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\S 1. Introduction. H. C. Wang studied a complex parallelizable mani-
fold, which can be considered as the natural counterpart, in the theory of
complex manifolds, of an ordinary completely parallelizable manifold, and
obtained the following result [2]^{1)} :

A compact complex parallelizable manifold can be regarded, up to a
holomorphic homeomorphism, as the the compact coset space of a complex
Lie group by a discrete isotropic subgroup and becomes K\"ahlerian if and
only if it is a complex torus.

The purpose of the present paper is to study the geometric properties
of complex parallelizable manifolds without assumption of compactness.
The method of investigation is the same as in the theory of extended Lie
systems [5], [6], that is to express all the geometric quantities in terms of
the scalars of structure C_{bc}^{a}

, and their conjugates (see \S 2). We introduce,
in \S 3, a Riemannian metric g on a complex parallelizable manifold M and
show that a condition for M to be K\"ahlerian is that C_{bc}^{a}=0 . Consequently
the above result of Wang can be stated as follows:

A connected complete complex parallelizable manifold M can be re-
garded as the coset space of a complex Lie group by a discrete subgroup
if and only if all the scalars C_{bc}^{a} are constant. And M is K\"ahlerian with
respect to the g if and only if C_{bc}^{a}=0 .

The real version of the above first statement, of course, holds good [3].
In \S 4, we deal with the special vector fields i.e. Killing, conformal Killing,
divergence-free and harmonic vector fields. As a consequence we have
that some special parallelizations give rise to C_{bc}^{a}=0 . Finally we prove in
\S 5 that any holomorphic sectional curvature is non-positive at every point
of M and so is the scalar curvature.

\S 2. Complex parallelization. Let M be an n-dimensional complex
manifold with a complex structure J. Then M is called a complex paral-
lelizable manifold if there exist, on M, n holomorphic vector fields linearly
independent everywhere. We denote the vector fields and their complex
conjugates by Z_{1} , Z_{2}, \cdots , Z_{n} and \overline{Z}_{1},\overline{Z}_{2}, \cdots,\overline{Z}_{n} respectively. We set

1) Numbers in brackets refer to the references at the end of the paper.
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(2. 1) \overline{Z}_{a}=Z
- (a=1,2, \cdots, n) ,

and so we can use later the convention that \overline{\overline{a}}=a .
As {Z_{1} ,Z_{2^{ }},\cdots ,Z_{n}, Z-,z_{\overline{2}},\cdots , Z-} is clearly a basis for the complex tangent

space T_{x}^{C}(M) at each point x\in M, we call it the complex basic frame of M.
Further, we denote the dual of the above basis by \{\omega^{1}, \omega^{2_{ }},\cdots,\omega^{n}, \omega^{\overline{1}}, \omega^{\overline{2}_{ }},\cdots, \omega^{\overline{n}}\} ,
where \overline{\overline{\omega}}^{a}=\omega^{a}, and call it the complex basic coframe of M.

Since the set of all holomorphic vector fields on M forms a complex
Lie algebra over the field of complex numbers, there exist holomorphic
functions C_{bc}^{a} on M such that
(2. 2) [Z_{b}, Z_{c}]=C_{bc}^{a}Z_{a:}

where the usual summation convention is used. In the sequel, this conven-
tion will be used unless otherwise stated. We call the above-mentioned
functions C_{bc}^{a} the scalars of structure for the complex parallelization. It
follows from the definition of Poisson bracket and (2.2) that

(2. 3) C_{bc}^{a}+C_{cb}^{a}=0 ,

(2. 4) \partial_{b}C_{cel}^{a}+\partial_{c}C_{db}^{a}+\partial_{d}C_{bc}^{a}-C_{bc}^{e}C_{eae}^{a}-C_{cel}^{e}C_{eb}^{a}-C_{ab}^{e}C_{ec}^{a}=0 ,

where \partial_{b}C_{cd}^{a}=Z_{b}C_{cel}^{a} . These identities are fundamental.
From now on, we use indices as follows:

Small Latin indices a, b, c, \cdots run from 1 to n, while capital indices A, B,
C, \cdots run through 1, 2, \cdots , n, \overline{1},\overline{2}, \cdots,\overline{n} .

We know that
[\overline{Z_{b},Z_{c}}]=[Z-, Z-] , \overline{C_{bc}^{a}}=C_{\delta}^{a}-, \overline{\partial_{b}C_{cd}^{a}}=\partial_{\acute{b}}C_{\overline{c}}^{\overline{a}}-,

from which it follows that the conjugates of (2.2), (2.3) and (2.4) hold good.
And we have [Z_{b}, Z-]=0 . Thus we can set

(2. 5) [Z_{B}, Z_{C}]=C_{BC}^{A}Z_{A} ,

where the only non-zero elements of C_{BC}^{A} are those of the types C_{bc}^{a} and
C_{c}\overline{\frac{a}{b}} . Now we shall give a real parallelization on M. Since Z_{a} is of type
(1, 0) and Z_{\varpi} of type (0, 1),
if we put

(2. 6) X_{a}=Z_{a}+Z_{\overline{a}}

we have

(2. 7) JX_{a}=\sqrt{-1}(Z_{a}-Z_{\overline{a}})

Then it is easily verified that the vector fields X_{1} , X_{2}, \cdots , X_{n}, JX_{1} , JX_{2}, \cdots ,
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JX_{n} are all infinitesimal automorphisms of J[1] and are linearly independent
everywhere, and consequently they define a real parallelization. We call
\{X_{a}, JX_{a}\} and its dual \{\eta^{a}, J\eta\}a (a=1,2, \cdots , n) the real basic frame and
coframe respectively. In this case, from the above definition \eta^{a} and (2.6),
(2. 7) it turns out that

(2. 8) \eta^{a}=\frac{1}{2}(\omega^{a}+\omega^{\overline{a}}) , J \eta^{a}=-\frac{\sqrt{-1}}{2}(\omega^{a}-\omega^{\overline{a}}) .

\S 3. Riemannian connection. First, we shall introduce a Riemannian
metric g on M so that the real basic frame be orthonormal. For this, we
define the g as follows :

g(X_{a}, X_{b})=g(JX_{a}, JX_{b})=\delta_{ab} ,
(3. 1)

g(X_{a}, JX_{b})=g(JX_{a}^{7}, X_{b})=0 .
From (2. 6) and (2. 7) we have

(3. 2) Z_{a}= \frac{1}{2}(X_{a}-\sqrt{-1}JX_{a}) , Z_{\overline{\alpha}}= \frac{1}{2}(X_{a}+\sqrt{-1}JX_{a}) .

Put g_{AB}=g(Z_{A}, Z_{B}) . Then it follows from (3. 1) and (3. 2) that

(3. 3) g_{ab}=g_{\overline{a}\overline{b}}=0 , g_{\overline{a}b}=g_{a\overline{b}}= \frac{1}{2}\delta_{ab} .

In this case, it is easily seen by virtue of (3.1) that the g is a Hermitian
metric. Thus we have

PROPOSITION 1. A metric g defifined by (3.1) becomes a K\"ahler metric
if and only if all the scalars of structure C_{bc}^{a}. are equal to zero.

PROOF. The fundamental 2-form \Phi of M is defind by

(3. 4) \Phi(X, Y)=g(JX, Y) for all vector fields X and Y.
In this case, a necessary and sufficient condition for the g to be K\"ahlerian

is given by

d\Phi(Z_{A}, Z_{B}, Z_{C})=0 for all indices A, B and C .
On use of a well-known fromula [1], we have

(3. 5) 3d\Phi(Z_{A}, Z_{B}, Z_{C})=Z_{A}\Phi(Z_{B}, Z_{C})+Z_{B}\Phi(Z_{C}, Z_{A})+Z_{C}\Phi(Z_{A}, Z_{B})

-\Phi ( [Z_{A}, Z_{B}] , Z_{C})-\Phi([Z_{B}, Z_{C}], Z_{A})-\Phi([Z_{C}, Z_{A}] , Z_{B})c

From (2. 5), (3. 3), (3. 4) and (3. 5), we have
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(3. 6) 3d \Phi(Z-, z_{b}, Z_{c})=-\frac{\sqrt{-1}}{2}C_{bc}^{a} .

Similarly we see that d\Phi(Z_{a}, Z_{b}, Z_{c}) and d\Phi(Z-, Z-, Z-) vanish and the others
are of the same type as (3.6). This proves our assertion.

Next, we shall express concretely the components of the Riemannian
connection with respect to the complex basic frame in terms of the scalars
of structure and their conjugates. We denote by \nabla the covariant differen-
tiation and set

(3. 7) \nabla_{z_{B}}Z_{C}=\Gamma_{BC}^{A}Z_{A}

We requier

(3. 8) \overline{\Gamma}_{BC}^{A}=\Gamma_{B\overline{c}}^{Z}

with the convention that a=a=. Since the connection \Gamma is torsion-free, the
torsion tensor T together with (2.5) and (3.7) yields

T(Z_{B}, Z_{C})=\Gamma_{BC}^{A}Z_{A}-\Gamma_{CB}^{A}Z_{A}-C_{BC}^{A}Z_{A}=0 ,

which implies

(3. 9) \Gamma_{BC}^{A}-\Gamma_{CB}^{A}=C_{BC’}^{A} .
Besides, as the \Gamma is a metric connection, i.e. \nabla g=0 , we have

(3. 10) g_{AE}\Gamma_{CB}^{E}+g_{BE}\Gamma_{CA}^{E}=0’.
which is, by virtue of (3.3), equivalent to

(3. 11) \Gamma_{CB}^{A}+\Gamma_{CA}^{B}=0l

If we denote by (g^{AB}) the inverse of the matrix (g_{AB}), it is easily seen
that the matrix (g^{AB}) has the following components:

(3. 12) g^{ab}=g^{\overline{a}\overline{b}}=0 , g^{ab}=g^{a\overline{b}}=2\delta_{ab(}

Using (3.9) cyclically and applying (3.10), we have

(3. 13) \Gamma_{BC}^{A}=\frac{1}{2}g^{AE}(g_{CD}C_{EB}^{D}+g_{ED}C_{BC}^{D}-g_{BD}C_{CE}^{D}) .

Further, noticing that C_{BC}^{A}=0 except elements of the types C_{bc}^{a} and C_{b}^{\overline{a}}- and
making use of (3.3), (3.12), (3.13), we calculate \Gamma_{bc}^{a}, \Gamma_{bc}^{a} and get

\Gamma_{bc}^{a}=\frac{1}{2}C_{bc}^{a} , \Gamma_{bc}^{\overline{a}}=0 .

In this case, the other types of \Gamma_{BC}^{A} are obtained from (3.8), (3.9) and (3.11).
Thus we have the following list:
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\Gamma_{bc}^{a}=\frac{1}{2}C_{bc}^{a} , \Gamma_{\overline{c}}\frac{a}{b}=0 , \Gamma_{c}\frac{a}{b},
= \frac{1}{2}\overline{C}_{ab}^{ae} , \Gamma_{b\overline{c}}^{a}=\frac{1}{2}\overline{C}_{\alpha c}^{b}

,

(3. 14)
\Gamma_{bc}^{\overline{a}}, =0 , \Gamma_{\overline{c}}\overline{\frac{a}{b}}=.\frac{1}{2}\overline{C}_{bc}^{a} , \Gamma_{bc}^{\overline{a}}=\frac{1}{2}C_{ac}^{b} , \Gamma_{b\overline{c}}^{\overline{a}}=\frac{1}{2}C_{ab(}^{c}

\S 4. Special vector fields. Let V be a real vector field whose con-
travariant components with respect to the complex basic frame are (v^{A})i.e .
V=v^{A}Z_{A} . Put v_{A}=g_{AB}v^{B} . Then a necessary and sufficient condition for
the V to be a Killing vector field is given by [4]

(4. 1) \nabla_{B}v_{A}+\nabla_{A}v_{B}=Z_{B}v_{A}-\Gamma_{BA}^{D}v_{D}+Z_{A}v_{B}-\Gamma_{AB}^{D}v_{D}=0 .
In view of (2.6) and (2.7), the contravariant components of X_{\alpha} and

JX_{a} (a ; fixed) with respect to the complex basic frame are given by (\delta_{a}^{l}, \delta\overline{\frac{b}{a}})

and (\sqrt{-1}\delta_{a}^{b}, -\sqrt{-1}\delta\overline{\frac{b}{a}}) respectively.
Since the real basic frame is orthonormal with respect to the metric

g, for the covariant components we, from (2. 8), have ( \frac{1}{2}\delta_{b}^{a}, \frac{1}{2}\delta\overline{\frac{a}{b}}) and

(- \frac{\sqrt{-1}}{2}\delta_{b}^{a} , - \frac{\sqrt{-1}}{2}\delta\overline{\frac{a}{b}}). These components of X_{a} and JX_{a} will be used
through this section.

Now we seek for a condition for the X_{a} (a ; fixed) to be Killing vector
field. From (3. 14) and (4. 1) we have

i) C_{bc}^{a}+C_{cb}^{a}=0 ii ) C_{ac_{J}}^{b}+\overline{C}_{ab}^{c}=0 iii ) \overline{C}_{bc}^{a},+\overline{C}_{cb}^{a}=0 ,

where the conditions i) and iii) hold good because of (2.3) and its conjugate.
In the same way, for the JX_{a} (a ; fixed) we have i), iii) and ii)’C_{ac}^{b},-\overline{C}_{ab}^{c}=0 .
Consequently we can state

PROPOSITION 2. Whm a is a fifixed index, a necessary and sufficimt
condition for the X_{a} or for the JX_{a} to be a Killing vector field is respec-
tively givm by

C_{ac}^{b}+\overline{C}_{ab}^{c}=0 or C_{ac}^{b}-\overline{C}_{ab}^{c}=01

From the above proposition, we have immediately

COROLLARY 2. 1. All the vector fields of the real basic frame are
Killing vector ones if and only if all the scalars C_{bc}^{a} vanish.

A necessary and sufficient condition for the V to be a conformal Killing
vector field is that there exist a scalar \rho satisfying

(4. 2) \nabla_{B}v_{A}+\nabla_{A}v_{B}=2\rho g_{AB}[4]

When V=X_{a} (a ; fixed), from (3. 3), \cdot(3.14) and (4. 2) we have
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C_{ac}^{b}+\overline{C}_{\acute{a}b}^{c}=-4\rho\delta_{bc} for all indices b and c,

which implies \rho=0 , by substituting a for b and c. This is valid also when
V=JX_{a} . Hence we have

PROPOSITION 3. If a vector fifield of the real basic frame is a comformal
Killing vector one, then it is necessarily a Killing vector field.

The divergence of the vector field V is given by

(4. 3) div V=\nabla_{E}v^{E} .

Then from (3. 14) and (4. 3) we have

(4. 4) div X_{a}= \frac{1}{2}(C_{ea}^{e}+\overline{C}_{ea}^{e}) , div JX_{a}= \frac{\sqrt{-1}}{2}(C_{ea}^{e}-\overline{C}_{ea}^{e}) .

Consequently we have

PROPOSITION 4. When an index a is fifixed, both the X_{a} and JX_{a} are
divergence-free if and only if C_{ea}^{e}=0 .

The vector field V is called harmonic if divV=0 and

(4. 5) \nabla_{B}v_{C}=\nabla_{C}v_{B}[4]\tau

Then from (4.4), (4.5) and proposition 2 we have

PROPOSITION 5. When an index a is fifixed, the vector fifield X_{a} or JX_{a}

is harmonic if and only if C_{bc}^{a}=0 , C_{ea}^{e}=0 and the counterpart JX_{a} or X_{a}

is a Killing vector fifield respectively.
Making summary of the results obtained, we can state

PROPOSITION 6. The following conditions are equivalent:
(1) All the vector fifields X_{a}(a=1,2, \cdots, n) are harmonic.
(2) All the vector fifields JX_{a}(a=1,2, \cdots, n) are harmonic.
(3) All the vector fifields of the real basic frame are Killing vector

ones.
(4) A metric g defifined by (3.1) is K\"ahlerian.

(5) The set of all holomorphic vector fifields on M forms a complex
commutative Lie algebra.

FROOF. Each condition is equivalent to C_{bc}^{a}=0 for all a, b, c.
\S 5. Curvatures. Let R and K_{ABCD} be the Riemannian curvature

tensor and its components with respect to the complex basic frame. Then
since

(5. 1) R(Z_{C}, Z_{D})Z_{B}=[\nabla_{z_{C}}, \nabla_{z_{D}}]Z_{B}-\nabla_{[z_{C},z_{D}]}Z_{B} ,
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if we put

(5. 2) R(Z_{C}, Z_{D})Z_{B}=K_{BCD}^{A}Z_{A},\cdot where K_{BCD}^{A}=g^{AE}K_{EBCD} ,

it follows from (2. 5), (3. 7), (5. 1) and (5. 2) that
(5. 3) K_{BCD}^{A}=Z_{C}\Gamma_{DB}^{A}-Z_{D}\Gamma_{CB}^{A}+\Gamma_{DB}^{E}\Gamma_{CE}^{A}-\Gamma_{CB}^{E}\Gamma_{DE}^{A}-C_{CD}^{E}\Gamma_{EB}^{A} .

Noticing that Z- C_{db}^{a}=0, Z_{d}\overline{C}_{ac}^{b},=0 and using (3.14), (5.3), we calculate
K_{b\overline{c}d}^{a} and get

(5. 4) K_{b\overline{c}d}^{a}= \frac{1}{4}\sum_{e}(C_{de}^{a}\overline{C}_{ce}^{b}+C_{be}^{e}\overline{C}_{ae}^{d}-C_{bl}^{e},\overline{C}_{ac}^{e}) .
First, we can state

LEMMA. The sectional curvature of the holomorphic section involving
X_{a} (a ; fifixed) is non-positive and equal to zero only when C_{ae}^{a}=0 for e=1,
2, \cdots , n.

PROOF. If we denote by p the holomorphic section involving X_{a} , it
is clear that \{X_{a}, JX_{a}\} is an orthonormal basis for p. Then the sectional
curvature is given by

K(p)=R(X_{a}, JX_{a}, X_{a}, JX_{a}) ,

which is, by virtue of (2.6) and (2.7), reducible to

(5. 5) K(p)=-4R(Z-, Z_{a}, Z-,Z_{a} ) 1

On the other hand, we have

(5. 6) R (Z-,z_{a} , Z-,Z_{a}) =g(R(Z-,Z_{a}) Z_{a}, Z_{\overline{a}}) .

On making use of (3.3), (5.2), (5.4), (5.5) and (5.6), we have

K(p)=-2K_{a\overline{\alpha}a}^{a}=- \sum_{e}|C_{ae}^{a}|^{2}\leqq 0 .
Next, we have

PROPOSITION 7. Any holomorrphic sectional curvature is non-positive
at every point of M.

PROOF. Let p be a holomorphic section at a point x\in M and \{v, Jv\}

be an orthonormal basis for p. Then we can, in the tangent space T_{x}(M),
take an orthonormal frame \{Y_{a}, JY_{a}\}(a=1,2, \cdots, n) involving the \{v, Jv\} ,
provided that Y_{1}=v and JY_{1}=Jv . And further, there exists an orthogonal
transformation \varphi which maps the real basic frame to \{Y_{a}, JY_{a}\} . The matrix

corresponding to \varphi is of the form: (\begin{array}{ll}l_{b}^{a} m_{b}^{a}-m_{b}^{a} l_{b}^{a}\end{array}) , where l_{b}^{a} and m_{b}^{n} are real
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constants, and so

(5. 7) Y_{a}=l_{a}^{e} X_{e}+m_{a}^{e}JX_{e} , JY_{a}=-m_{a}^{e} X_{e}+l_{a}^{e}JX_{e}

If we put

u_{b}^{a}=l_{b}^{a}+\sqrt{-1}m_{b}^{a}.
,

U_{a}= \frac{1}{2}(Y_{a}-\sqrt{-1}JY_{a}) ,

from (3. 2) and (5. 7) we have

(5. 8) U_{a}=u_{a}^{e}Z_{e} , U_{\overline{a}}=a_{a}^{e}Z-.

Since u_{a}^{e} are constant and det. (u_{\alpha}^{e})\neq 0 , if we consider on M, each U_{a} is
a holomorphic vector field and \{U_{a}\}(a=1,2, \cdots, n) are linearly independent
at every point of M. Therefore the \{U_{a}\} define a new complex paralleli-
zation of M. It is easily seen that the matrix (u_{a}^{e}) is unitary. Consequently
it follows from (3.3) and (5.8) that a Riemannian metric such that the
real frame { Y_{a}, JY_{a}\rangle induced from the complex frame { U_{a}\rangle is orthonormal
is identif ied with the metric defined by (3.1) and hence the respective
Riemannian connections are the same. Thus we can apply the lemma to
this case. That is to say,

K(p)=R(v, Jv, v, Jv)=R(Y_{1}, JY_{1}, Y_{1}, JY_{1})\leqq 0 .
Finally we have

PROPOSITION 8. The scalar curvature is non-positive and equal to zero
onyl when C_{bc}^{a}=0 for all indices a, b and c.

PROOF. Let S and S_{AB} be the Ricci tensor and its components with
respect to the complex basic frame. Then we have

S_{AB}=S(Z_{A}, Z_{B})=K_{BEA}^{E} ,

from which it, in consideration of the cyclic property of the curvature
tensor, follows that

(5. 9) S_{\overline{a}b}=K_{be\overline{a}}^{e}+K_{b\overline{e}\overline{a}}^{\overline{e}}=-K_{b\overline{a}e}^{e}+\overline{K_{e\overline{b}a}^{e}}-\overline{K_{a\overline{b}e}^{e}} .
Substituting (5. 4) in (5. 9), we have

(5. 10) S_{\overline{a}b}= \frac{1}{4}\sum_{e,f}(C_{ef}^{a}\overline{C}_{ef}^{b}-2C_{bf}^{a}\overline{C}_{ef}^{e}-2C_{e}^{e}{}_{;}\overline{C}_{af}^{b}-2C_{be}^{f}\overline{C}_{ae}^{f})f

The scalar curvature R is given by

R=gS_{AB}AB ,

which is, by means of (3. 12), reducible to
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(5. 11) R=4 \sum_{a}S_{\overline{\overline{a}}a} .

Consequently from (5. 10) and (5. 11), we have

R=- \sum_{a,e,f}|C_{ef}^{a}|^{2}-4\sum_{f}|C_{ef}^{e}|^{2}\leqq 0 .
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