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0. Introduction

Ludden and Okumura studied minimal hypersurfaces of the product
S x S* of two n-spheres. Some of their results are as follows:
a. If a compact orientable minimal hypersurface M of S*x.S"(n>1) sat-
isfies

S (S'—(n—1)8) dM;SMnVHHZdM

M

(in particular, PH=0 and S=7n—1), then the tangent space of M is invar-
iant under an almost product structure on S”x S (for simplicity, we say
that M is an invariant hypersurface), where S=trace H>

b. Let M be a compact orientable invariant minimal hypersurface of
S*xS*. Then either M is the totally geodesic hypersurface or S=n—1,
or S(x)>n—1 at some xeM.

c. S (1)xS"(1) and

S (Vm[(n—1)) x S* " Wn—m—1)[n—1))x S*(1)

are the only compact orientable invariant minimal hypersurfaces of S*x.S*

satisfying S<n—1.

In the present paper, we further investigate hypersurfaces of S"xS"
under the assumption of non-negative sectional curvature.
That is, we obtain the following results :
A. A compact orientable minimal hypersurface with non-negative sectional
curvature of S”x.S”(n>1) which satisfies

SM(SZ—(n—l) S) dM=0

(in particular, S=#z—1) is an invariant hypersurface (Theorem 1.2 and
Corollary 1.3).

B. Let M be a compact orientable invariant minimal hypersurface with
non-negative sectional curvature of S”x.S". Then either M is the totally
geodesic hypersurface or S=n—1 (Theorem 2.1).
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C. S"'("NxS*(1) and S™(s)x S ™' (W1—s?)xS*(1) are the only comapct
orientable invariant hypersurfaces of S”x.S” with constant mean curvature
and non-negative sectional curvature (Theorem 2.5).

Moreover, as a special case of C, we have:

S 1(1)x.S*(1) and
S™ (Wmf(n—1))x S* ™ (Wn—m—1)/(n—1))x S*(1)

are the only compact orientable invariant minimal hypersurfaces of S”x .S
with non-negative sectional curvature (Corollary 2.6).

The author would like to express sincere thanks Professor K. Ogiue
for his many valuable suggestions.

1. Preliminaries

Let S” be an n-sphere of radius 1, and consider S*x.S". We denote
by P and Q the projections of the tangent space of S*xS™ to each com-
ponent respectively. Then the product Riemannian metric § on S"x.S" is
given by

7(X,Y)=¢ (PX, PT)+¢ (OX, O7),

where ¢’ is the Riemannian metric of S”. We put

Then we have ([1])

P+0=1, PO=QP=o0,

pz — Z‘) , Qz — Q )

Ji=1, trace J =0,

§JX,Y)=9(X,JY), FPzd=0,

R(X,V)Z= {3 (7,2)X~4(X, 2) Y +3 0¥, 2)JR -3 X, 2)J7},
where 7 and R denote the operator of covariant differentiation with respect
to the Riemannian connection of § and the curvature tensor of S"xS",
respectively. We call J an almost product structure on S*x S

Now let M be a hypersurface of S*x.S” and B the differential of the
immersion ¢ of M into S”x.S". Let ¢ be the induced Riemannian metric,
and V denote the operator of covariant differentiation with respect to the

Riemannian connection of g. Let X, Y and Z be tangent to M and N a
unit normal vector. Then we have the following relations ([1]):

(1.1) JBX = BfX+u(X) N,
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(1.2) JN=BU+IN,

9(U, X)=u(X),
(1. 3) Pex BY=Br . Y+h(X,Y)N,
(1. 4) Ppx N= —BHX,

hX,Y)=¢gHX,Y),
R(X,Y) Z=5{0(%,2) X=0(X,2) Y+o /Y, 2) /X

(1. 5)
—o(fX, Z)fY}+h(Y, Z)HX—h(X, Z) HY,
(1.6) 7 H) Y~ H) X = 5 (u(X) fY~u(Y) /X),
(1.7) fX=X—u(X)U,
(1. 8) u(U)=g(U,U)=1-2,
(1.9) trace f= —1,
(1. 10) 7PxU= —fHX+1HX,
(1.11) Xea=—2h(U, X)= —2u(HX),

where f, u, U, 2, h and R define a symmetric linear transformation of the
tangent bundle of M, a 1-form, a vector field, a function on M, the second
fundamental tensor of the hypersurface and the curvature tensor of M,
respectively.

If « is identically zero, then M is said to be an invariant hypersur-
face, that is, the tangent space T,(M) is invariant under J. We can easily
see by (1.8) that this is equivalent to £=1.

We consider the function S=trace H? which is globally defined on
M and wish to compute its Laplacian 4S. We now assume that the
hypersurface M has constant mean curvature, that is, trace H is constant.
Then it is know that

% S = —2trace fH?-+trace ( fH)Z—i——;—(trace H) ¢(HU, U)

_(trace HfP+~ A(trace H) trace fH-+g(HU, HU)
(1.12) 2

—%—(trace HY—S(S—(n—1))+(trace H) trace H*
+g(FH,VH),
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div ((trace fH) U—fHU)
=g (HU, HU)—(trace fH)+A(trace H) trace fH
—(trace H) g (HU, U)+ trace (fH)Y—2trace fH?
+(n—1)(1-2),
(1.14) div ((trace H)U)= —(trace H) trace fH+A(trace H)}
(See [1,(2.5), (2.10) and (2.12)]).
Let {el, ee ez,,_l} be an orthonormal basis for 7, (M). Then because of
(1.5), (1.7) and (1.9) we have
2n—1

Y. {9(R(es e;) €5, He)—2g (R (e, Hey) e;, He))

i,4=1

(1.13)

+9 (R (e,, He;) He;, e,)}

=28 ((n—1)—S)—(trace H}—2 trace fH?
+trace (fH)P—(trace fHY+¢g (HU, HU)
+2(rtace H) trace H°.

(1. 15)

If we choose {el, ey ez,,_l} such that He;=2,¢;, 1=i<2n—1, then from
(1.12) and (1. 15) we obtain

2n—1
F45= 35 (h=2F 0(R(e e) e €0
(1. 16) +S(S——(n—1))+%(trace H)Z—I—%X(trace H) trace fH
+—é—(trace H) ¢ (HU, U)—(trace H) trace H?
+g(FH,VH),

Adding up both sides of (1.12) and (1. 16), we get

n—1
4= 3 (=¥ g (R(eo &) e, e)=1 trace fH:
i.J=

(1.17) +trace (FH+(trace H) g (HU, U)—(trace HfY
+2(trace H) trace fH+¢g (HU, HU)+2¢ (VH,VH)

In particular, if the hypersurface is minimal, then
© 21
> 48= 31 (h—4F g(Rle, e) s @)
1,4=1
+S(S—(n—1))+9g(FH,FH).
From (1. 16) we easily get

(1. 16)
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ProrosiTiON 1.1. If M is a compact minimal hypersurface with non-
negative sectional curvature of S"xS" satisfying S(S—(n—1))=0, then
either S=0(i.e., M is totally geodesic) or VH=0 and S=n—1.

Next we compute div ((trace H) AU). Since M has constant mean
curvature, we have '

V< ((trace H) 2U) = (trace H)(X:2) U+ A(trace H) VU
= —2(trace H) u(HX) U
+A(trace H)(—fHX+1HX),
which implies that
div ((trace H) 2U)= —2(trace H) g (HU, U)
—2A (trace H) trace fH+ 2*(trace H).
Subtracting (1.12) from (1. 16) we get

2n—1

2 (=4 g(R (e, e5) e, €)+ 25 (S—(n—1))

(1. 18)

(1.19) +(trace H)—2 (trace H) trace H*+2 trace fH*

—trace (fH ) +(trace Hf)*—¢g (HU, HU)=0.
From (1.13), (1. 14), (1.18) and (1. 19), we obtain |

div ((trace fH) U—fHU )——%div ((trace H) 2U
+%2div ((trace H) U)

= 23;1:1 (=247 9 (R(es, &) €5, €)+(n—1)(1—2)
+28(S—(n—1))+(1+ &) (trace HY
—2(trace H) trace H°®
On the other hand, from (1.13), (1.14), (1.17) and (1. 18) we have
4S—div ((trace fH) U—fHU)+div ((trace H) 2U)
—2 div ((trace H) U)
= :n;: (2i—A;F g (R(es, €;) €5, €)
—(n—1)1—2)+2¢ FH,VH).

Assume that the hypersurface M is compact and orientable and;that 2=
constant. Integrating the above equations over M and using Green-Stokes’
theorem, we get
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s‘ {27531 (Ai—2;7 9 (R(e, €;) ey, €)

(1. 20) +(n—1)1—-2)+25(S—(n—1))
+(1+2)(trace HP—2(trace H) trace H3} dM =0,

[ {5 017 0Rice) ene)
(1. 21) Mot

—(n—1)( iﬁ‘z)’i’zg (4H, VH)} dM =0.

In particular, if the hypersurface M is minimal, then without the
assumption of 1=constant o

S {z’f 1 (=27 g (R (e, €)) €5, &)

M i,j=1

(1. 20Y
+(n—1)1—2)+2S (S—(n—1))} dM =0.

From (1.20) we easily get

THEOREM 1.2. A compact orientable minimal hypersurface with non-
negative sectional curvature of S"xS"(n>1) satisfying

L(Sz—(n—n S) dM=0

is an invariant hypersurface.

COROLLARY 1.3. A compact orientable minimal hypersurface with non-
negative sectional curvature of S™xS" satisfying S=n—1 is an invariant
hypersurface.

2. Main results

In this section we assume that the hypersurface M is invariant. Then
formulas (1. 20), (1.21) and (1. 20) become '

SM{:EI (li—'lj)z g (R (ei, ej) e, ei)

(2.1) | +2S(S—(n—1))+2 (trace H}
—2(trace H) trace H3} dM =0,

. 2n—1
| S. {Z (li_lj)z g(R (ei, ej) ey, ei)
MM, g=1
+2g (VH, VH)}dM:o,
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2n-1
[ {5 a—ar o Rlese) ey

.1y ha=
+28(S—(n—1))}dM =0,

respectively. Thus combining (2. 2) and (2. 1) we get

THEOREM 2.1. Let M be a compact orientable invariant minimal hy-
persurface with non-negative sectional curvature of S*XxS". Then either
M is the totally geodesic hypersurface or S=n—1.

Moreover, from (2. 2) we obtain

ProOPOSITION 2. 2. If M is a compact orientable invariant hypersurface
of S*xS* with constant mean curvature and non-negative sectional cur-
vature, then the second fundamental form of M is parallel.

The following results are basic:

LemMA 2.3 (Ludden and Okumura [1]). A complete invariant hyper-
surface of S*xS8" is a product manifold M' xS*, where M' is a hyper-
surface of S™

LEMMA 2.4 (Ludden and Okumura ([1]). In Lemma 2.3, denoting the
second fundamental tensor of M' in S™ by H', we have

trace H? = trace H'®

JSor any positive integer p.

By virtue of Lemmas and 2.4 we can easily see that if a hypersurface
M of S*xS™ is of constant mean curvature and non-negative sectional
curvature, then so is M’, a hypersurface immersed in S*. Applying Nomizu
and Smyth’s result (See [2], Theorem 2 or Corollary 2), we have M =
S*1(r) or M'=S8"(s)x S* ™! (f1—s?), where we denote the radius of spheres

A7 g m(ﬁ?)“”—m_l)(—ﬁ)

=trace H'. Hence we have M=5""()x 5" (1) or M=5"(s)x S* ™' (1 —5?)
x S™(1).

THEOREM 2.5. S*'(r)xS*(1) and
S™ (s)x S*m! (WI—s)x S? (1) are the only compact orientable invariant
hypersurfaces of S"xS" with constant mean curvature and non-negative
sectional curvature.

COROLLARY 2.6. S*'(1)xS5*(1) and
S™ (Vm)n—1))x S* ™ ' (Wn—m—1)[(n—1))x S*(1) are the only compact ori-
entable invariant minimal hypersurfaces of S*x S® with non-negative sec-
tional curvature.

in the parentheses and H'=
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