{ijf}^{h}= F_{i}^{h}\beta_{f}-G_{i}^{h}\gamma_{f} ,

where the symbol “ ;” denotes the operator of covariant differentiation with
respect to \Gamma, and \alpha_{i} , \beta_{i} and \gamma_{i} are certain 1-forms. In particular, an affine
connection \Gamma will be called a V-connection if F, G and H are all covariantly
constant with respect to \Gamma . It follows that \Gamma is a Q connection if and
only if, for a cross-section \phi_{i}^{h} of the bundle V and an arbitrary vector field
u^{h} , \phi_{ijf}^{h}u^{f} is also a cross-section of V, and it is equivalent that, when we put

(1. 4) A_{if}^{hk}=I_{i}^{h}I_{f}^{k}-F_{i}^{h}F_{f}^{k}-G_{i}^{h}G_{f}^{k}-H_{i}^{h}H_{f}^{k} .
A_{if}^{hk} is covariantly constant with respect to its connection (cf. [6]).

M. Obata ([9]) proved that, in an almost quaternion manifold with an
affine connection, there always exists a V-connection. First of all, we shall
show the existence of Q-connections including V-connections: Let \Gamma=(\Gamma_{if}^{h})

and F =([mathring]_{if}_{\Gamma}^{h}) be affine connections on an almost quaternion manifold (M, V),

where \Gamma_{if}^{h} and [mathring]_{if}_{\Gamma}^{h}. are coefficients of \Gamma and [mathring]_{\Gamma} respectively, and assume
that \Gamma is a Q-connection satisfying (1.3). When we denote by the symbols
“ ;” and “

|

” the operators of covariant differentiation with respect to \Gamma

and [mathring]_{\Gamma} respectively, from (1. 3), we have

(1. 5) F_{i}^{a}S_{af}^{h}-F_{a}^{h}S_{if}^{a}=G_{i}^{h}\alpha_{f}-H_{i}^{h}\beta_{f}-F_{i|f}^{h} ,

(1. 6) G_{i}^{a}S_{af}^{h}-G_{a}^{h}S_{if}^{a}=-F_{i}^{h}\alpha_{f}+H_{i}^{h}\mathcal{T}_{f}-G_{i|f}^{h} ,

(1. 7) H_{i}^{a}S_{af}^{h}-H_{\alpha}^{h}S_{if}^{a}=F_{i}^{h}\beta_{f}-G_{i}^{h}\mathcal{T}_{f}-H_{i|f}^{h} ,

where S_{if}^{h}=\Gamma_{if}^{h}-[mathring]_{if}_{\Gamma}^{h} . Transvecting (1. 5), (1. 6) and (1. 7) with F_{h}^{k} , G_{h}^{k} and
H_{h}^{k} respectively, and summing them, we have

(1. 8) S_{if}^{k}-A_{bi}^{ka}S_{af}^{b}/4=-(F_{a}^{k}F_{i|f}^{a}+G_{a}^{k}G_{i|f}^{a}+H_{a}^{k}H_{i|f}^{a})/4

+(F_{i}^{k}\mathcal{T}_{f}+Gf\beta_{f}+H_{i}^{k}\alpha_{f})/2\tau
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Now, for an affine connection [mathring]_{\Gamma} and arbitrary 1-forms \alpha_{i} , \beta_{i} , \gamma_{i} on
(M, V), when we put

\Gamma_{if}^{h}=[mathring]_{if}_{\Gamma}^{h}-(F_{a}^{h}F_{i|f}^{a}+G_{a}^{h}G_{i|f}^{a}+H_{a}^{h}H_{i|f}^{a})/4

+(F_{i}^{h}\gamma_{f}+G_{i}^{h}\beta_{f}+H_{i}^{h}\alpha_{f})/2 ,

then, \Gamma_{if}^{h} satisfies (1. 8), and we have
F_{ijf}^{h}=3F_{i|f}^{h}/4-(F_{b}^{h}F_{i}^{a}F_{a|f}^{b}+G_{b}^{h}F_{i}^{a} G_{a|f}^{b}+H_{b}^{h}F_{i}^{a}H_{a|f}^{b})/4

+H_{a}^{h}G_{i\downarrow f}^{a}/4-G_{a}^{h}H_{i|f}^{a}/4+G_{i}^{h}\alpha_{f}-H_{i}^{h}\beta_{f}

=3F_{t1J}^{h}/4+F_{d}^{h}F_{a}^{b}F_{i|f}^{a}/4-G_{b}^{h}\{(F_{i}^{a}G_{a}^{b})_{1J}-F_{i|f}^{a}G_{a}^{b}\}/4

-H_{b}^{h}\{(F_{i}^{a}H_{a}^{b})_{IJ}-F_{tIJ}^{a}H_{a}^{b}\}/4+H_{a}^{h}G_{i|f/}^{a}4

-G_{a}^{h}H_{i|f}^{a}/4+G_{i}^{h}\alpha_{f}-H_{i}^{h}\beta_{f}

=G_{i}^{h}\alpha_{f}-H_{i}^{h}\beta_{f} .
Similarly, we have

G_{ijf}^{h}=-F_{i}^{h}\alpha_{f}+H_{t^{h}}\gamma_{f} and H_{ijf}^{h}=F_{i}^{h}\beta_{f}-G_{i}^{h}\gamma_{f} .
Therefore, we can obtain

THEOREM 1. In an almost quaternion manifold with an affine con-
nection, there always exist Q-connections.

\S 2. Q-projective changes.

We now consider an almost quaternion manifold (M, V) with an affine
connection \Gamma=(\Gamma_{if}^{h}) and the curve x^{h}=x^{h}(t) in (M, V) satisfying the ordinary
differential equations

(2. 1) \frac{d^{2}x^{h}}{dt^{2}}+\Gamma_{ab}^{h}\frac{dx^{a}}{dt}\frac{dx^{b}}{dt}

=( \varphi_{1}(t)I_{a}^{h}+\varphi_{2}(t)F_{a}^{h}+\varphi_{3}(t)G_{a}^{h}+\varphi_{4}(t)H_{a}^{h})\frac{dx^{a}}{dt}

where \omega_{\alpha}(t)(\alpha=1, \cdots, 4) are certain functions of the parameter t, and we
will call such a curve a Q-planar curve. It follows that there exists uniquely
a Q-planar curve through an arbitrary point P of M such that the curve
has an arbitrary tangent vector at P as the vector tangent to the curve at
P. And we see from (2.1) that, for a Q connection \Gamma, a curve x^{h}=x^{h},(t) is
a Q-planar curve if and only if the 4-plane spanned by four vector fields
\frac{dx^{h}}{dt} , F_{a}^{h} \frac{dx^{a}}{dt} , G_{a}^{h} \frac{dx^{a}}{dt} and H_{a}^{h} \frac{dx^{a}}{dt} is parallel along the curve itself. The
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following theorem is obvious.

THEOREM 2. In an almost quaternion manifold, affine connections
\Gamma=(\Gamma_{if}^{h}) and \overline{\Gamma}=(\overline{\Gamma}_{if}^{h}) have all Q-planar curves in common if there exists
1-forms \eta_{i} , \lambda_{i} , \mu_{i} and \nu_{i} satisfying

(2. 2) S_{(if)}^{h}/2=\eta_{(i}I_{f)}^{h}+\lambda_{(i}F_{f)}^{h}+\mu_{(i}G_{f)}^{h}+\nu_{(i}H_{f)}^{h} ,

where S_{if}^{h}=\overline{\Gamma}_{if}^{h}-\Gamma_{if}^{h} and T_{(if)}=(T_{if}+T_{fi})/2 for an arbitrary tmsor field T_{if} .
We seem that the converse of Theorem 2 is true. But its proof by

means of the calculation analogous to one of H-projective changes (Appen-
dix in [13] ) is too complicated. Now we will call affine connections \Gamma and
\dot{\overline{\Gamma}} to be Q-projectively related to each other if there exist 1-form \eta_{i} , \lambda_{i} , \mu_{i}

and \nu_{i} satisfying (2. 2).

THEOREM 3. The symmetric Q connections \Gamma=(\Gamma_{if}^{h}) and \overline{\Gamma}=(\overline{\Gamma}_{if}^{h}) are
Q-projectively related to each other if and only if there exists a 1-form \eta_{i}

such that

(2. 3) \overline{\Gamma}_{if}^{h}=\Gamma_{if}^{h}+2\eta_{(i}I_{f)}^{h}-2\eta_{a}F_{(i}^{a}F_{f)}^{h}-2\eta_{a}G_{(i}^{a}G_{f)}^{h}-2\eta_{a}H_{(i}^{a}H_{f)}^{h}

=\Gamma_{if}^{h}+2A_{(if)}^{ha}\eta_{a} .
PROOF. When the symmetric Q connections \Gamma and \overline{\Gamma.} are Q-projectively

related to each other, from (1. 3) and (2. 2), we have

(2. 4) (\overline{\alpha}_{f}-\alpha_{f}-2\nu_{f})G_{i}^{h}-(\overline{\beta}_{f}-\beta_{j}-2\mu_{J})H_{i}^{h}

=(\eta_{a}F_{i}^{a}+\lambda_{i})I_{f}^{h}+(\lambda_{a}F_{i}^{a}-\eta_{i})F_{f}^{h}

+(\mu_{a}F_{i}^{a}+\nu_{i})G_{f}^{h}+(\nu_{a}F_{i}^{a}-\mu_{i})H_{J\prime}^{h}.
(2. 5) (\overline{r}_{f}-r_{f}-2\lambda_{f})H_{i}^{h}-(\overline{\alpha}_{f}-\alpha_{f}-2\nu_{f})F_{i}^{h}

=(\eta_{a}G_{i}^{a}+\mu_{i})I_{f}^{h}+(\lambda_{a}G_{i}^{a}-\nu_{i})F_{f}^{h}

+(\mu_{a}G_{i}^{a}-\eta_{i})G_{f}^{h}+(\nu_{a}G_{i}^{a}+\lambda_{i})H_{f}^{h} ,

(2. 6) (\overline{\beta}_{f}-\beta_{f}-2\mu_{d})F_{i}^{h}-(\overline{\mathcal{T}}_{f}-\mathcal{T}_{f}-2\lambda_{f})G_{i}^{h}

=(\eta_{a}H_{i}^{a}+\nu_{i})I_{f}^{h}+(\lambda_{a}H_{i}^{h}+\mu_{i})F_{f}^{h}

+(\mu_{a}H_{i}^{a}-\lambda_{i})G_{f}^{h}+(\nu_{a}H_{i}^{a}-\eta_{i})H_{J\prime}^{h}.

where quantities with bar (without bar, resp.) denote quantities with respect
to \overline{\Gamma} (with repect to \Gamma, resp.) Transvecting (2. 4) with G_{h}^{i}, (2. 5) with H_{h}^{i}

and (2. 6) with F_{h}^{i} respectively, we have

(2. 7) 0_{f}^{\overline{J}}-\alpha_{f}-2\nu_{f}=-2(\eta_{a}H_{f}^{a}+\lambda_{a}G_{j}^{a}--\mu_{a}F_{f}^{a}--\nu_{f})/n ,
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(2. 8) \overline{\gamma}_{f}-\gamma_{f}-2\lambda_{f}=-2(\eta_{a}F_{f}^{a}-\lambda_{f}+\mu_{a}H_{f}^{a}-\nu_{a}G_{f}^{a})/n ,

(2. 9) \overline{\beta}_{f}-\beta_{f}-2\mu_{J}=-2(\eta_{a}G_{f}^{a}-\lambda_{a}H_{f}^{a}-\mu_{J}+\nu_{a}F_{f}^{a})/n1

On the other hand, contracting (2.4), (2.5) and (2.6) with respect to indices
h and j respectively, we have
(2. 10) (\overline{\alpha}_{a}-\alpha_{a}-2\nu_{a})G_{t}^{a}-(\overline{\beta}_{a}-\beta_{a}-2\mu_{a})H_{i}^{a}=n(\eta_{a}F_{t}^{a}+\lambda_{i}) ,

(2. 11) (\overline{\mathcal{T}}_{a}-\mathcal{T}_{a}-2\lambda_{a})H_{i}^{a}-(\overline{\alpha}_{a}-\alpha_{a}-2\nu_{a})F_{i}^{a}=n(\eta_{a}G_{i}^{a}+\mu_{i}) ,

(2. 12) (\overline{\beta}_{a}-\beta_{a}-2\mu_{a})F_{i}^{a}-(\overline{\gamma}_{a}-\gamma_{a}-2\lambda_{a})G_{i}^{a}=n(\eta_{a}H_{i}^{a}+\nu_{i}) .
Transvecting (2. 10) with G_{f}^{i} and (2. 11) with F_{f}^{i} respectively, we have
(2. 13) (\overline{\beta}_{a}-\beta_{a}-2\mu_{a})F_{f}^{a}-(\overline{\alpha}_{f}-\alpha_{f}-2\nu_{f})=n(\eta_{a}H_{f}^{a}+\lambda_{a}G_{f}^{a}) ,

(2. 14) (\overline{\alpha}_{f}-\alpha_{f}-2\nu_{f})+(\overline{\gamma}_{a}-\gamma_{a}-2\lambda_{a})G_{f}^{a}=n(\mu_{a}F_{f}^{a}-\eta_{a}H_{f}^{a}) .
Adding (2.11) and (2.13) to (2.14), and transvecting it with F_{i}^{f}, we have
(2. 15) \overline{\beta}_{i}-\beta_{i}-2\mu_{i}=-n(\eta_{a}G_{i}^{a}-\lambda_{a}H_{i}^{a}-\mu_{i}+\nu_{a}F_{i}^{a})/2 .
Similarly, we have
(2. 16) \overline{\alpha}_{i}-\alpha_{i}-2\nu_{i}=-n(\eta_{a}H_{i}^{a}+\lambda_{a}G_{i}^{a}-\mu_{a}F_{i}^{a}-\nu_{i})/2’.
(2. 17) \overline{r}_{i}-\gamma_{i}-2\lambda_{t}=-n(\eta_{a}F_{i}^{a}-\lambda_{i}+\mu_{a}H_{i}^{a}-\nu_{a}G_{i}^{a})/2

Therefore, from (2.7), (2.8), (2.9), (2. 1t), (2. 11) and (2. 17)^{\sim}, we can obtain
(2. 18) \overline{\alpha}_{i}-\alpha_{i}-2\nu_{i}=\overline{\beta}_{i}-\beta_{i}-2\mu_{i}=\overline{\gamma}_{i^{-}}\gamma_{i}-2\lambda_{i}=0’.
from which, using (2. 10), (2. 11) and (2. 12), we can obtain (2. 3). By
straightforward calculation, the converse is easily verified.

\S 3. Q-projective curvature tensor fields.

Let \Gamma=(\Gamma_{ij}^{h}) and \overline{\Gamma}=(\overline{\Gamma}_{if}^{h}) be symmetric Q-connections on an almost
quaternion manifold (M, V), whose curvature tensor fields and Ricci tensor
fields are denoted by R_{ifk}^{h},\overline{R}_{ifk}^{h} , R_{if} and \overline{R}_{if} respectively. Then, after
straightforward calculation, we have
(3. 1) \overline{R}_{ijk}^{h}=R_{ifk}^{h}+2A_{(if)}^{ha}\eta_{ak}-2A_{(ik)}^{ha}\eta_{af} ,
(3. 2) \overline{R}_{if}=R_{if}-(n+4)\eta_{if}+2A_{if}^{ab}\eta_{(ab)} ,

where A_{if}^{hk} is given by (1. 4), the symbol “ ;” denotes the operator of
covariant differentiation with respect to \Gamma, and
(3. 3) \eta_{if}=\eta_{i;f}-A_{if}^{ab}\eta_{a}\eta_{b} .

LEMMA 1. Let \eta_{if} be given by (3. 3). Thm
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(3. 4) \eta_{if}=\frac{n+4}{n(n+8)}(R_{(if)}-\overline{R}_{(if)})+\frac{1}{n+4}(R_{[if]}-\overline{R}_{[if]})

+ \frac{2}{n(n+8)}A_{if}^{ab}(R_{(ab)}-\overline{R}_{(ab)})_{:}

where T_{[if]}=(T_{if}-T_{fi})/2 /or an arbitrary tensor field T_{if} .
PROOF. From (3.2), we have

(3. 5) \overline{R}_{\zeta iJ1}-R_{[if]}=-(n+4)\eta\zeta if\underline{1}’.
(3. 6) \overline{\overline{R}}_{(if)}-R_{(if)}=-(n+4)\eta_{(if)}+2A_{if}^{ab}\eta_{(ab)} .
Transvecting (3.6) with A_{kl}^{if} , since A_{if}^{ab}A_{kl}^{if}=4I_{k}^{a}I_{l}^{b} , we have

(3. 7) A_{if}^{ab}(\overline{R}_{(ab)}-R_{(ab)})=-(n+4)A_{if}^{ab}\eta_{(ab)}+8\eta_{(if)} .
Eliminating the term A_{if}^{ab}\eta_{(ab)} from (3.6) and (3.7), we have

(3. 8) n(n+8)\eta_{(if)}=(n+4)(R_{(if)}-\overline{R}_{(if)})+2A_{if}^{ab}(R_{(ab)}-\overline{R}_{(ab)})t

Therefore, from (3. 5) and (3. 8), we can obtain (3. 4).
Now, we will define the tensor field which is invariant under Q-

projective changes of symmetric Q-connections, i.e. , the Q-projective cur-
vature tensor field Q_{ifk}^{h} of the symmetric Q-connection \Gamma as the following:

(3. 9) Q_{ifk}^{h}=R_{ifk}^{h}+2A_{(if)}^{ha}B_{ak}-2A_{(ik)}^{ha}B_{af}

where B_{if} is given by

(3. 10) B_{if}= \frac{n+4}{n(n+8)}R_{(if)}+\frac{2}{n(n+8)}A_{if}^{ab}R_{(ab)}+\frac{1}{n+4}R_{[if]} .

Then, from (3. 1), (3. 4) and (3. 10), we can obtain

THEOREM 4. The Q-projective curvature tensor fields are invariant
under Q-projective changes of symmetric Q-connections.

REMARK. From (2.18), it follows that, if two symmetric V-connections
are Q-projectively related to each others, its change is affine ([10]).

\S 4. The Q-projective flatness.

If the Q-projective curvature tensor field of a symmetric Q-connection
vanishes, we call such a connection a Q-projectively flat connection and
such an almost quaternion manifold (M, V) with its connection to be Q-
projectively flat.

Now, let \Gamma be a symmetric Q-connection on an almost quaternoin
manifold (M, V), whose operator of covariant differentiation, curvature
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tensor field, Ricci tensor field and Q-projective curvature tensor field are
denoted by the symbol “ ;”, R_{ifk}^{h} , R_{if} and Q_{ifk}^{h} respectively. Then, the
following lemma can be obtained after straightforward calculation.

LEMMA 2. If B_{tJ} is givm by (3.10) and a 1-form \eta_{i} satisfies the
fo\Pi owing :

(4. 1) \eta_{i;f}=A_{if}^{ab}\eta_{a}\eta_{b}+B_{if} ,

thm,

(4. 2) 2\eta_{ij_{-}^{\ulcorner}f;k_{\overline{\lrcorner}}}=(Q_{ifk}^{a}-R_{ifk}^{a})\eta_{a}+2B_{i_{\vee}^{\ulcorner}f;k_{\overline{\lrcorner}}}c

Next, taking the skew-symmetric part and the symmetric part with
respect to indices i and j of (3.10), we have

(4. 3) B_{\overline{L}^{ifl}}= \frac{1}{n+4}R_{[if]} ,

(4. 4) B_{(if)}= \frac{n+4}{n(n+8)}R_{(if)}+\frac{2}{n(n+8)}A_{if}^{ab}R_{(ab)}t

Transvecting (4.4) with A_{kl}^{if} and eliminating A_{if}^{ab}R_{(ab)} from it and (4. 4), we
have

(4. 5) R_{(if)}=(4\cdot 4)B_{(if\rangle}– 2A_{if}^{ab}B_{(ab)}c

From (4. 3) and (4. 5), we have

(4. 6) R_{if}=(n+4)B_{if}-2A_{if}^{ab}B_{(ab)}

Therefore, from (3.9), (4.6) and the second Bianchi identity, we can obtain

(4. 7) Q_{ifk;a}^{a}=2(n+4)B_{i[f;k]}-4A_{if}^{(ab)}B_{a[bjk]}+4A_{ik}^{(ab)}B_{a[b;f]} .
From which, when B_{i[f;k]} vanishes, it is obvious that Q_{ifk;a}^{a} vanishes.
Conversely, when Q_{ifk;a}^{a} vanishes, from (4. 7), we have

(4. 8) (4 \cdot 4)B_{a[d;c]}– 2A_{aa}^{(ef)}B_{e[fjc]}+2A_{ac}^{(ef)}B_{e[f,a]}.=0t

Transvecting (4. 8) with 2A_{bk}^{(ad)} , we have

(4. 9) (n+4)A_{bk}^{(ad)}B_{a[a;c]}-4(B_{b[k;c]}+B_{k[b;c]})+2A_{bk}^{(ad)}A_{ac}^{(ef)}B_{e_{-}^{-}f\iota lJ}..=01

Transvecting (4. 9) with 2A1_{J}^{bc)} , from A_{bk}^{ad}A_{if}^{bc}A_{ac}^{ef}=4I_{i}^{e}A_{fk}^{fd} and A_{bk}^{da}A_{if}^{bo}A_{ac}^{ef}=

4I_{f}^{f}A_{ik}^{de} , we have

(4. 10) (n+4)Al_{f}^{bc)}A_{bk}^{(ad)}B_{a[djc]}.– 4A_{if}^{(bc)}B_{b[k;c]}

+2A_{ik}^{(ab)}B_{a[f;b]}+2A_{fk}^{(ab)}B_{a[i;b]}=0 .
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Eliminating the term A_{if}^{(bc)}A_{bk}^{(ad)}B_{a[ajc]} from (4.9) and (4.10), we have

(4. 11) (n^{2}+8n+8)A_{if}^{(ab)}B_{a[b;k]}-4A_{ik}^{(ab)}B_{a[fjb]}

-4 (n+4)(B_{i[J;k]}+B_{f[i;k]})-4A_{fk}^{(ab)}B_{a[i;b]}=0\tau

Taking the skew-symmetric part of (4.11) with respect to indices j and k,
we have
(4. 12) A_{if}^{(ab)}B_{a[b;k]}-A_{ik}^{(ab)}B_{a[b;f]}

= \frac{4(n+4)}{n^{2}+8n+4}(2B_{i[f;k]}+B_{f[ijk]}-B_{k[i;J]}) .

Substituting (4. 12) into (4. 8), we have

(4. 13) (n^{2}+8n-12)B_{i[f;k]}-8(B_{f[i;k]}-B_{k[i;f]})=0 .
Taking the symmetric part of (4.13) with respect to indices i and j, we
have
(4. 14) (n+10)(n–2) (B_{i\underline{r}_{f;kJ}}+B_{f[i;k]})=0 .
Since n is greater than 4, taking the symmetric part of (4.14) with respect
to indices j and k, we have

(4. 15) B_{f[i;k]}+B_{k[i;f]}=0

Substituting (4. 15) into (4. 13), we have

(4. 16) (n^{2}+8n-12)B_{i[f;k]}-16B_{j[ijk]}=0 .
Substituting (4. 14) into (4. 16), we have

B_{i[f;k]}=0 .
Therefore, we can obtain

Lemma 3. Q_{ifk;a}^{a} vanishes if and only if B_{i[f;k]} vanishes.
From Lemma 2 and Lemma 3, it follows that the condition of inte-

grability of the equation (4.1) is that Q_{ifk}^{h} vanishes. Then, there exists
a 1-form \eta_{i} satisfying (4.1), and if we put

\overline{\Gamma}_{if}^{h}=\Gamma_{if}^{h}+2A_{(if)}^{ha}\eta_{a} ,

from (3. 2), (3. 3) and (4. 6), we have
\overline{R}_{if}=R_{tf}-(n+4)\eta_{if}+2A_{if}^{ab}\eta_{(ab)}

=R_{if}-(n+4)B_{if}+2A_{if}^{ab}B_{(ab)}

=0 .
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Since the Q-projective curvature tensor field of \acute{\overline{\Gamma}} vanishes by means of
Theorem 4, it follows that the curvature tensor field of \overline{\Gamma} vanishes, i.e. ,
\overline{\Gamma} is a locally flat connection. Therefore, we can obtain

THEOREM 5. An almost quaternion manifold with a symmetric Q-
connection \Gamma is Q-projectively flat if and only if \Gamma is Q-projectively related
to a locally flat connection.

A quaternion K\"ahlerian manifold is defined as an almost quaternion
manifold with a Riemannian metric which is Hermitian with respect to
the almost quaternion structure and whose connection is a Q-connection ([6]).
And it was proved that a quaternion K\"ahlerian manifold is an Einstein
space ([1], [6]). Therefore, it follows that our Q-projectively flat quaternion
K\"ahlerian manifold is one of constant Q-sectional curvature (cf. [6]). Thus
we can obtain

THEOREM 6. In order that a quaternion K\"ahlerian manifold be Q-
projectively flat, it is necessary and sufficient that it be of constant Q-
sectional curvature.
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