U-rational extension of a ring

By Kenji NISHIDA

(Received June 26, 1975)

Introduction.

Let R be a ring with identity and U be a right R-module such that $R \subset \Pi E(U) = C$ where E(U) is the injective hull of U. Then the double centralizer of C is a ring S and is a U-rational extension of R as a right R-module. A ring S is regarded as a subring of a maximal right quotient ring of R.

In [5], K. Masaike states a characterization of a ring of which a canonical inclusion of R into a maximal quotient ring is a right flat epimorphism. We will generalize this result for a canonical inclusion of Rinto S.

Throughout this paper, a ring R has always an identity element and an R-module is unital. An injective hull of an R-module M is written by E(M). Let X and Y be the right R-modules. We say X is Y-torsionless if X is embeddable into some product of Y, i.e., $X \subset \Pi Y$. This is equivalent that for any nonzero $x \in X$ there exists an R-homomorphism f of X into Y such that $f(x) \neq 0$.

1. U-rational extension of a ring

Let U be a right R-module such that E(U) is faithful. Then we have $R \subset \Pi E(U)$. We put $C = \Pi E(U)$, $H = \operatorname{Hom}_{R}(C, C)$. Then C becomes a bimodule ${}_{H}C_{R}$, thus we get $S = \operatorname{Hom}_{H}(C, C)$ the double centralizer of C_{R} .

PROPOSITION 1. C is injective as a right S-module, $\operatorname{Hom}_{R}(C, C) = \operatorname{Hom}_{S}(C, C)$, and if B_{R} is a direct summand of C_{R} , then B is a right S-module and also a direct summand of C as a right S-module.

PROOF. This is well-known (see [3], [4] for example), but for the completeness, we state the proof.

Let $0 \to X \to Y$ be an exact sequence of right S-modules, and f be an S-homomorphism of X into C. Since C_R is injective, f can be extended to $g: Y_R \to C_R$. We will show that g is an S-homomorphism.

For any $y \in Y$, define the mapping $k_y: S \to C$ by $k_y(s) = g(ys) - g(y)s$ for $s \in S$. This is clearly an *R*-homomorphism and can be extended to $k'_y \in H$ by injectivity of C_R . Then $k'_y(R) = k_y(R) = 0$, therefore, $k_y(s) = k'_y(s) = k'_y((1)s) = (k'_y(1))s = 0$ (here we use the canonical embedding of S_R into $C_R; s \mapsto (1)s$).

Thus g is an S-homomorphism, so C is injective as a right S-module.

Next, we obtain trivially $\operatorname{Hom}_{\mathcal{S}}(C, C) \subset \operatorname{Hom}_{\mathcal{R}}(C, C)$, and because ${}_{\mathcal{H}}C_{\mathcal{S}}$ is a bimodule, equality holds.

Finally, we shall show if B_R is a direct summand of C_R , then B is a right S-module and also a direct summand of C as a right S-module. Let $C=B \oplus A$ where A is an R-submodule of C. Take any $b \in B$, $s \in S$ and let p be a canonical projection from C onto A. Then p((b)s)=(p(b))s=0, thus, $(b) s \in B$ for any $b \in B$ and $s \in S$. This means that B is a right S-module. By the same way, A is also a right S-module, therefore, B is a direct summand of C as a right S-module.

Let M be a right R-module and N be a submodule of M. Following Findlay and Lambek [2], we call M a U-rational extension of N if $\operatorname{Hom}_{\mathbb{R}}(M'/N, U)=0$ for any submodule M' of M that contains N. This is equivalent to $\operatorname{Hom}_{\mathbb{R}}(M/N, E(U))=0$ by Proposition 2.1 of [2].

PROPOSITION 2. S is a U-rational extension of R as a right R-module. If an R-submodule T of C is a U-rational extension of R, then $T \subset S$.

PROOF. The first assertion follows easily from the proof of Theorem 2 of [3].

In order to prove the second part, we shall show that h(t)=0 for any $t \in T$ and $h \in H$ such that h(R)=0. If $h(t)\neq 0$, then there exists $f: C \rightarrow E(U)$ such that $f(h(t))\neq 0$. Put $g=fh|_{r}: T \rightarrow E(U)$. Then we have

$$g(t) = f(h(t)) \neq 0$$

and

$$g(R) = f(h(R)) = 0.$$

Since T is a U-rational extension of R, this is a contradiction. Thus, h(t)=0 and then we have $t \in S$.

2. Flat epimorphism

We shall begin this section with stating some definitions and notations. In what follows, let R, S and U be as in the previous section.

DEFINITIONS. Let A(B) be a right ideal of R(S). Then we call A(B)U-dense if $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}/A, E(U))=0$ ($\operatorname{Hom}_{\mathcal{S}}(S/B, E(U))=0$).

When A is a right ideal of R, A is U-dense if and only if R is a U-rational extension of A as right R-module, but since U is not a right S-module, we take above definitions.

For any right R(S)-module M(N), we put

 $V_{R}(M) = \left\{ m \in M; \ mA = 0 \text{ for some } U \text{-dense right ideal } A \text{ of } R \right\}$ $(V_{S}(N) = \left\{ n \in N; \ nB = 0 \text{ for fome } U \text{-dense right ideal } B \text{ of } S \right\}).$

LEMMA 1. If A is a U-dense right ideal of R, then

$$A: s = \{r \in R ; sr \in A\}$$

is a U-dense right ideal of R for any $s \in S$.

PROOF. Consider a map $f: R \to S$ that is defined by f(r)=sr, $r \in R$. Then f is an R-homomorphism. Thus, $A:s=f^{-1}(A)$. Since S is a U-rational extension of R,S is also a U-rational extension of A by Pproposition 1.3 of [2]. Therefore, $R = f^{-1}(S)$ is a U-rational extension of $f^{-1}(A)=A:s$ by Proposition 2.2 of [2]. Thus, A:s is U-dense.

LEMMA 2. (i) B is a U-dense right ideal of S if and only if $B \cap R$ is a U-dense right ideal of R.

(ii) If A is a U-dense right ideal of R, then AS is a U-dense right ideal of S.

PROOF. (i) Assume that B is a U-dense right ideal of S. If there exists nonzero R-homomorphism $f: R/(B \cap R) \to E(U)$, then it can be extended to $f': S/B \to E(U)$ by injectivity of E(U). By the same way as in Proposition 1, f' becomes an S-homomorphism and nonzero. This is a contradiction. Thus, $\operatorname{Hom}_{R}(R/(B \cap R), E(U)) = 0$.

The converse is trivial by $R/(B \cap R) \cong (R+B)/B$.

(ii) Trivial by (i) and $A \subset AS \cap R$.

LEMMA 3. If M is a right S-module, then $V_{\mathcal{S}}(M) = V_{\mathcal{R}}(M)$.

PROOF. This follows from lemma 3.

Now, next Proposition 3 and 4 are generalization of K. Masaike ([5]. Proposition 1 and 3).

PROPOSITION 3. A right R-module M is E(U)-torsionless if and only if $V_R(M)=0$.

PROOF. Assume that M is E(U)-torsionless. Let $0 \neq x \in E(U)$ and A be a U-dense right ideal of R. Consider an R-homomorphism $f: R \to E(U)$ such that $f(r) = xr(r \in R)$. If xA = 0, then f induces a nonzero homomorphism $f': R/A \to E(U)$. This is a contradiction. Thus, $V_R(M) = 0$. Conversely, assume $V_R(M) = 0$, then, for any nonzero $x \in M$, $A = \{r \in R; xr = 0\}$ is not a U-dense right ideal of R. Thus there exists a nonzero homomorphism $g: R \to E(U)$ such that g(A) = 0. On the other hand, $R/A \cong xR$, so there exists canonically a homomorphism $h: xR \to E(U)$ such that h(xr)=g(r). It can be extended to $h': M \to E(U)$ by injectivity of E(U). Thus, $h'(x)=h(x)=g(1)\neq 0$. Hence, M is E(U)-torsionless.

Let T be a ring extension of R. Then we call a canonical inclusion of R into T a right flat epimorphism if $_{R}T$ is flat and $T \otimes T \cong T$ canonically (we always form a tensor product as R-modules).

PROPOSITION 4. A canonical inclusion of R into S is a right flat epimorphism if and only if $M \otimes S$ is E(U)-torsionless as right S-module for every (finitely generated) E(U)-torsionless right R-module M.

PROOF. Assume that a canonical inclusion of R into S is a right flat epimorphism. We have $E(U)_{s} \cong E(U) \otimes S_{s}$ by Corollary 1.3 of [6].

Now, we shall prove that a canonical mapping $M \to M \otimes S$ $(m \mapsto m \otimes 1)$ is a monomorphism for any E(U)-torsionless module M_R . If some nonzero $m \in M$, $m \otimes 1=0$, then there exists $f: M \to E(U)$ such that $f(m) \neq 0$. The homomorphism f induces $f \otimes \operatorname{Id}: M \otimes S \to E(U) \otimes S \cong E(U)$. Then $0 \neq f(m) \otimes$ $1=(f \otimes \operatorname{Id}) \ (m \otimes 1)=0$. This is a contradiction. Thus, by Proposition 1.7 of [6] $M \otimes S$ is an essential extension of M as an R-module. Therefore, $M \otimes S$ is E(U)-torsionless as an R-module. By assumption, for any right S-modules K and K', $\operatorname{Hom}_R(K, K') = \operatorname{Hom}_S(K, K')$. Thus, $M \otimes S$ is E(U)torsionless as a right S-module.

For the converse, we shall show that RS is flat and the canonical mapping $S \otimes S \rightarrow S$ is an isomorphism.

If we show $A \otimes S \cong AS$ canonically for any finitely generated right ideal A of R, then the flatness of RS follows from section 5.4 Proposition 1 of [4]. Thus, we will show that a canonical mapping $i: A \otimes S \to S$ is a monomorphism. Let $u = \sum a_k \otimes s_k \in A \otimes S$ and $\sum a_k s_k = 0$. Put $B = \bigcap_k R: s_k$. Then by lemma 2, B is a U-dense right ideal of R. For any $b \in B$ ub = $\sum a_k \otimes s_k b = \sum a_k s_k b \otimes 1 = 0$. Thus, uB = 0 so $u \in V_S(A \otimes S)$. But $A \subset R \subset$ II E(U) implies that $A \otimes S$ is E(U)-torsionless as an S-module. By Proposition 3 $V_S(A \otimes S) = 0$. Therefore, u = 0. Thus, RS is flat.

Next we will show $V_{\mathcal{S}}(S \otimes S) = 0$. Let $\sum s_k \otimes s'_k \in V_{\mathcal{S}}(S \otimes S)$, and $K = s_1 R + s_2 R + \dots + s_n R$. By the flatness of RS, we have $K \otimes S \subset S \otimes S$. Therefore $\sum s_k \otimes s'_k \in V_{\mathcal{S}}(K \otimes S)$. On the other hand, $K \subset S \subset \Pi E(U)$ and K is finitely generated, so by assumption $V_{\mathcal{S}}(K \otimes S) = 0$. Thus, $\sum s_k \otimes s'_k = 0$. Therefore, $V_{\mathcal{S}}(S \otimes S) = 0$. If $u = \sum s'_k \otimes s_k \in S \otimes S$ and $\sum s_k s'_k = 0$, then as above $u \in V_{\mathcal{S}}(S \otimes S) = 0$. Therefore, u = 0. Thus, the canonical mapping of $S \otimes S$ onto S is a monomorphism, whence an isomorphism.

References

- [1] C. FAITH: Lectures on injective modules and quotient rings, Springer-Verlag (1967).
- [2] G. D. FINDLAY and J. LAMBEK: A generallized ring of quotients I, Can. Math. Bull. 1 (1958), 77-85.
- [3] T. KATO: Rings of U-dominant dimension≥1, Tohoku Math. J. 21 (1969), 321-327.
- [4] [J. LAMBEK: Lectures on rings and modules, Blaisdell (1966).
- [5] K. MASAIKE: On quotient rings and torsionless modules, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 11 (1971), 26-31.
- [6] L. SILVER: Noncommutative localizations and applications, J. Algebra 7 (1967), 44-76.

Department of Mathematics Hokkaido University