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§0. In this paper we study the elimination of the intersections of
manifolds which is a generalization of WHITNEY LEMMA as follows.

WHITNEY LEMMA (simply connected version) (see [R & S]): Let P?, Q0
be a pair of connected compact locally flat submanifolds of M™ which are
transverse, so that p+q=m. Suppose (1) p=3, ¢q=3 and m(M)=0 or
(2) p=2, ¢=3 and m(M—Q)=0. If the intersection number of P and Q,
e(P, Q), is zero, we can ambient isotope P off Q, by an isotopy which has
compact support.

We work in the PL category ([Z]) throughout the paper.

MaINn ResurLT I (BounDED VERSION) (COROLLARY TO THEOREM 1).
Let P be a compact p-manifold and M be an m-manifold. Let Q be
a compact q-dim. submanifold of M and f: P—>Int M be an embedding, so
that pt+q=m+k. If (1) 0P+ ¢, P is k-connected, k< p—3 and f(P)NQ
Cf(Int P) or (2) 3Q + ¢, Q is k-connected, k< q—3 and f(P)\NQCInt Q,
then there is an embedding g : P—>Int M which is ambient isotopic to f and
g(P)NQ=9¢.

MaIN ResuLT II (CLoSED VERsSION) (THEOREM 2.) Let P, M be a con-
nected closed p- and m-manifolds and Q be a connected closed q-submani-
fold of M. Let f:P—M be an embedding and let p +q=m + k. Put
N=f(P)nQ.

(1) If P, Q are k-connected and M is (k+1)-connected and if k+3=p,
k+ 3= q then P-side and Q-side intersection classes ¢p(N) and eo(N) are
defined (§2 for definition).

(2) Suppose p,q=m—3 and ep(N)=0 or e(N)=0 provided min (p, q)
=2k+3 or &(N)=0 provided max(p, q)=2k+3 where i=Q if max(p, q)=p
and i=P if max (p, q)=q. Then there is an embedding g : P—M so that g
is ambient isotopic to f and g(P)NQ=¢.

(3) If P,Q are (k+ 1)-connected and M is (k+ 2)-connected and if
k+4=p, k+4=q, ¢p(N) and ¢o(N) are uniquely determined for N (i.e. they
do not depend on the choice of K, L and J at the definition of ep(N),
eo(N)).
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(4) Let P,Q, M and k, p, g are all the same as above (3). Then ep(N)
and eo(N) are isotopy invariants (i.e. if fo, fi: P—M are isotopic embedd-
ings, ep(No)=ep(IN) and eo(No)=eo(INy) where N;=f,(P)NQ (i=0, 1)).

D», S? denote standard p-ball and p-sphere. 2? means an embedded
p-sphere in some manifold. |K| means the underlying space of a complex
K. For compact manifolds M, N a proper embedding f: M—N means an
embedding such that f(0M)CaN and f{(Int M)CInt N.

§1. Bounded version
It is easy to prove the following lemma.

LEMMA 1. Let I, I*, I* be the cartesian products of closed intervals as
m

follows where I"= [0, 1]’>-<_-J-‘-_><‘[O, 1].
nm o e 31, /-1 1" L 317
N N

1 3 R
X[z’ '4—]*[—7’ 7] =b
Then there is an ambient isotopy of I* keeping the boundary fixed and
carrying I* onto CL(I*—I¥).

Fig. 1.

DEFINITION. We say that k-dim. complex K has singular dim. p (briefly
S-dim. p) if for any x€|K — K®| there is a neighborhood U(x) of z in
|K| so that U(x)=R" and if for some y&|K—K”™"| there is no neighbor-
hood U(y) so that U(y)=R* where K is the p-skeleton of K. In particular
if for any x€|K| there is a neighborhood U(x) of x in |K| so that U(z)=R*
we say that K has S-dim. —1. So if |K| is a manifold, K has S-dim.
—1. On the other hand any k-complex has S-dim<k—1. We denote
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S(K)={ze|K]| |* Ux)> Ulz) = R¥} .

If K has S-dim. p, S(K)c K. Let F(K) be the frontier set of K i.e.
F(K)={4eK|4 has at least one free face}.

THEOREM 1. Let M™ be an m-manifold and K be a k-dim. complex with
S-dim. p. Let L be an I-dim. complex with S-dim. ¢ which is a subcomplex
in Int M and f; K—Int M be an embedding. Put r=Fk+1—m and W=
FK)NL.

(1) F(K)#¢, WNFfF(K))=¢ and a connected component, say X, of
fIK—=S(K)) which contains a connected component of W is r-connected
where r<min(k—p, k—2) and XNf(F(K)—S(K))+#d.

(2) F(L)+¢, WNF(L)=¢ and a connected component, say X, of
L—S(L) which contains a connected component of W is r-connected where
r<min(l —p,l —2) and X;N(F(L)— S(L))# ¢. If the above (1) or (2) is
satisfied, there is an embedding g : K—Int M which is ambient isotopic to
S and so that g(K)N L=4¢.

Proor. We will show (1). In (2) we may change f(K) with L. Since
dim (f(K)NL)<k+I—m =r, we can translate f by e-isotopy to f so that
I FK)NLINF(KP|)=¢ because r+ p—k<0. Let W =|F(K)NL| then a
connected component X of f(K—S(K)) containing a connected component
of W is r-connected (r <%k —3) by the assumption. And K—S(K) is a k-
manifold. By ZegmaN’s ENGULFING THEOREM ([Z. CuAP. 7]) there is a
collapsible polyhedron A+ in X c f(K—S(K)) such that AD|F(K)NL|=W.
Since X N F(F(K)—S(K))+ ¢, we can take a simple are @ in F(K — S(K))
joining a and b(acA, be F(F(K)—S(K)).

Since dim. A=S7+1=dim.(K—S(K))—2 and K—S(K) is a manifold, by
the general position technique we may assume ANa=a. So AUa is a col-
lapsible polyherdron and N(AUa, K")=Bf, N(Bi, K'"")=B* and N(BE, M""")
=B~ are all balls. Then by there is an ambient isotopy H of
B™ keeping 0B™ fixed and carrying B* onto CI(B*—Bf) and so H,f(K)N
L=¢. We may put g=H, f.

Proor oF COROLLARY. Any manifold has S-dim. —1. So S(P)=S(Q)=4¢.
Hence by THEOREM 1 we obtain a required embedding ¢ : P—Int M.

§2. Closed version.

DEeFiNiTION 2. A link L =(S": 2‘5, 2% is weak homotopically trivial if 37
is homotopic to zero in S*— 37 or if 37 is homotopic to zero in S*— 3?,
A link L=(S*; 27, 39 is strong slice if there are disjoint locally flat (p+1)-



158 K. Kobayashi

and (g+1)-balls B**!, B! in B**! so that 9B?"'=23? and 0B'*"'=23" where
oB*1=_5",

LEMMA 2. Let L=(S*; 37,3 be a link with p+q=n+k—1 (k=1),
Y2 Q§n—3

(1) p,q=2k+2 and L is weak homotopically trivial.

(2) max(p, Q)=2k+2 and ™™®9 is homotopic to zero in S"— Z=**2D),
If (1) or (2) is satisfied, L is a trivial link i.e. there are disjoint locally
flat (p+1)-and (q+1)-balls B**', B™' in S* such that dB**'=2?, dB**'=23".
ReMARK 1. By LickorisH ([L]) any strong slice link is a trivial link when
Proor oF [LEMMA 2. We will show that L is trivial when max(p, q)=g¢q
3?~0 in S*—23% Since g<n—3, (S?, 29 is a trivial knot and so S*—2°
=Sl RIH = SP~% x R*~P** Since Y?~0 in S"—23% there is a PL map
F:Drt'>S*— 37 such that f(@D?*)=23? and dim. S(f)S2(p+1)—n=p—1.
There is a (p+1)-ball D?*! in Int D?*! such that D?**N.S(f)=¢ and F(dD**)
is homotopic to £(8D?*) in S*—2% And the link L,=(S"; f(dDp*'), 29) is
trivial because £(9D?*!) bounds a non-singular (p+1)-ball £(DF*') in S*— 32
Since S*—3* is (p—k—1)-connected and p—k—1=2p —n+2, F(@D") is
‘ambient isotopic to F(@D?*') in S* — 3¢ by Isorory THEOREM ([Z. CHAP.
8]). Hence L=(S"; 37, 3% is the same link type of (S"; £(dDy*"), 3%) and
L is a trivial. The other cases are followed by the same ways.
DEeFINITION 3. Let P?, M™ be closed p- and m-manifold and Q* be a closed
g-submanifold of M™ with p+g=m+k. Let f: PP->M™ be an embedding.
Put N=FA(P)NQ. If p,g<m—3, by ([A & Z]) we may assume f(P) intersect
Q transversally, and so N is a closed k-manifold. (It may not be connected).
Now suppose that there are subcomplexs K, L, J as follows ;

(1) KcP and fH(N)CK\0 in P.
(2) LcQ and NCL\0.
(3) JcM, JNnf(P)=f(K), JNQ=L and J\0 in M.

Then we defined P-side & Q-side intersection classes e»(IN), go(IN) of f(P) and
Q as follows. Let B(K)=U(K, P"), B(L)y=U(L,Q") and B(J)=U(J, M")
be second derived neighborhood of K, L and J respectively then they are
all p-, g- and n-balls and f(B(K)), B(L) are properly embedded in B(J).
So 3(B(J); f(B(K)), B(L)=(B(J); f(@B(K)), dB(L)) is a link such as (S"*;
Jr-1 31y We define ep(N)={f(0B(K))} € n,-1(S?* ") =n,_1(0B(J)—0B(L))
and eo(N)={0B(L)} € m,-1(S*~*~")=7,1(dB(J)— f(0B(K))).

ProoF oF THEOREM 2. (1) Since P is k-connected and p=k+ 3, by
ZEEMAN’s ENGULFING THEOREM ([Z. CHAP. 7]) there is a (k+1)-dim. col-
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lapsible polyhedron K in P containing f*(N). And since Q is k-connected
(gq=k+3), there is a (k+1)-dim. collapsible polyhedron L, in Q containing
N. Furthermore since m =%+ 4 and M is (k+ 1)-connected, there is a
(k+2)-dim. collapsible polyhedron J; in M containing f(K;)UL,. Let Fy =
CIH{((JiNf(P))—F(K)) and G,=CI((J/;NQ)—L, then dim F,<(k+2)+p—m=
k—1 and dim G,;<k+2+g—m <k—1. Now we will proceed induction as
follows.

@(i): There exist collapsible polyhedra K;, L,, J; so that f~(N)CK,CP,
NcL,cQ and fIKH)UL;,cJ;CIntM. And dmF,;<k—i dimG,Sk—1
where F,=CI((J;Nf(P)—f(K,) and G;=CIl(J;NQ)—L;). We already showed
the case =1 in the above. We will show @(+1) by assuming @(7). Since
dim F;<k—i, by ENGULFING THEOREM there is a (¢—i+1)-dim. polyhedron
K,.: in P containing f~'(F,) so that K;U K;;;\0. And there is a (k—i+1)-
dim. polyhedron I,,, in Q containing G; so that L;U L,..\0. Furthermore
there is a (k—i+2)-dim. polyhedron J,,, in M so that AR UL Cd
and J;UJ;;i 0. Let K;, =K, U K.y, Lin=L;U Ly and Jiy =J;U J i1
As F,C (K1) C© T v, (S NFP)) — f(Kir) C (W isa NFP)) — f(Kira) and so
dimF,,,=dim Cl(J .. Nf(P)—f(Ki ) Sk—i+ 2+ p—m=k—i+2+k—q=<k—
i—1. Similarly since G,CT ;.. CJ i, (Js1NQ)— Ly C(JenNQ)— Ly, and
so dim Gy, =dim Cl(J; . ,NQ)— Ly  Sk—i+24+qg—m=k—i+2+k—p=<k—
i—1. This completes the proof of @(i+1). @(k+1) tell us that there are
collapsible polyhedra K, .1, L;,1, Ji11 such that f7H(N)C K, CP, NCL;,,CQ
and f(Ki:)ULpiC JpnCInt M. And Foyy = Cl((Jei Nf(P))— f(Kis1)) = &,
G =Cl(JzuNQ)— L) =¢. So we may put K=K,;;,, L=L;;; and
J=Jq for K,L,J of the definition of P-side and Q-side intersection
classes.

(2) We will show the case min(p, ¢)=p=2k+3 and ¢»(N)=0. Let

K,L and J be polyhedra of the definition of P-side intersection class.
Then (3B(J); f(@B(K)), dB(L)) is a link such as (S™'; 2?7%, 397!) where
B(J)=U(J,M"), B(K)=U(K, P") and B(L)=U(L, Q") are all second derived
neighborhood. (See DEF. 3). Since e»(N)=0, 2*' is homotopic to zero
in S !'— X!, Hence by (1) of (Sm=t; Zr7! 3h) is trivial i.e.
(@B(J); f(0B(K)), dB(L)) is a trivial link.
So there is a locally flat embedding g, : B>—dB(J) so that g¢,(dB?)=f(dB(K))
and ¢,(B")N8B(L)=¢. Using the collar of 9B(J) in B(J) we can deform
¢: to a locally flat proper embedding g, : B°—B(J) so that g¢,(dB?)=f(0B(K))
and ¢,(B ) NB(L)=¢. Since p<m—3, by IsoTrory THEOREM ([Z, CHAP. 8])
f(B(K)) and g,(B?) is ambient isotopic in B(J) keeping the boundary f(dB(K))
fixed. Let g:P—M be an embedding defined by
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L f on P—Int B(K)
"1 g on BK).

Then ¢ is ambient isotopic to f and ¢g(P)NQ=4¢.
Similarly we can prove the other cases.

(3) Let (K, L;, Ji) (=1, 2) be two systems of subpolyhedra with the
following properties,

(a) K,CP and f(N)CK;\\0,
(b) L;,cQ and NCL,\O,
(C) JiCM) J‘bnf(P):Kla JianLi and Ji\()'

Let B(K;)=U(K,, P""), B(L;)=U(L;, Q") and B(J;)=U(J;,, M") (i=1,2) be
second derived neighborhood. Then #,=(3B(J;): f(0B(K,)), dB(L,) are
links such as (S™7%, 3771, 2771), It is sufficient to show that 27, is ambient
isotopic to #, i.e. for an orintation preserving homeomorphism ¢ : dB(J;)—
0B(J,) there is a level preserving homeomorphism H :0B(J;) x [->0B(J;) x I
so that Hy=id. and H,gf(0B(K.))=f(0B(K,)), H,g(dB(L)=0B(L,).

CaseE 1. We first consider the case B(J,)CB(J,), B(K,)C B(K;), B(L;)C
B(L,). In the case we may assume B(J,)CInt B(J,), B(K;)CInt B(K;) and
B(L,)cInt B(L,) using the collars. By the weak SCHOENFLIEs THEOREM
(H & Z], [H & Z],) .

A(J)=B(J,)—Int B(J,)= 8" x I
A(K)=B(K,)—Int BK)=S"'xI and
A(L)=B(L,)— Int B(L) =S"" x I

Then A(L) and f(A(K)) are properly embedded in A(J). Now f(A(K))N
A(L)=¢ because f(AK))NAL)CA(P)\NQ=NcL,cCInt B(L,). So ¢, and
7, are link cobordant. #/, and #°, are ambient isotopic by [L].

CASE 2. General case. As dim N=k, we may assume dim K;<k+1,
dim L;<%k+1 and dimJ; £k+2. And k+4=<p, k+4=<qg and k+5<m.
P, Q are (k+1)-connected and M is (k+ 2)-connected. So by ENGULFING
THEOREM there are collapsible subspaces K,, L;, J; so that KUK, CK;CP,
LUL,cL,cQ, JuJ,cJ;,cM, f(P\NJ;=K,, QNJ;=L;. Let B(K;) =
U(K,, P"), B(L;)=U(L,;, Q") and B(J;)= U(J;, M"). Then B(K,)UB(K;)C
B(K,), B(L,)U B(L,)C B(L;) and B(J,)U B(J;)CB(J;). By case 1 £ 1= =<,
where #,=(0B(J;); f(0B(K;)), dB(L;)) and where =~ means ambient isotopic.

(4) Let F:PxI->MxI be a level preserving embedding so that Fy=f,
and Fi=f,. W=FPxI)n(QxI), Ny=F,(P)NQ and N,=F,(P)nQ. Since

l
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P, Q are (k+1)-connected and M is (k+ 2)-connected, by ENGULFING THEO-
REM there are collapsible subspaces K!*', L:*! and Jf*? (=0, ) so that

(d) F(N)cK,cPx{i}
() NCLcQx ) |
(f) F(K)ULCJCMx{G), JNF(Px{))=FK)

JiN(Qx{i}) = Li.

Let S=KiMUF Y (W)UKE! and T= LU WULf'. Then by BouNDED
VERSION OF ENGULFING THEOREM (see [I. Th. 4.3]) there are collapsible
subspaces K, L and J so that

(g) ScKcPxI, Kn(Px{i})=K, (i=0,1)

(h) TcLcQxI, Ln(Qx{})=L  (=0,1)

(i) FK)ULcJcMxI, JNFPxI)=FK), JnQxI)=L,
(JN(M=@))NFK)=JLNFK)=FK) (i=0,1),
(Jn(Mg @)NL=JnL=L,  (i=0,1).

Then (8B(J); F(@B(K)), aB(L))=(S"; 2? 3% where B(J)=U(J,M x I),
B(K)=U(K, PxI) and B(L)=U(L, Q xI) are second derived neighborhoods.
And 3(B(J); F(B(K)), B(L))—Int (B(Jy); F(B(Ky)), B(Ly)UInt(B(J,); F(B(K),
BL)=(S™'xI; X»*xI 3" x I) where 9(X; Y, Z)=(0X; dY,0Z) and
Int(X; Y,Z)=(IntX; IntY, IntZ). It gives a link cobordism between
Zy=0(B(Jy); F(B(K,)), B(Ly)) and #,=0(B(J;); F(B(K,)), B(L,)). .Hence
#, and #; are ambient isotopic by ([L]). This completes the theorem.

REMARK 2. We can define the intersection classes e»(lN;), eo(IV;) at the
connected componentwise N;, N,, ---, N, of N=f(P)NQ same as WHITNEY
LEMMA. And we can also prove (2) of THEOREM 2 under ; e,(N;)=0 or

2 eo(N;)=0 with other sutable conditions. But in particular (1) of THEOREM

2 requires a stronger assumption so that p, g=2(k+1). So we defined the
intersection classes ¢p, ¢ for the whole N=f(P)NQ. :

REMARK 3. Let P? (i=1,2), Q" be closed submanifolds in a closed manifold
M™ with p+g=m+k and p,g<m—3. We may assume P, transversally
intersect Q. So N;=PNQ is a closed k-manifold (N; may be empty). Let
[P,) e H,(M), [Q] € H,(M) be homology classes represented by P, Q. And
let [P;J*e H™?(M) be a cohomology class corresponding to [P;] by POINCARE
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DuaLity. Then [P]*N[Q]=[N]e H.(M). So if P, is homologous to
P, in M, [N,]=[N,]. That is, the homology class of N in M is uniquely
determined by the homology classes of P and Q. But for p+qg=m+ %
(k=1), we can not obtain WHITNEY TYPE LEMMA from [N] only.
Contrary to THEOREM 2, if M has a high connectivity we can obtain
a following by global deformation.

THEOREM 3. Let P?, M™ be closed p- and m-manifold and Q be a closed
g-manifold of M. Let f:P—>M be an embedding and min(p, qg)<m — 3.
If M is min (p, q)-connected, there is a homeomorphism g : M—M which is
isotopic to identity and gf(P)NQ=¢.

From (4) of THEOREM 2 and THEOREM 3 we obtain the following.

CorROLLARY. Let P,Q,M and f be the same as THEOREM 3 and let
ptgq=m+k, k+4=p,q. If P and Q are (k+1)-connected, the intersection
classes ep(N)=¢o(N)=0 where N=f(P)NQ.

ProorF oF THEOREM 3. We may assume min(p, q)=p without loss of
generality.

Since p<m — 3 and M is p-connected, by ENGULFING THEOREM there is
an m-ball B* in M so that f(P)CInt B~. We take another m-ball B in
M so that B,NQ=¢. Then by the homogeneity of the ball ([N]) there is
a homeomorphism ¢ : M— M which is isotopic to id. and g(B™)=B". Hence

gf(P)NQCg(B")NQ=BrnQ=¢.

§ 3. Example with non-trivial intersection class.

Let p, g, m, k be all non-negative integers with p + g¢=m + % and suppose
m=Zp+k+2, m=p+3 and m=qg+3. Given a non zero element
ep€my_1(SP7*1). We will first construct a link 2 =(S™!; 377, 1) with
{27} =ep€m, (ST EF ) =, (8™ =301, Let f5: 87— SP %1 xInt DmPt%
be a map so that {fi}=cr€n,_,(S?*'). Since m=p+%,+2 and m=p+3,
by EMBEDDING THEOREM ([Z. CHAP. 8)]) there is an embedding f:S?'—
SP~%~1 x Int D™~ ?** which is homotopic to f;. Since S?~*~!x Dm-ptt=gmn-a-1
x D?, we paste the boundary 9(S?~*~'x D" #**) with the boundary (D™
x 8771 so that (S**'x D P*HY(D"1x §* 1) =81 Then (S™'; f(S*),

b
(Ox ST =(S""1; P71, 3171 is required link 2 where O is the center of
D™,
We can construct proper locally flat embeddings ¢: D*— D™, ¢: D*— D™
so that ¢(@D%)=23*"", ¢(0D*) =23"" and ¢ intersects transversally to ¢ (see
[A & Z]). Let N=¢(D*)N¢(DY)CInt D™ then N is a closed k-dim. manifold.
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Since (S™7%, 2*7') and (S™7, 3%7") are trivial knots, we can extent ¢|dD?,
¢|aD" to the embeddings @ : 9D x D™~ ?—S™\ ¥ :9DP x D™~*—Sm1,

Let W=D"U D?x D™ U (D*x D" and let D(W) be the double of W.
Then we may consider M, f(P), Q, N in the above theorem D(W),
$(D?)U(D? x {0}), (DU (D" x{0}) and $(D")NG(D?). $(D?), (D) and D

ag

are f(B(K)), B(L) and B(J) at the definition of the intersection classes.
And ep(N)=ep(#0)em,_,(SP~* 1),
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