
Hokkaido Mathematical Journal Vol. 6 (1977) p. 74-101

Remarks on L^{2}-we11 posedness of mixed problems
for hyperbolic systems

By K\^oji KUBOTA

(Received May 24, 1976)

\S 1. Introduction and main theorem

In the present paper we are concerned with the boundary value prob-
lem for a 2 m\cross 2m strictly x_{0}-hyperbolic system P of order one:

(P, B)\{\begin{array}{l}P(x,D)u=f in\Omega,B(x’)u=g on\Gamma.,\end{array}

where 12 is the open half space \{x=(x’, x_{n})=(x_{0}, x’, x_{n});x_{0}\in R^{1} , x’\in R^{n-1} ,
. x_{n}>0} (n\geqq 2), its boundary \Gamma is noncharacteristic for P and B(x’) is an
m\cross 2m matrix of rank m for every x’\in\Gamma All coefficients of differential
operators considered here are assumed to be smooth in \overline{\Omega} and constant
outside of a compact subset of \overline{\Omega} . Then the problem (P, B) is said to be
L^{2} well posed if and only if there exist positive constants \gamma_{0} and C such
that for every \gamma\geqq\gamma_{0}, f\in H_{1,\gamma}(\Omega) and g\in H_{32,\gamma},(\Gamma)(P, B) has a unique solution
u in H_{1,\gamma}(\Omega) satisfying

(1. 1) \gamma^{2}||u||_{0,r}^{2}\leqq C(||f||_{0,r}^{2}+|g|_{1/z,r}^{2}) .

This definition of L^{2}-well posedness is weaker than that in Kreiss [7], but
it implies a certain well posedness of the corresponding mixed problem
with initial data on x_{0}=0 . (See \S 5 in Kubota [8]).

In a recent paper Sato and Shirota [15] have refined the results at \S 7
in Ohkubo and Shirota [11] who investigated the above problem under the
condition that all of constant coefficients problems frozen the coefficients
at \Gamma are L^{2}-well posed. In this paper we try to complete some of the
results at \S \S 5, 6 and 8 in [11]. Here we shall use the same terminologies
as in [11] unless otherwise indicated, but we denote by \sqrt{\zeta} the branch of
square roots of \zeta such that \sqrt{1}=1 (see [15]).

Throughout the present article we assume the following conditions
(i) and (i) :

CONDITION (i) (with respect to the principal part P^{0} of P). Let (\eta ,
\sigma, \lambda) be the covector of (x^{0}, x’, x_{n}) . Then for every {x,\eta,\sigma)\in\Gamma\cross(R^{n}\backslash 0) the
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real zeros of the polynomial det P^{0}(x, \eta, \sigma, \lambda) in \lambda are at most of double
multiplicity and it does not have more than one double real zero. Fur-
thermore det P^{0}(x, 0, \sigma, \lambda) is elliptic for x\in\Gamma-

CONDITION (ii) (with respect to Lopatinskii determinant). Let L(x’,
\tau, \sigma) be the Lopatinskii determinant of (P^{0}, B), where \tau=\eta-i\gamma and \gamma is con-
sidered as a red parameter. (See Definition 4. 1 in [11] or (2. 9)). Thm
if L(x’, \tau, \sigma) vanishes at a point (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross(R^{n}\backslash 0),

|L(x^{0}, \eta^{0}-i\mathcal{T}, \sigma^{0})|\geqq C\gamma^{1/2} or C\gamma

for small \gamma>0 according as det P^{0}(x^{0}, \eta^{0}, \sigma^{0}, \lambda) has a double real zero or
not, where C is a positive constant independent of \gamma .

Condition (i) is the same one as the condition (I) in [11] and Condi-
tion (it) means that for fixed (x^{0}, \sigma^{0})L(x^{0}, \eta, \sigma^{0}) is simply characteristic in
a certain sense. (See the condition (II) in [11], (2. 11) and (2. 9)). In
particular, if L(x^{0}, \eta^{0}, \sigma^{0})=0 and det P^{0}(x^{0}, \eta^{0}, \sigma^{0}, \lambda) has a double real zero,
then L is decomposed as

L(x’, \tau, \sigma)=(\sqrt{\tau-\theta(x’,\sigma)}-D(x’, \sigma)) (nonzero factor)

in a conic neighborhood of (x^{0}, \eta^{0}, \sigma^{0}) with Im \tau\leqq 0 .
Using the above root D(x’, \sigma) , we finally impose the following additional
CONDITION (iii).

|{\rm Im} D(x’, \sigma)|\leqq-C{\rm Re} D(x’, \sigma) or | Re D(x’, \sigma)|\leqq C{\rm Im} D(x’, \sigma)

in a neighborhood of (x^{0}, \sigma^{0}) according to the case (a) or (b) of (2. 4) below,
where C=C(x^{0}, \eta^{0}, \sigma^{0}) is a positive constant.

This holds under the conditions (II) \beta), \gamma) and (III) in [11].
Now we shall state our main
THEOREM. Un&r the assumptions (i), (ii) and (Hi) described above

the following three conditions are equivalent:
(A) The problem (P, B) is L^{2}-well posed.
(B) Every constant coeffiffifficients problem (P^{0}, B)_{x’} obtained by freezing

the coeffiffifficients of P^{0} and B at x’\in\Gamma is L^{2}- wdl posed and the constants C
in (1. 1) with respect to these problems are independent of the parameter x’.

(C) HersKs condition holds, that is,

L(x’, \tau, \sigma)\neq 0 , if Im \tau<0 .
And for every (\tilde{x}’,\tilde{\eta},\tilde{\sigma})\in\Gamma\cross(R^{n}\backslash 0) there exist a constant C=C(\tilde{x}’,\tilde{\eta},\tilde{o}) and
a neighborhood U(\tilde{x}’,\tilde{\eta},\tilde{\sigma}) in \Gamma\cross C\cross R^{n-1} such that
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(1. 2) |b_{ij}(x’, \tau, \sigma)|^{2}\leqq C|{\rm Im}\tau|^{-2}|{\rm Im}\lambda_{i}^{+}(x’, \tau, \sigma) Im \lambda_{f}^{-}(x’, \tau, \sigma)|

for all (x’, \tau, \sigma)\in U(\tilde{x}’,\tilde{\eta},\hat{\sigma})\cap\{{\rm Im}\tau<0\} and i,j=1 , \cdots , m. Here b_{ij} is the
coupling coefficient of (P^{0}, B) (see Definition 4. 2 in [11] or (2. 19)) and
\lambda_{i}^{+}(x, \tau, \sigma) , \lambda_{f}^{-}(x, \tau, \sigma) are zeros of det P^{0}(x, \tau, \sigma, \lambda) with positive imaginary
part and negative one when Im \tau<0 respectively.

The implication (A)arrow(B) in our theorem follows from Theorem 1 and
Lemma 2. 2 in Agemi [1], and (B)arrow(C) is proved in Lemm 3. 1 below.
To prove the implication (C)arrow(A) we shall derive in section 3 certain
relations among the coupling coefficients, the Lopatinskii determinant and
its zeros. In fact, we obtain the main inequalities (3.2) and (3. 13), by
virtue of which we may simplify the proofs in [11] and, in particular,
from the latter we can derive the inequality (6. 5) in [11] which is assumed
there. Using those inequalities we construct in sections 4 and 5 such
modified symmetrizers as in [15] which give us a priori estimates mi-
crolocally. In section 6 we complete the proof of the imlication (C)arrow(A)

by showing that an adjoint problem of (P, B) also satisfies Conditions ( i),
.\langle ii ), (iii) and (C). Thus we may assert that under Conditions ( i) and {it)
the microlocal structures of L^{2}-well posed problems are completely de-
scribed by our theorem in the case where there is no point (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma

\cross(R^{n}\backslash 0) such that L(x^{0}, \eta^{0}, \sigma^{0})=0 and det P^{0}(x^{0}, \eta^{0}, \sigma^{0}, \lambda) has a double real
zero, but it remains to investigate the microlocal one in the other case.
(See [15]).

As an application of our theorem we shall give in section 7 full proofs
of Theorem and Corollary in the preceding paper [9] which characterize
the L^{2}-well posedness of such an iterated mixed problem as in Mizohata
[10] or Agemi [2, 3] . The method used in proving those can be also
applied to another iterated mixed problem treated in Sakamoto [13]. (See

Remark 7. 3). Furthermore it should be pointed out that in general the
L^{2}-well posedness of a variable coefficients problem need not follow from
that of the frozen constant coefficients problems, as we have already re-
marked in [9]

The author wishes to express his hearty thanks to Professor T. Shi-
rota for the kind criticisms. The author thanks also Dr. R. Agemi and
Mr. S. Sato for the valuable discussions.

\S 2. Notations and preliminaries

2. 1. In order to express our assertions in simple and precise form it
is convenient to introduce the following notations. By x’ we often denote
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a boundary point (x’, 0). Let \Sigma be the closed hemishere { (\tau, \sigma)=(\eta-i\gamma, \sigma) ;
\eta\in R^{1}, \sigma\in R^{n-1}, \gamma\geqq 0 , |\tau|^{2}+|\sigma|^{2}=1\} . Then by \partial\Sigma and \Sigma_{0} we denote the
boundary of \Sigma and \{(\eta, \sigma) ; (\eta-i\gamma, \sigma)\in\Sigma\} respectively. Moreover \Sigma is often
identified with \{(\eta, \sigma, \gamma) ; (\eta, \sigma)\in R^{n}, \gamma\geqq 0_{ \eta}^{2},+|\sigma|^{2}+\gamma^{2}=1\} . Let

\Lambda(\tau, \sigma)=(|\tau|^{2}+|\sigma|^{2})^{\frac{1}{2}} .
Then we use the notations:

\tau’=\tau\Lambda(\tau, \sigma)^{-1} and \gamma’=\gamma\Lambda(\tau, \sigma)^{-1} etc.

By a (conic) neighborhood of a point (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma we mean one in
\Gamma\cross C\cross R^{n-1} or \overline{\Omega}\cross C\cross R^{n-1} according as \Gamma or \overline{\Omega} is considered as the base
space respectively and by U(x^{0}, \eta^{0}, \sigma^{0}) its appropriate neighborhoods, unless
otherwise indicated. E_{k} stands for the identity matrix of size k which is
omitted if there is no ambiguity. Furthermore we use the function spaces
H_{k},(r\Omega)(k=0,1, 2, \cdots) and H_{s,\gamma}(\Gamma) (s : real) depending a real parameter
\gamma(\gamma\neq 0) with the norms ||\cdot||_{k,\gamma}, |\cdot|_{s,\gamma} and the inner products (\cdot, \cdot)_{k,\gamma}, \langle \cdot , \cdot \rangle_{s,\gamma}

respectively. (See for instance \S 2 in [8]). We also use the same class S_{+}^{q}

(q : real) of symbols of (tangential) pseud0-differential operators with non-
negative parameters x_{n} and \gamma as in \S 2 of [11]. With a symbol a(x’, \eta, \sigma,
\gamma)\in S_{+}^{q} we associate a pseud0-differential operator by

a(x’, D’, \gamma)u(x’)=(2\pi)^{-n}\int_{R^{n}}e^{i(\tau x_{0}+\sigma x’)}a(x’, \eta, \sigma, \gamma)\theta(\tau, \sigma)d\eta d\sigma

for u\in H_{q,\gamma}(\Gamma), where

\^u ( \tau, \sigma)=\int_{\Gamma}e^{-i(\tau x_{0}+\sigma x’)}u(x’)dx’ ,

and for simplicity we denote a(x’, D’, \gamma) by a(x’, D’) . If a C^{\infty} function
a(x, \eta, \sigma, \gamma) defined in a neighborhood of (x^{0}, \eta^{0}, \sigma^{0}, \gamma^{0})\in\Gamma\cross\Sigma is homogeneous
of degree q in (\eta, \sigma, \gamma), then we extend it to \overline{\Omega}\cross((R^{n}\cross[0, \infty))\backslash 0) so that
the extended one belongs to S_{+}^{q} and is denoted also by a(x, \eta, \sigma, \gamma) .

2. 2. In this and the following two subsections we shall give a sum-
mary of fundamental concepts for our problems. (See \S \S 3, 4 and 6 in [11]
and \S 2 in [15] ).

\alpha) For every point (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma such that det P^{0}(x^{0}, \eta^{0}, \sigma^{0}, \lambda) has
a double real zero, there exists a smooth and real valued function \theta(x, \sigma)

defined in a conic neighborhood of (x^{0}, \sigma^{0}) which is homogeneous of degree
one in \sigma and such that \theta(x^{0}, \sigma^{0})=\eta^{0} and det P^{0}(x, \tau, \sigma, \lambda) has a double real
zero precisely on the surface \tau=\theta(x, \sigma) in a conic neighborhood of (x^{0}, \eta^{0},

\prime^{0}) . (See Lemma 3. 1 in [11]). Furthermore, as in [15], we shall often use
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the function :
\zeta=\tau-\theta(x, \sigma) .

\beta) By virtue of the assumptions with respect to P and \Gamma we may
assume without loss of generality that near \Gamma the coefficient of D_{n} in
P^{0}(x, D) is E. Let (x^{0}, \tau^{0}, \sigma^{0})\in\Gamma\cross\Sigma . Then there exists a smooth and
nonsingular matrix S(x, \tau, \sigma) defined in a conic neighborhood of (x^{0}, \tau^{0}, \sigma^{0})

which is homogeneous of degree zero in (\tau, \sigma), analytic in \tau and satisfies
(2. 1) S^{-1}P^{0}(x, \tau, \sigma, \lambda)S=\lambda E-M(x, \tau, \sigma) ,

where in general

(2. 2) M(x, \tau, \sigma)=\lfloor\lceil^{\lambda_{I}^{+}}\lambda_{I}^{-}M_{II}M_{III}^{+}M_{III}^{-} (x, \tau, \sigma) ,

(2. 3) S(x, \tau, \sigma)=(h_{I}^{+}, h_{I}^{-}, h_{II}’, h_{II}’, h_{III}^{+}, h_{III}^{-})(x, \tau, \sigma) .
Here denoting by 2l the number of the real zeros of det P^{0}(x^{0}, \tau^{0}, \sigma^{0}, \lambda), we
set III =\{l+1, \cdots, m\} , 1=\{1, \cdots, l-1\} or \{1, \cdots, l\} and |I|=l-1 or l accord-
ing as the polynomial has a double real zero or not respectively. More
precisely

1) \lambda_{I}^{\pm}(x, \tau, \sigma) are |I|\cross|I| diagonal matrices whose eigenvalues are
simple zeros of det P^{0}(x, \tau, \sigma, \lambda) with positive imaginary parts or negative
ones when Im \tau<0 respectively and are real when Im \tau=0 .

2) M_{II}(x, \tau, \sigma) is a 2\cross 2 matrix which has eigenvalues \lambda_{II}^{\pm}(x, \tau, \sigma) with
positive imaginary part or negative one when Im \tau<0 respectively. More
ver if \tau=\theta(x, \sigma), then they are equal to the double real zero of det P^{0}(x,
\tau, \sigma, \lambda) , and h_{II}’(x, \tau, \sigma) or h_{II}’(x, \tau, \sigma) is an eigenvector or a generalized
eigenvector of M_{II}(x, \tau, \sigma) associated with the eigenvalue \lambda_{II}^{+}(x, \theta(x, \sigma), \sigma)

respectively.
3) \pm M_{III}^{\pm}(x, \tau, \sigma) are (m-l)\cross(m-l) matrices whose eigenvalues have

positive imaginary parts at (x^{0}, \tau^{0}, \sigma^{0}) and, in fact, whose imaginary parts
are positive definite. (See [7] and \S 3 in [11]).

\gamma) Next let (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma be a point such that det P^{0}(x^{0}, \eta^{0}, \sigma^{0}, \lambda)

has the double real zero \lambda^{0} . Then the eigenvalues \lambda_{II}^{\pm}(x, \tau, \sigma) of M_{II}(x, \tau, \sigma)

are functions defined in a conic neighborhood U(x^{0}, \eta^{0}, \sigma^{0}) with Im \tau\leqq 0

and are represented as
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(a) \lambda_{II}^{\pm}\langle x, \tau, \sigma ) =\lambda_{1}(x, \tau, \sigma)\mp\sqrt{\zeta}\lambda_{2}(x, \tau, \sigma) or
(2. 4)

(b) \lambda_{II}^{\pm}(x, \tau, \sigma)=\lambda_{1}(x, \tau, \sigma)\pm^{1}i\sqrt{\zeta}\lambda_{2}’(x, \tau, \sigma)

according as the normal cone cut by x=x^{0} and \sigma=\sigma^{0} is convex or concave
with respect to \eta at (\eta^{0}, \lambda^{0}) respectively. Here \lambda_{1} , \lambda_{2} and \lambda_{2}’ are real valued
for real \tau, analytic in \zeta, \lambda_{1}\in S_{+}^{1} , \lambda_{2}, \lambda_{2}’\in S_{+}^{*} and \lambda_{2} , \lambda_{2}’ are positive at (x^{0}, \eta^{0}, \sigma^{0}).
(See Lemma 3. 1 in [11]). Moreover M_{II} has the following expansion:

M_{II}(x, \tau, \sigma)=\{\begin{array}{llll}\lambda_{1}(x,\theta(x, \sigma),\sigma) \Lambda(\tau, \sigma)0 \lambda_{1}(x,\theta(x,\sigma),\sigma) \end{array}\}

(2. 5)
+{\rm Re}\zeta \{\begin{array}{ll}e_{11} e_{12}e_{21} e_{22}\end{array}\} (x, \eta, \sigma)-i\gamma \{\begin{array}{ll}h_{11} h_{12}h.21 h_{22}\end{array}\} (x, \eta, \sigma)+O(\gamma^{2}\Lambda^{-1}) ,

where e_{if}(x, \eta, \sigma) and h_{if}(x, \eta, \sigma) belong to S_{+}^{0} , e_{if} are real valued,

(2. 6) e_{11}=e_{22}

(see P. 132 in [15]) and at (x^{0}, \eta^{0}, \sigma^{0})

(2. 7) e_{21}=h_{21}>0 or <0

according to the case (a) or (b) of (2. 4) respectively.
In what follows for simplicity of description we shall be concerned

with only the case (a) above unless otherwise indicated.
2. 3. In order to define Lopatinskii determinant let {}^{t}(1, s(x, \tau, \sigma)) be an

eigenvector of M_{II}(x, \tau, \sigma) associated with the eigenvalue \lambda_{II}^{+}(x, \tau, \sigma) and set

(2. 8) h_{II}^{+}=h_{II}’+sh_{II}’ .
Then h_{II}^{+}(x, \tau, \sigma) is an eigenvector of M(x, \tau, \sigma) associated with \lambda_{II}^{+}(x, \tau, \sigma)

and the function
(2. 9) L(x’, \tau, \sigma)=\det B(x’)(h_{I}^{+}, h_{II}^{+}, h_{III}^{+})(x’, \tau, \sigma)

is said to be Lopatinskii determinant of the problem (P^{0}, B). (See Defini-
tion 4. 1 in [11] ). By (2.8) and the fact that s(x, \theta(x, \sigma), \sigma)=0 (see (2.4)
and (2. 5)), (2. 9) becomes

(2. 10) L(x’, \tau, \sigma)=\det B(x’)(h_{I}^{+}, h_{II}’, h_{III}^{+})(x’, \tau, \sigma), if \tau=\theta(x’, \sigma) .

Let (x^{0}, \eta^{0}, \sigma^{0})\in l’\cross\partial\Sigma be a point such that L(x^{0}, \eta^{0}, \sigma^{0})=0 and det P^{0}(x^{0},
\eta^{0}, \sigma^{0}, \lambda) has no double real zero. Then L(x’, \tau, \sigma) is defined in a conic
neighborhood of (x^{0}, \eta^{0}, \sigma^{0}), analytic in \tau and smooth in (x’, \eta, \sigma, \gamma) . Moreo-
ver it is represented as

(2. 11) L(x’, \tau, \sigma)=(\tau-\nu(x’, \sigma))L^{(1)}(x’, \tau, \sigma)
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in a conic neighborhood of (x^{0}, \eta^{0}, \sigma^{0}), where \nu(x’, \sigma) is smooth, homogene-
ous of degree one in \sigma, \nu(x^{0}, \sigma^{0})=\eta^{0}, and L^{(1)}(x’, \tau, \sigma) is smooth, analytic in
\tau, homogeneous of degree -1 in (\tau, \sigma) and L^{(1)}(x^{0}, \eta^{0}, \sigma^{0})=(\partial L/\partial\tau)(x^{0}, \eta^{0}, \sigma^{0})

\neq 0 . (See P. Ill in [11]).
Next let (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma be a point such that L(x^{0}, \eta^{0}, \sigma^{0})=0 and det

F(x^{0}, \eta^{0}, \sigma^{0}, \lambda) has a double real zero. Then we find by virtue of (2. 4),
(2. 8) and (2. 9) that L(x’, \tau, \sigma) is define in a conic neighborhood of (x^{0}, \eta^{0},
\sigma^{0}) with Im \tau\leqq 0, homogeneous of degree zero in (\tau, \sigma), analytic in \sqrt{\zeta} and
smooth in (x’, \sqrt{\zeta}, \sigma), so it is continous, since s(x’, \tau, \sigma) is so. Moreover
we obtain

(2. 12) det B(x^{0})(h_{I}^{+}, h_{II}’, h_{III}^{+})(x^{0}, \eta^{0}, \sigma^{0})\neq 0

(see P. 120 in [11]). Therefore L is represented as

(2. 13) L(x’, \tau, \sigma)=(\sqrt{\zeta}-D(x’, \sigma)) (nonzero factor)

in a conic neighborhood of (x^{0}, \eta^{0}, \sigma^{0}) with Im \tau\leqq 0, where D(x’, \sigma) is
smooth, homogeneous of degree 1/2 in \sigma and D(x^{0}, \sigma^{0})=0 . (See P. 84 in
[11] ).

Now let us define a function Q by

(2. 14) Q(x’, \tau, \sigma)=(\det B(h_{I}^{+}, h_{II}’, h_{III}^{+}))^{-1}(\det B(h_{I}^{+}, h_{II}’, h_{III}^{+}))(x’, \tau, \sigma) .

(See Lemma 6. 1 in [11]). Then by the implicit function theorem we find
a smooth and real valued function \rho(x’, \sigma) define in a conic neighborhood
of (x^{0}, \sigma^{0}) which is homogeneous of degree one in \sigma and such that \rho(x^{0}, \sigma^{0})

=\eta^{0} and \eta’=\rho(x’, \sigma’) satisfies

(2. 15) (|Q|^{2}+e_{21} Re \zeta (1+e_{12} {\rm Re} \zeta)^{-1})(x’, \eta’, \sigma’)=0 .
(See Remark 7. 1 in [11] or Lemma 2. 3 in [15]). Moreover let L_{II}(x’, \tau, \sigma)

be the Lopatinskii determinant of the problem:

\int (D_{n}-M_{II}(x, D’))u_{II}=f in \Omega ,
(_{u_{II}’+Q(x’, D’)u_{II}’=g} on \Gamma’.

where u_{II}={}^{t}(u_{II}’, u_{II}’) . (See Lemma 6. 3 in [11]). Then from (6. 4. 3) in [11]
we have

L_{II}(x’, \tau, \sigma)=Q(x’, \tau, \sigma)+s(x’, \tau, \sigma)

(2. 16)
=L(x’, \tau, \sigma) (nonzero factor).

Hence we find from (2. 8), (2. 20) and (2. 21) in [15] that in the case \{a)

of (2. 4)
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( |Q|^{2}+e_{21} Re \zeta (1+e_{12} {\rm Re} \zeta)^{-1}) (x’, \eta’, \sigma’)

(2. 17)
=(({\rm Re}\zeta+|D|^{2}) D–(Re \zeta B Re D) (x’, \eta’, \sigma’) ,

(2. 18) (s_{2} Re Q) (x’, \eta’, \sigma’)=(A{\rm Re} D-({\rm Re}\zeta+|D|^{2})B)(x’, \eta’, \sigma’) ,

where s_{2}(x’, \eta, \sigma)>0, A(x’, \eta, \sigma)>0 and B(x’, \eta, \sigma) is real.
2. 4. Finally let L(x’, \tau, \sigma)\neq 0 . Then the elements b_{if}, i,j=1, \cdots , m of

the following matrix are said to be coupling coeffiffifficients of (P^{0}, B) :

(b_{if}(x’, \tau, \sigma);i\downarrow 1 , \cdots , m,jarrow 1 , \cdots , m)

(2. 19) =\{\begin{array}{lll}b_{II} b_{III} b_{IIII}b_{III} b_{IIII} b_{IIIII}b_{IIII} b_{IIIII} b_{IIIIII}\end{array}\}(x’, \tau, \sigma)

=(B(h_{I}^{+}, h_{II}^{+}, h_{III}^{+}))^{-1}B(h_{I}^{-}, h_{II}’, h_{III}^{-}) .

(See Definition 4. 2 in [11]).

\S 3. Necessary conditions for (P, B) to be L^{2}-well posed

First of all we shall show the following

LEMMA 3. 1. The implication (B)arrow(C) in Theorem is valid.
PROOF. It is known that {B) and (C) are equ^{\searrow}1valent in the case of

constant coefficients. \beta ee Theorem 4. 1 in [11] ). Therefore we only have
to show that the constant C in (1. 2) is independent of x’ . Let (P, B)_{y’}

be L^{2}-well posed for a point y’\in\Gamma Then, if f(x) belongs to H_{1,\gamma}(\Omega) and
vanishes when x_{0}<0, the solution u(x) of the problem (P^{0}, B)_{y’} with g=0
is so. (See \S 5, Remark 3) in [8] ). Hence, applying the method used in
the proof of Theorem 4. 1 in [5], we find that under the condition (B) the
norm of the Green’s operator\in B(L^{2}(0, \infty), L^{2}(0, \infty)) of the boundary value
problem for an ordinary differential system depending parameters (x’, \tau, \sigma)

(Im \tau<0):

/ P^{0}(x’, \tau, \sigma, D_{n})u(x_{n})=f(x_{n}) in x_{n}>0 ,
| B(x’)u(x_{n})=0 on x_{n}=0

is estimated by Im |\tau|^{-1} uniformly with respect to (x’, \tau, \sigma) near a fixed
point (\tilde{x}’,\tilde{\eta},\tilde{o})\in\Gamma\cross\partial\Sigma . Therefore we can obtain (1. 2) by the same proce-
dure as in the proof of Theorem 4. 1 in [11]. This completes the proof.

In what follows (x’, \eta-i\gamma, \sigma) varies only near a given point (x^{0}, \eta^{0}, \sigma^{0})

\in\Gamma\cross\partial\Sigma and throughout sections 3, 4 and 5 we assume that the condition
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(C) holds, so every constant coefficients problem (P^{0}, B)_{x’} is L^{2}-well posed.
Let (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma be a point such that L(x^{0}, \eta^{0}, \sigma^{0})=0 and the

polynomial det P^{0}(x^{0}, \eta^{0}, \sigma^{0}, \lambda) has no double real zero. Then we have
LEMMA 3. 2. There exist indexes i and j with Im \lambda_{i}^{+}(x^{0}, \eta^{0}, \sigma^{0})>0 and

Im \lambda_{f}^{-}(x^{0}, \eta^{0}, \sigma^{0})<0 such that
1) The matrix resulting from replacing the i-th column of the

Lopatinskii determinant by Bh_{f}^{-} does not vanish at (x^{0}, \eta^{0}, \sigma^{0}), that is,

(3. 1) det B(x^{0})(h_{1}^{+}, \cdots, h_{i-1}^{+}, h_{f}^{-}, h_{i+1^{ }}^{+},\cdots, h_{m}^{+})(x^{0}, \eta^{0}, \sigma^{0})\neq 0 ,

where h_{p}^{+},p=1 , \cdots , m and h_{f}^{-} are generalized eigenvectors of M associated
with \lambda_{p}^{+} and \lambda_{j}^{-} at (x^{0}, \eta^{0}, \sigma^{0}) respectively.

2) There is a positive constant C=C(x^{0}, \eta^{0}, \sigma^{0}) satisfying

(3. 2) |(b_{iI}L)(x’, \eta, \sigma)|^{2}+|(b_{If}L)(x’, \eta, \sigma)|^{2}\leqq C Im \nu(x’, \sigma)

for \eta={\rm Re}\nu(x’, \sigma) . Here \nu(x’, \sigma) is the function in (2. 11).

PROOF. We first observe from (2. 9) and (2. 19) that the left hand
side of (3. 1) is equal to (b_{if}L)(x^{0}, \eta^{0}, \sigma^{0}), for every i,j=1, \cdots , m. On the
other hand, since L(x^{0}, \eta^{0}-i\gamma, \sigma^{0})=O(\gamma), it follows from (1. 2) with (x’, \tau, \sigma)

=(x^{0}, \eta^{0}-i\gamma, \sigma^{0}) that (b_{if}L)(x^{0}, \eta^{0}, \sigma^{0})=0 if i\in I or j\in I . Hence we find
indexes i,j\in III satisfying (3. 1), because of (2. 11) and rank (BS) (x^{0}, \eta^{0}, \sigma^{0})

=m. (See also the proof of Lemma 5. 2, ( i) in [11]). Furthermore (2. 11)
and the Hersh’s condition imply that Im \nu(x’, \sigma)\geqq 0 .

To derive (3. 2) let det P^{0}(x^{0}, \eta^{0}, \sigma^{0}, \lambda) have simple real zeros. Then it
follows from (1. 2) that for \gamma>0 and some C>0

(3. 3) |(b_{Ij}L)(x’, \eta-i\gamma, \sigma)|^{2}\leqq C\gamma-1|L(x’, \eta-ir, \sigma)|^{2},

because of \beta ), 1) and 3) in \S 2.2. On the other hand from (2. 11) we
have for some C

(3. 4) |L(x’, \eta-i\gamma, \sigma)|^{2}\leqq C(\gamma^{2}+({\rm Im}\nu(x’, \sigma))^{2}) , if \eta={\rm Re}\nu(x’, \sigma) .
Furthermore the left hand side of (3. 3) is estimated from below by

2^{-1}|(b_{If}L)(x’, \eta, \sigma)|^{2}-0(\gamma^{2}) ,

since (b_{Ij}L)(x’, \eta-i\gamma, \sigma) is smooth. Thus from (3. 3) and (3. 4) we obtain
(3. 5) |(b_{Ij}L) (x’, Re \nu (x’, \sigma), \sigma ) |^{2}\leqq C\{\gamma+\gamma^{-1}({\rm Im}\nu(x’, \sigma))^{2}\}

for small \gamma>0 and some C>0 . Here we may assume that 0\leqq{\rm Im}\nu(x’, \sigma)

<\delta for some \delta>0 and that (3. 5) is valid if 0<\gamma<\delta with the same \delta .
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Now let us fix (x’, \sigma) . Then if Im \nu(x’, \sigma)=0 , the left hand side of
(3. 5) must vanish, since \gamma is independent of (x’, \sigma) . Otherwise let \gamma={\rm Im}

\nu(x’, \sigma) . Then from (3. 5) we also obtain for some C>0
|(b_{If}L) (x’, Re \nu (x’, \sigma), \sigma) |^{2}\leqq C Im \nu(x’, \sigma) .

Similarly we can conclude that (3. 2) is valid. The proof is complete.
Next we consider the case where the double real zero exists. Here-

after in this section let (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma be a point such that L(x^{0}, \eta^{0}, \sigma^{0})

=0 and det P^{0}(x^{0}, \eta^{0}, \sigma^{0}, \lambda) has a double real zero. Then we obtain
LEMMA 3. 3.

(3. 6) |(b_{III}L)(x’, \eta, \sigma)|^{2}+|(b_{III}L)(x’, \eta, \sigma)|^{2}\leqq C|D(x’, \sigma)|

for \eta=\rho(x’, \sigma), where \rho(x’, \sigma) is the function &fined by (2. 15) and C is
a positive constant.

PROOF. It follows from (1. 2) and (2. 13) that for \gamma>0

(3. 7) |(b_{III}L)(x’, \eta-i\gamma, \sigma)|^{2}\leqq C\gamma-1|{\rm Im}\lambda_{II}^{+}(x’, \eta-ir, \sigma)||\sqrt{\zeta}-D(x’, \sigma)|^{2} ,

because of \beta ), 1) in \S 2. 2. Hereafter in the proof let C denote various
positive constants independent of (x’, \eta, \sigma, \gamma) . Then by (2. 4) we have

(3. 8) |{\rm Im}\lambda_{II}^{+}(x’, \eta-i\gamma, \sigma)|\leqq C|{\rm Im}\sqrt{\zeta}|+O(\gamma) .

Furthermore the choise of the branch \sqrt{\zeta} implies

(3. 9) C|\zeta|^{*}\leqq- Im \sqrt{\zeta}\leqq C^{-1}|\zeta|^{*}, if Re \zeta\leqq 0 .
On the other hand from (2. 8), (2. 9) and (2. 19) we have for j\in I

b_{IIf}L=\det B(h_{I}^{+}, h_{f}^{-}, h_{III}^{+}) ,
(3. 10)

b_{fII}L=\det B(h_{1}^{+}, \cdots, h_{J-1}^{+}, h_{II}’, h_{J+1^{ }}^{+},\cdots, h_{|I|}^{+}, h_{II}’, h_{III}^{+}) .

Hence (b_{IIj}L)(xf, \eta-i\gamma, \sigma)\dot{x}s smooth in (x’, \eta, \sigma, \gamma). Therefore from (3.7)\backslash -
,

(3. 8) and (3. 9) we obtain

(3. 11) |(b_{III}L)(x’, \eta, \sigma)|^{2}\leqq C\gamma^{-1}|\zeta|^{*}(|\zeta|+|D(x’, \sigma)|^{2})

for small \gamma>0 and Re \zeta\leqq 0 , as in deriving (3. 5). Furthermore (2. 15) and
(2. 17) imply

(3. 12) C^{-1}|{\rm Re}\zeta|\leqq|D(x’, \sigma)|^{2}\leqq C|{\rm Re}\zeta| , 1 if \eta=\rho(x’, \sigma) .

Hence from (3. 11) we have

|(b_{III}L)(x’, \eta, \sigma)|^{2}\leqq C\gamma-1(\gamma+|D(x’, \sigma)|^{2})^{\}
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for small \gamma>0 and \eta=\rho(x’, \sigma) , since Im \zeta=-\gamma . Therefore we obtain

|(b_{III}L)(x’, \rho(x’, \sigma), \sigma)|^{2}\leqq C|D(x’, \sigma)| ,

as in the proof of (3. 2). Similarly we conclude that (3. 6) is valid, since
it follows from (3. 10) that (b_{fII}L)(x, \eta-i\gamma, \sigma) is smooth in (x’, \eta, \sigma, \gamma).

,,, .

COROLLARY 3. 4. Under the hypotheses of Lemma 3. 3 Condition (iii)
implies that

|(b_{III}L)(x’, \eta, \sigma)|^{2}+|(b_{III}L)(x’, \eta, \sigma)|^{2}

(3. 13)
\leqq-C{\rm Re} D(x’, \sigma) or C{\rm Im} D(x’, \sigma)

for \eta=\rho(x’, \sigma) and some constant C>0 according to the case (a) or (b) of
(2. 4) respectively, where the left hand side of (3. 13) is regarded as zero if
det P^{0}(x^{0} \eta^{0} \sigma^{0} \lambda) has no simple real zero

\S 4. Construction of modified symmetrizers I

In this section we shall show that (3. 2) is sufficient for a modified
symmetrizer to be constructed in the case where the double real zero is
absent and then we derive microlocally a priori estimate.

I,et(x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma be such a point as in Lemma 3. 2 and suppose
that the condition (C) holds. Then we have

LEMMA 4. 1. There exists a 2 m\cross 2m hermitian matrix R(x, \eta, \sigma, \gamma)

\in S_{+}^{0} , homogeneous in (\eta, \sigma, \gamma) such that

(4. 1) Re (iRM)(x, \eta, \sigma, \gamma)u\cdot u\geqq a_{0}\gamma|u|^{2}

for (x, \eta, \sigma, \gamma)\in.\overline{Q}\cross\Sigma and vector :

(4. 2) u={}^{t}(^{t}u_{I}^{+},{}^{t}u_{I}^{-},{}^{t}u_{III}^{+},{}^{t}u_{III}^{-})\in C^{2m}

satisfying u_{III}^{-}=0, where
{}^{t}u_{I}^{\pm}=(u_{1}^{\pm}, \cdots, u_{|1|)}^{\pm},{}^{t}u_{III}^{\pm}=(u_{t+1^{ }}^{\pm},\cdots, u_{m}^{\pm}) ,

a_{0}=a_{0}(x^{0}, \eta^{0}, \sigma^{0}) is a positive constant and v\cdot u stands for the inner product
in C^{2m} . Furthermore

(4. 3) R(x’, \eta, \sigma, \gamma)u\cdot u\geqq 0

for (x’, \eta, \sigma, \gamma)\in\Gamma\cross\Sigma and u\in C^{2m} of the form (4. 2) such that

(4. 4) B(x’)S(\dot{x}’, \eta-i\gamma, \sigma)u=0

and
(4. 5) {}^{t}u_{III}^{-}=(0, \cdots , 0, u_{j}^{-} , 0, \cdots , 01,,



Remarks on L^{2}-well posedness of mixed problems for hyperbolic systems 85

where j is the index in Lemma 3. 2 and S(x, \tau, \sigma) is the matrix in (2. 1).

REMARK 4.2. The restrictions u_{III}^{-}=0 in (4. 1) and (4.5) on u are
due to the fact that the Dirichlet problem for D_{n}-M_{III}^{-}(x, D’) is coercive.
(See Lemma 4. 3 below).

PROOF of LEMMA 4. 1. We may assumed without loss of generality
that i=j=m in Lemma 3. 2. Put

B’(x’, \tau, \sigma)=B(x’)(h_{I}^{-}, h_{III’}^{-}, h_{m}^{+})(x’, \tau, \sigma) ,
(4. 6)

B’(x’, \tau, \sigma)=B(x’)(h_{I}^{+}, h_{III’}^{+}, h_{m}^{-})(x’, \tau, \sigma) ,

where III’ =\{l+1, \cdots, m-1\} . Then (3. 1) becomes

(4. 7) det B’(x^{0}, \eta^{0}, \sigma^{0})\neq 0 .
Now we shall define a hermitian matrix R(x, \eta, \sigma, \gamma) in the following

way:

(4. 8) R(x, \eta, \sigma, \gamma)=\{\begin{array}{lllll}-E_{l} ! c_{I}^{-} E_{l}!^{I}|| \vdots .------------------------- \dot{} -\gamma’E_{m-l} R_{0} \vdots R_{0}^{*} R_{III}^{-}\end{array}\}

where R_{III}^{-} and R_{0} are matrices whose elements equal zero except the
lowest right ones r_{III}^{-} and r_{mm} respectively, and where c_{I}^{-} and r_{III}^{-} are
positive constants to be chosen later. Furthermore

(4. 9) r_{mm}(x, \eta, \sigma, \gamma)=(2i)^{-1}a(L^{(1)})^{-1} det B’(x’, \tau’, \sigma’) ,

where a is a positive constant to be chosen later and L^{(1)}(x’, \tau, \sigma) is the
function in (2. 11). Then we see easily that the matrix R(x, \eta, \sigma, \gamma) thus
defined belongs to S_{+}^{0} , is homogeneous in (\eta, \sigma, \gamma) and satisfies (4. 1) when
c_{I}^{-} , r_{III}^{-} and a are arbitrary positive constants. Therefore it is enough to
show that (4. 3) is valid. Hereafter in the proof we consider only such
u\in C^{2m} as described in the statement of the lemma. Then (4. 2) and (4. 8)
imply

(4. 10) R(x’, \eta, \sigma, \gamma)u\cdot u=-u_{I}^{+}\cdot u_{I}^{+}+c_{I}^{-}u_{I}^{-}\cdot u_{I}^{-}

-\gamma’u_{III}^{+}\cdot u_{III}^{+}+r_{III}^{-}u_{\overline{m}}\cdot u_{m}^{-}+2{\rm Re} r_{mm}u_{\overline{m}}\cdot u_{m}^{+} .
Let

(4. 11) (B^{\prime\prime-1}B’)(x’, \tau, \sigma)=\{

k_{I}
1

k_{I} III’ k_{Im}

k_{III’} 1 k_{III’} III’ k_{III’m}

k_{mI} k_{m} III’ k_{mm}

(x’, \tau, \sigma) .
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Then it follows from (2. 9), (2. 19) and (4. 6) that

(4. 12) k_{mm}=(\det B’)^{-1}L ,

(4. 13) b_{mI}L=k_{mI} det B’, b_{Im}L=-k_{Im} det B’ .
Furthermore (4. 4) may be written as

(4. 14) \{\begin{array}{l}u_{I}^{+}u_{III’}^{+}u_{\overline{m}}\end{array}\}=-[

k_{I1} k_{Im}

k_{III’1}k_{III’m}

k_{mI} k_{mm}

(x’, \tau, \sigma)\{\begin{array}{l}u_{I}^{-}u_{m}^{+}\end{array}\} ,

if (4. 5) is satisfied, i.e. , u_{III’}^{-}=0 .
Now we insert (4. 14) into (4. 10). Then by a simple calculation we

have

(4. 15) R(x’, \eta, \sigma, \gamma)u\cdot u=\{\begin{array}{ll}q_{II} q_{Im}^{*}q_{Im} q_{mm}\end{array}\}(x’, \eta, \sigma, \gamma)\{\begin{array}{l}u_{I}^{-}u_{m}^{+}\end{array}\} \{\begin{array}{l}.u_{I}^{-}u_{n}^{+}\end{array}\} ,

where
(4. 16) q_{II}(x’, \eta, \sigma, \gamma)=(c_{I}^{-}+r_{III}^{-}|k_{mI}|^{2})E_{l}-k_{II}^{*}k_{II}+O(\gamma) ,

(4. 17) q_{Im}(x’, \eta, \sigma, \gamma)=-k_{Im}^{*}k_{II}+r_{III}^{-}\overline{k}_{mm}k_{mI}-r_{mm}k_{mI}+O(\gamma)

and

(4. 18) q_{mm}(x’, \eta, \sigma, \gamma)=-2{\rm Re}(r_{mm}k_{mm})+r_{III}^{-}|k_{mm}|^{2}-|k_{Im}|^{2}-\gamma(1+|k_{III’m}|^{2})e

Here and in what follows we suppose that (\eta, \sigma, \gamma)\in\Sigma . On the other hand
it follows from (4. 9), (4. 12) and (2. 11) that

(4. 19) -2{\rm Re}(r_{mm}k_{mm})(x’, \eta, \sigma, \gamma)=a(\gamma+{\rm Im}\nu(x’, \sigma))

and

(4. 20) |k_{mm}(x’, \eta-i\gamma, \sigma)|^{2}=\{(\eta-{\rm Re} _{\nu}(x’, \sigma))^{2}+(\gamma+{\rm Im}\nu(x’, \sigma))^{2}\}|k_{mm}^{(1)}|^{2} ,

where
k_{mm}^{(1)}(x^{0}, \eta^{0}, \sigma^{0})=(\det B’)^{-1}L^{(1)}(x^{0}, \eta^{0}, \sigma^{0})\neq 0 .

Here we shall use (3. 2). Then from (4. 7) and (4. 13) we have for some
constant C>0

|k_{Im}(x’, \eta-ir, \sigma)|^{2}+|k_{mI}(x’, \eta-ir, \sigma)|^{2}

(4. 21)
\leqq c\{{\rm Im}\nu(X’, \sigma)+(\eta-{\rm Re} _{\nu(x’, \sigma))^{2}+\gamma^{2\}}} .

Therefore taking a, r_{III}^{-} sufficiently large and using (4. 18)-(4. 21) we obtain

(4. 22) q_{mm}(x’, \eta, \sigma, \gamma)\geqq\gamma+{\rm Im}\nu(x’, \sigma)+(\eta- Re \nu(x’, \sigma))^{2}
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Hence from (4. 16), (4. 17) and (4. 21) we have

(4. 23) \{\begin{array}{ll}q_{II} q_{Im}^{*}q_{Im} q_{mm}\end{array}\}(x’, \eta, \sigma, \gamma)\geqq\frac{1}{2} \{\begin{array}{ll}E_{l} 00 \gamma\end{array}\}

for (x’, \eta, \sigma, \gamma)\in(\Gamma\cross\Sigma)\cap U(x^{0}, \eta^{0}, \sigma^{0}), if we take c_{I}^{-} sufficiently large. Thus
(4. 15) and (4. 23) give (4. 3). This completes the proof.

To obtain a priori estimate we also use the following
Lemma 4. 3. For every (x^{0}, \tau^{0}, \sigma^{0})\in\Gamma\cross\Sigma there are positive constants

C, \gamma_{0} and a neighborhood U(x^{0}, \tau^{0}, \sigma^{0}) such that

||\phi v||_{1}^{2},r+|\phi v|_{*,r}^{2}\leqq C||(D_{n}-M_{III}^{-})\phi v||_{0,\gamma}^{2}+C_{\phi}(||v||_{0,r}^{2}+|v|_{-\star,r}^{2})

for all v\in H_{1,\gamma}(\Omega) and \gamma\geqq\gamma_{0}, where \phi(x, \eta, \sigma, \gamma)\in S_{+}^{0} , supp \phi\cap(\overline{\Omega}\cross\Sigma)\subset U(x^{0},
\tau^{0}, \sigma^{0}) and C_{\phi} is a constant in&pmdent of v and \gamma.

This is well-known. Concerning its proof see for instance Lemma
5. 1 in [11].

LEMMA 4. 4. Let (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma be such a point as in Lemma 4. 1.
Then there are positive constants C, \gamma_{0} and a neighborhood U(x^{0}, \eta^{0}, \sigma^{0})

such that

(4. 24) \gamma^{2}||\phi u||_{0,\gamma}^{2}\leqq C(||(D_{n}-M)\phi u||_{0,\gamma}^{2}+|BS\phi u|_{*,f}^{2})+C_{\phi}\gamma(||u||_{0,\gamma}^{2}+|u|_{-*,r}^{2})

for all u\in H_{1,\gamma}(\Omega) and \gamma\geqq\gamma_{0} , where \phi and C_{\phi} are analogous to those in
the previous lemma.

PROOF. We keep using the notations in the proof of Lemma 4. 1.
Let U(x^{0}, \eta^{0}, \sigma^{0}) be an appropriate neighborhood and \phi, \psi\in S_{+}^{0} be symbols
such that supp \psi\cap(\overline{\Omega}\cross\Sigma)\subset U(x^{0}, \eta^{0}, \sigma^{0}) , \psi(x, \eta, \sigma, \gamma)=1 on supp \phi and |\psi|\leqq

1 . Furthermore let u\in H_{1,\gamma}(\Omega) have the form (4. 2) and put

\int(D_{n}-M(x, D’))\psi\phi u=f in \Omega ,
(4. 25)

|\phi u’+B^{\prime\prime-1}B’\phi u’=g on \Gamma,

where
u’={}^{t}(^{t}u_{I}^{-},{}^{t}u_{III’}^{-}, u_{m}^{+}), u’={}^{t}(^{t}u_{I}^{+},{}^{t}u_{III’}^{+}, u_{m}^{-}) .

(See (4. 6) and (4. 11)). Then we have

(4. 26) -Re (iRf, \psi\phi ub_{r},={\rm Re}(iRM\psi\phi u, \psi\phi u)_{0,r}+\frac{1}{2}Re \langle R\psi\phi u, \psi\phi u\rangle_{0,\gamma} ,

where R(x, \eta, \sigma, \gamma) is the symbol defined by (4. 8) and (4. 9).
We first show that for sufficiently large \gamma

(4. 27) Re \langle R\psi\phi u, \psi\phi u\rangle_{0,f}\geqq-C\gamma^{-1}(|\phi u_{III’}^{-}|_{*,r}^{2}+|g|_{*,r}^{2})-C_{\phi,\varphi}|u|_{-*,r}^{2} .
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Hereafter in the proof let C and C_{\phi,\psi} denote various positive constants
independent of u and \gamma. Let

u=T \{\begin{array}{l}u’u,,\end{array}\} and \tilde{R}=T^{*}RT,

where T is a constant orthogonal matrix. Then we have

\langle R\psi\phi u, \psi\phi u\rangle_{0,\gamma}=\langle\tilde{R}\psi\{\begin{array}{l}\phi u’\phi u,\prime\end{array}\} , \psi\{\begin{array}{l}\phi u’\psi_{u}’\prime\end{array}\}\rangle_{0,\gamma}

=\langle\tilde{R}\psi[_{\phi u^{f\prime}-g}^{\phi u’}] , \psi[_{\phi u’-g}^{\phi u’},]\rangle_{0,\gamma}+\langle\tilde{R}\psi[_{\phi u’-g}^{\phi u’},] , \psi\{\begin{array}{l}0g\end{array}\}\rangle_{0,\gamma}

+\langle\tilde{R}\psi\{\begin{array}{l}0g\end{array}\} , \psi[_{\psi_{u’-g}^{\phi u’}},]\rangle_{0,\gamma}+\langle R\psi\{\begin{array}{l}0g\end{array}\} , \psi\{\begin{array}{l}0g\end{array}\}\rangle_{0.\gamma}\subseteq

Since |\psi|\leqq 1 and \phi u’-g=-B^{\prime\prime-1}B’\phi u’ by (4. 25), the last three terms in
the right hand side are estimated from below by

-8^{-1}\gamma|\phi u’|_{-t,r}^{2}-C\gamma^{-1}|g|_{\star,r}^{2}-C_{\phi,\psi}|u|_{-*,r}^{2} .
Hence we see that for \gamma>0

(4. 28)
{\rm Re}\langle R\psi\phi u, \psi\phi u\rangle_{0,r}\geqq{\rm Re}/\tilde{R}\psi\backslash [_{-B^{\prime\prime 1}B’\phi u’}^{\underline{\phi}u’}|] , \psi[_{-B^{\prime\prime-1}B’\phi u’}^{\phi u’}].\rangle_{0,f}

-8^{-1}\gamma|\phi u’|_{-*,r}^{2}-C\gamma^{-1}|g|_{l,r}^{2}-C_{\phi,\phi}|u|_{-*,r}^{2} .
Now we shall consider the first term in the right hand side of (4. 28).
Let us decompose u’ as

u’={}^{t}(^{t}u_{I}^{-}, 0, u_{m}^{+})+{}^{t}(0,{}^{t}u_{III’}^{-}, 0) .
Then, by the same way as above, we have

Re \langle\tilde{R}\psi[_{-B^{\prime\prime 1}B’\phi u’}^{\underline{\phi}u’}] , \psi[_{-B^{\prime\prime-1}B’\phi u’}^{\phi u’}]\rangle_{0,\gamma}

(4. 29)
\geqq Re \langle q_{\psi}\phi[_{u_{m}^{+}}^{u_{I}^{-}}] , \emptyset[_{u_{m}^{+]\rangle_{0,r}-8^{-1}\gamma(|\phi u_{I}^{-}|_{-*,r}^{2}+|\phi u_{m}^{+}|_{-*,r}^{2})}}^{u_{I}^{-}}

-C\gamma^{-1}|\phi u_{III^{t}}^{-}|_{i,r\prime b}^{2}-C,,.|u|_{-\,r}^{2} ,

where on the support of \phi the principal symbol of q_{\psi} is equal to the
matrix in the right hand side of (4. 15). Therefore we see by virtue of
(4. 23) and the sharp form of G[mathring]_{a}rding’s inequality that the first term in
the right hand side of (4. 29) is estimated from below by

4^{-1}(|\phi u_{I}^{-}|_{0,\gamma}^{2}+\gamma|\phi u_{m}^{+}|_{-*,\gamma}^{2})-C_{\theta\ell’},|u|_{-*,\gamma}^{2} .
From this, (4. 28) and (4. 29) we obtain (4. 27).

On the other hand it follows from (4. 1) that



Remarks on L^{2}-well posedness of mixed problems for hyperbolic systems 89

(4. 30) Re (iRM\psi\phi u, \psi\phi u)_{0,\gamma}\geqq C\gamma||\phi u||_{0,\gamma}^{2}-C^{-1}\gamma^{-1}||\phi u_{III}^{-}||_{1,\gamma}^{2}-C_{\phi,\psi}||u||_{0,\gamma}^{2}

for \gamma\geqq\gamma_{1}>0 . Thus we obtain (4. 24) from (4. 25), (4. 26), (4. 27), (4. 30) and
Lemma 4. 3.

\S 5. Construction of modified symmetrizers II

In this section we shall establish the analogues of Lemmas 4. 1 and
4. 4 for the case where the double real zero exists.

Let (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma be such a point as in Lemma 3. 3. Then from
Lemma 3. 2 in [15] we have the following

Lemma 5. 1. Let R_{II}(x, \eta, \sigma, \gamma)\in S_{+}^{0} be a 2\cross 2 hermitian matrix, homO-
geneous in (\eta, \sigma, \gamma) such that

(5. 1) R_{II}(x, \eta, \sigma, \gamma)=\{\begin{array}{ll}b d_{1}d_{1} d_{2}\end{array}\}(x, \eta’, \sigma’)+\gamma’\{\begin{array}{ll}0 if-if 0\end{array}\} ,

where d_{1} and f are positive constants, d_{2}(x, \eta, \sigma)\in S_{+}^{0} is an arbitrary red
valued function which is homogeneous in (\eta, \sigma) and

(5. 2) b(x, \eta, \sigma)=(d_{2}e_{21}{\rm Re}\zeta(1+e_{12}{\rm Re}\zeta)^{-1})(x, \eta’, \sigma’) .
Then for every positive number \delta there is a neighborhood U_{\delta}(x^{0}, \eta^{0}, \sigma^{0}) such
that

(5. 3) {\rm Re}(iR_{II}M_{II})(x, \eta, \sigma, \gamma)\geqq\gamma \{\begin{array}{ll}a_{0} 00 \delta^{-1}\end{array}\}

for all {x,\eta,\sigma,\gamma)\in(\overline{f2}\cross\Sigma)\cap U_{\delta}(x^{0}, \eta^{0}, \sigma^{0}) if we take f suffiffifficiently large ac-
cording to d_{1}, d_{2} and \delta, where a_{0} is a positive constant dependent only on
d_{1} and M_{II} is the matrix in (2. 2).

Now suppose that the conditions (iii) and (C) hold. Then we have
LEMMA 5. 2. There exists a 2 m\cross 2m hermitian matrix R(x, \eta, \sigma, \gamma),

homogeneous in (\eta, \sigma, \gamma) such that the inequality (4. 1) is valid for (x, \eta, \sigma,
\gamma)\in\tilde{\overline{\Omega}}\cross\Sigma and vector :

(5. 4) u={}^{t}(^{t}u_{I}^{+},{}^{t}u_{I}^{-}, u_{II}’, u_{II}’,{}^{t}u_{III}^{+},{}^{t}u_{III}^{-})\in C^{2m} ,

where u_{I}^{\pm} and u_{III}^{\pm} are those described below (4. 2) and u_{II}’ , u_{II}’ are complex
numbers. Furthermore

(5. 5) R(x’, \eta, \sigma, \gamma)u\cdot u\geqq-a_{1}\gamma|u_{II}’|^{2}

is valid for (x’, \eta, \sigma, \gamma)\in\Gamma\cross\Sigma and such u satisfying (4. 4), where a_{1} is
a positive constant dependent of (x’, \eta, \sigma, \gamma) and u.

PROOF. We define a 2 m\cross 2m hermitian matrix R by
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(5. 6) R(x, \eta, \sigma, \gamma)=\{\begin{array}{l}R_{I}^{+}R_{I}^{-}R_{II}R_{III}^{+}R_{III}^{-}\end{array} (x, \eta, \sigma, \gamma) ,

where
R_{I}^{+}=-E_{l-1} , R_{I}^{-}=c_{I}^{-}E_{l-1}, R_{III}^{+}=-\mathcal{T}’E_{m-l}, R_{III}^{-}=0 ,

c_{I}^{-} is a positive constant to be chosen later and R_{II}(x, \eta, \sigma, \gamma) is the mataix
in Lemma 5. 1. Then it follows from Lemma 5. 1 and \beta ), 1) and 3) in
\S 2. 2 that for every \delta>0 there is a neighborhood U_{\delta}(x^{0}, \eta^{0}, \sigma^{0}) such that

(5. 7) Re (iRM)(x, \eta, \sigma, \gamma)u\cdot u\geqq a_{0}\gamma|u|^{2}+\delta^{-1}\gamma|u_{II}’|^{2}

for all (x, \eta, \sigma, \gamma)\in(\overline{\Omega}\cross\Sigma)\cap U_{\delta}(x^{0}, \eta^{0}, \sigma^{0}) and u\in C^{2m} of the form (5. 4) satis-
fying u_{III}^{-}=0, where a_{0} is a positive constant independent of \delta .

Next to derive (5. 5) we set

B’(x’, \tau, \sigma)=B(x’)(h_{I}^{-}, h_{II}’, h_{III}^{-})(x’, \tau, \sigma) ,
(5. 8)

B’(x’, \tau, \sigma)=B(x’)(h_{I}^{+}, h_{II}’, h_{III}^{+})(x’, \tau, \sigma) .

Notice that the matrix B’ is different from one used in [11]. Then we
see from (2. 12) that B’(x’, \tau, \sigma) is nonsingular. Furthermore put

(5. 9) (B^{\prime\prime-1}B’)(x’, \tau, \sigma)=\{\begin{array}{llll}k_{I} I II k_{I} k_{IIII}k_{III} k_{II} k_{IIIII}k_{IIII} II k_{IIIII} k_{IIIIII}\end{array}\} (x’, \tau, \sigma)

(see (6. 3) in [11]) and

(5. 10) u’={}^{t}(^{t}u_{I}^{-}, u_{II}’,{}^{t}u_{III}^{-}) , u’={}^{t}(^{t}u_{I}^{+}, u_{II}’,{}^{t}u_{III}^{+}) .
Hereafter in the proof we shall consider only such u\in C^{2m} as described in
the statement of the lemma. Then it follows from (2. 3) and (5. 8)-(5.10)
that the boundary condition BSu=0 may be written as

(5. 11) u’=-\{
k_{I1} k_{III}

k_{II1}k_{IIII}

k_{IIII}k_{IIIII}

\{\begin{array}{l}u_{I}^{-}u,II\end{array}\} .

Here we remark that (5. 8), (5. 9) and (2. 14) give

(5. 12) k_{IIII}(x’, \tau, \sigma)=Q(x’, \tau, \sigma) .
Moreover (3. 10), (5. 8) and (5. 9) imply
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(5. 13) b_{II1}L=k_{III} det B_{-}’
,

b_{III}L=-k_{III} det B’ .

Now we shall consider the left hand side of (5. 5). After a simple
calculation with (5. 6), (5. 1) and (5. 8)\dashv 5.12) we have

(5. 14) R(x’, \eta, \sigma, \gamma)u\cdot u=\{\begin{array}{ll}q_{II} q_{III}^{*}q_{III} q_{IIII}\end{array}\} (x’, \eta, \sigma, \gamma) \{\begin{array}{l}u_{I}^{-}u,II\end{array}\} . \{\begin{array}{l}u_{I}^{-}u_{I,I}\end{array}\}

\tau

Here, when \gamma=0,

(5. 15) q_{II}=c_{I}^{-}E_{l-1}-k_{II}^{*}k_{II}+d_{2}k_{III}^{*}k_{III} ,

(5. 16) q_{III}=-(d_{1}-d_{2}\overline{Q})k_{III}-k_{III}^{*}k_{II} ,

(5. 17) q_{IIII}=-2d_{1} Re Q+b+d_{2}|Q|^{2}-|k_{III}|^{2} .
Furthermore it follows from (5. 17) and (5. 2) that

q_{IIII}(x’, \eta, \sigma, 0)

(5. 18)
=-2d_{1}{\rm Re} Q+d_{2}(|Q|^{2}+e_{21}{\rm Re}\zeta(1+e_{12}{\rm Re}\zeta)^{-1})-|k_{III}|^{2}, if (\eta, \sigma)\in\Sigma_{0} .

We now show that there exist a positive constant C_{0} and a real valued
function d(x’, \eta, \sigma)\in S_{+}^{0} , homogeneous in (\eta, \sigma) such that

|k_{III}(x’, \eta, \sigma)|^{2}+|k_{III}(x’, \eta, \sigma)|^{2}

(5. 19)
\leqq-C_{0} Re Q(x’, \eta, \sigma)+d(|Q|^{2}+e_{21} Re \zeta(1+e_{12} {\rm Re} \zeta)^{-1})(x’, \eta, \sigma)

for (\eta, \sigma)\in\Sigma_{0}, in the case (a) of (2. 4). To do it we shall use the inequality
(3. 18) Let \eta=\rho(x’, \sigma) . Then it follows from (3. 1 ) and (5. 13) that for
some C>0
(5. 20) (|k_{III}|^{2}+|k_{III}|^{2})(x’, \rho(x’, \sigma), \sigma)\leqq-C Re D(x’, \sigma) .

Furthermore from (2. 17) and (2. 18) we have

(5. 21) Re D(x’\sigma)={\rm Re} Q(x’, \rho(x’, \sigma), \sigma) . (positive factor).

Hence (5. 20) implies that for \eta=\rho(x’, \sigma) and some C_{0}>0

(5. 22) (|k_{III}|^{2}+|k_{III}|^{2})(x’, \eta, \sigma)\leqq-C_{0} Re Q(x’, \eta, \sigma) .
Here we shall apply the method used in the proof of Lemma 3. 3 in [15].

Let w(x’, \eta’, \sigma’) denote the left hand side of (2. 15). Then we see that
(x’, w, \sigma’) may be taken as new variables in stead of (x’, \eta’, \sigma’), since (2. 10\rangle

and (2. 14) imply

(5. 23) Q(x^{0}, \eta^{0}, \sigma^{0})=0 ,

so (\partial w/\partial r)’)(x^{0}, \eta^{0}, \sigma^{0})\neq 0 by (2. 7). Put
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(5. 24) G(x’, w, \sigma’)=(|k_{III}|^{2}+|k_{III}|^{2}+C_{0} Re Q)(x’, \eta’, \sigma’) .
Then (5. 22) implies

(5. 25) G(x’, 0, \sigma’)\leqq 0 .
On the other hand Taylor’s formula gives

G(x’, w, \sigma)=G(x’, 0, \sigma)+wG^{(1)}(x’, w, \sigma) .
Now we define d by

d(x’, \eta, \sigma)=G^{(1)}(x’, w(x’, \eta’, \sigma’), \sigma’) .
Then (5_{\backslash }19) follows from (5. 24) and (5. 25) and d(x’, \eta, \sigma) has the required
property.

Now let
d_{1}=C_{0}, d_{2}(x, \eta, \sigma)=2d(x’, \eta, \sigma) .

Then from (5. 18) and (5. 19) we have

(5. 26) q_{IIII}(x’, \eta, \sigma, 0)\geqq(|k_{III}|^{2}+|k_{III}|^{2})(x’, \eta, \sigma) .
Thus it follows from (5. 15), (5. 16) and (5. 26) that

(5. 27) \{\begin{array}{ll}q_{II} q_{III}^{*}q_{III} q_{IIII}\end{array}\} (x’, \eta, \sigma, 0)\geqq 2 \{\begin{array}{ll}E_{l-1} 00 0\end{array}\}

if we take c_{I}^{-} sufficiently large. Consequently from (5. 27) and (5. 14) we
obtain
(5. 28) R(x’, \eta, \sigma, \gamma)u\cdot u\geqq|u_{I}^{-}|^{2}-a_{1}\gamma|u_{II}’|^{2}

for all (x’, \eta, \gamma, \sigma)\in(\Gamma\cross\Sigma)\cap U(x^{0}, \eta^{0}, \sigma^{0}) and u\in C^{2m} . The proof is complete.
Using (5. 7), (5. 28), Lemma 4. 3 and [15], Lemma 4. 1 we can prove

the following lemma, as in the proof of Lemma 4. 4. (See also the one
of Lemma 4. 2 in [15] ).

LEMMA 5. 3. There are positive constants C and \gamma_{0} such that

\gamma^{2}||\phi u||_{0,\gamma}^{2}\leqq C(||(D_{n}-M)\phi u||_{0,r}^{2}+|BS\phi u|_{*,\gamma}2)+C_{\theta}\gamma(||u||_{0,\gamma}^{2}+|u|_{-*,\gamma)}^{2}

for dlu\in H_{1,\gamma}(\Omega) and \gamma>\gamma_{0}\underline{arrow} , where \phi(x, \eta, \sigma, \gamma)\in S_{+}^{0} and supp \phi\cap(\overline{\Omega}\cross\Sigma)\subset

U(x^{0}, \eta^{0}, \sigma^{0}) .

\S 6. Proof of the implication (C)arrow(A)

Since \Gamma is noncharacteristic for P, from the main estimate in [7],
Lemmas 4. 4 and 5. 3 we obtain



Remarks on L^{2}-well posedness of mixed problems for hyperbolic systems 93

Lemma 6. 1. [Global a priori estimate). Suppose that the conditions
{Hi) and (C) hold. Then there exist positive constants C and \gamma_{0} such that

(6. 1) \gamma^{2}||u||_{0,\gamma}^{2}\leqq C(||Pu||_{0,\gamma}^{2}+|Bu|_{*,r}^{2})

for all u\in H_{1,\gamma}(\Omega) and \gamma\geqq\gamma_{0} .
PROOF 0F (C)arrow(A). Since the L^{2}-well posedness of (P, B) follows from

(6. 1) and the analogous estimate for its adjoint problem according to \S 5,
Remark 1) in [8], in view of Lemma 6. 1 it is enough to show that the
hypotheses of the lemma are also fulfilled by an adjoint problem of (P, B) :

(P^{(*)}, B^{(*)})\{

P’\backslash *)(x, D)v=f in 12,
B^{(*)}(x’)v=g on \Gamma

Here for real (\tau, \sigma, \lambda)

(6. 2) P^{(*)}(x, \tau, \sigma, \lambda)=P’ (-x_{0}, x’, x_{n}, -\tau, \sigma, \lambda) ,

(6. 3) B^{(*)}(x’)=B’ (-x_{0}, x’) ,

P’(x, D) is the principal part of the formal adjoint of P(x, D) and

(6. 4) B’(x’)=(b_{1}’(x’), \cdots , b_{m}’(x’))^{*} ,

where \{b_{f}’(x’);j=1, \cdots, m\} is a base of kerB(x’) which is smoothly varying
on \Gamma Notice the relation

(6. 5) B(x’)(B’(x’))^{*}=0 , x’\in\Gamma-

Now (6. 2) implies

(6. 6) P^{(*)}(x, \tau, \sigma, \lambda)=(P^{0} (-x_{0}, x’, x_{n}, -\overline{\tau}, \sigma,\overline{\lambda}))^{*}

from which Condition (i) follows. By L^{(*)} etc. denote the Lopatinskii
determinant etc. of (P^{(*)}, B^{(*)}) respectively. Then (6. 6) gives

(6. 7) \theta^{(*)}(x, \sigma)=-\theta (-x_{0}, x’, x_{n}, \sigma) .
Furthermore it follows from Lemmas 9. 1 and 9. 2 in [11] respectively that

(6. 8) b_{if}^{(*)}(x’, \tau, \sigma)=\overline{-b_{fi}(-x_{0},x_{arrow}’,-\overline{\tau},\sigma)}, i,j =1, \cdots , m

and that the Hersh’s condition holds. Hence (6. 6) and (6. 8) imply (C).
Next for a moment let Condition (it) be fulfilled. Then from (9. 10) and
(9. 11) in [11] we have
(6. 9) L^{(*)}(x’, \tau, \sigma)=\overline{-L(-x_{0},x_{-}’,-\overline{\tau},\sigma}) . (nonzero factor).

From this, (2. 13) and (6. 7) we obtain

-Re D^{(*)}(x’, \sigma)={\rm Im} D(-x_{0}, x’, \sigma) , Im D^{(*)}(x’, \sigma)=-Re D(-x_{0}, x’, \sigma) .
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Therefore Condition (Hi) is satisfied.
To prove the validity of Condition (it), the boundary_{L} matrices B and

B’ may be assumed to have the following forms:

(6. 10) B(x’)=(E_{m}, 0) and B’(x’)=(0, E_{m})

after appropriate transformations of the dependent variables, because of
(6. 5). Let (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma and L^{(*)} (-x_{0}^{0}, x^{0\prime\prime}, -\eta^{0}, \sigma^{0})=0 .
Then it follows from Lemma 9. 2 in [11] that L(x^{0}, \eta^{0}, \sigma^{0})=0 . In what
follows we shall restrict ourselves to the case where det P^{0}(x^{0}, \eta^{0}, \sigma^{0}, \lambda) has
no double real zero, because the other one also may be deal with similarly.
Put

S_{0}(x’, \tau, \sigma)=(h_{I}^{+}, h_{III}^{+}, h_{I}^{-}, h_{III}^{-})(x’, \tau, \sigma) .
Furthermore set

(B_{+}, B_{2})(x’, \tau, \sigma)=B(x’)S_{0}(x’, \tau, \sigma) ,

(B_{2}’, B_{+}’)(x’, \tau, \sigma)=B’(x’)(S_{0}^{-1}(x’, \tau, \sigma))^{*}-
,

where B_{+} , B_{2}, B_{2}’ and B_{+}’ are m\cross m matrices. Then
L(x’, \tau, \sigma)=\det B_{+}(x’, \tau, \sigma)

and it follows from (9. 8) in [11] that
L^{(*)} (-x_{0}, x’,, -\overline{\tau}, \sigma)=\det B_{+}’(x’, \tau, \sigma) .

Therefore it suffices to prove that

rank B_{+}’(x^{0}, \eta^{0}, \sigma^{0})=m-1r

(See (II) \alpha) at P. 149 in [11] ). Hereafter by B_{+} etc. we denote B_{+}(x^{0}, \eta^{0}, \sigma^{0})

etc. respectively. Then from the hypotheses we have

rank B_{+}=m-1 and rank (B_{+}, B_{2})=m .
Hence there is an orthogonal matrix T which exchanges a column of B_{+}

and one of B_{2} so that the first m columns of BS_{0}T are linearly independ-
ent. Therefore it is enough to show that the last m columns of B’(S_{0}^{-1})^{*}

T are so. Put

S_{0}T=\{\begin{array}{ll}T_{11} T_{12}T_{21} T_{22}\end{array}\} and (S_{0}^{-1})^{*}T=\{\begin{array}{ll}T_{11}’ T_{12}’T_{21}’ T_{22}’\end{array}\}1

Then it follows from (6. 10) that
BS_{0}T=(T_{11}, T_{12}), B’(S_{0}^{-1})^{*}T=(T_{21}’, T_{22}’)

and
T_{11}T_{21}^{\prime*}+T_{12}T_{22}^{\prime*}=0 ,
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where T_{11} is nonsingular. Hence we have
7_{21}’’=-T_{22}’(T_{11}^{-1}T_{12})^{*} .

Thus we find that rank T_{22}’=m, since rank (T_{21}’, T_{22}’)=m. This completes
the proof.

The following criterion is useful in applications. (See the proof of
Corollary 7. 2).

COROLLARY 6. 2. Let the constant coeffiffifficients problem (P^{0}, B)_{x’} be L^{2}-

well posed for every x’\in\Gamma. Furthermore suppose that Q(x’, \eta, \sigma) is red.
Then necessary and suffiffifficient conditions for (P, B) to be L^{2}- wdl posed are
that for such point (x^{0}, \eta^{0}, \sigma^{0}) as in Lemma 3. 2 there are indexes i,j\in\coprod I

satisfying (3. 1) and, say i=j=m,

(6. 11) (|k_{Im}|^{2}+|k_{mI}|^{2})(x’, \eta, \sigma)\leqq C_{1} Im \nu(x’, \sigma’), if \eta={\rm Re}\nu(x’, \sigma) ,

and that near such point (x,7^{)},, \sigma^{0})00 as in &mma 3. 3

(6. 12) (|k_{III}|^{2}+|k_{III}|^{2})(x’, \eta, \sigma)\leqq\mp C_{2}Q(x’, \eta, \sigma), if \eta=\theta(x’, \sigma)

according to the case (a) or (b) of (2. 4) respectively. Here k_{Im}, k_{mI} and k_{III},
k_{III} are the vectors defined by (4. 6), (4. 11) and (5. 8), (5. 9) respectively and
C_{1} , C_{2} are positive constants.

PROOF. We first remark that under the first hypothesis the left
hand side of (6. 11) is still well-defined. (See the proofs of Lemma 3. 1
and 3. 2).

Necessity. The main theorem mplies that the condition (C) holds.
Therefore (6. 11) follows from (4. 21). Next we see from (3. 6), (3. 12) and
(5. 13) that for some constant C>0

(|k_{III}|^{2}+|k_{III}|^{2})(x’ , \theta(x’, \sigma), \sigma)

\leqq 2(|k_{III}|^{2}+|k_{III}|^{2})(x’, \rho(x’, \sigma) , \sigma)+O(|\rho(x’, \sigma)-\theta(x’, \sigma)|^{2})

\leqq C|D(x’, \sigma)| .
On the other hand it follows from (2. 16) and the realness of Q(x’, \eta, \sigma)

that L(x’, \eta, \sigma) is real for \eta with \eta\geqq\theta(x’, \sigma) modulo nonzero factor. Hence
we find by the implicit function theorem that D(x’, \sigma) is real. Furthermore
it is known that under the hypotheses of the corollary Q(x’, \theta(x’, \sigma), \sigma) is
nonpositive. (See the proof of Lemma 6. 5 in [11]). Thus we obtain
(6. 12) by (2. 18).

Sufficiency. As seen in the proof of the implication (C)arrow(A), the
L^{2} -well posedness of (P, B) follows from the a priori estimates for the
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problem and its adjoint problem (P^{(*)}, B^{(*)}) which are derived from (4. 21)
and (5. 22) for those problems as well as Conditions (i) and (ii). Notice
that the two conditions are also fulfilled by (P^{r_{*)}}\backslash , B^{(*)}) . Therefore it is
enough to show that (4. 21) and (5. 22) are valid for both the problems.

We now see easily that (6. 11) implies (4.21). On the other hand it
follows from (6. 12) that for some constant C>0

(|k_{III}|^{2}+|k_{III}|^{2})(x’ , \rho(x’, \sigma) , \sigma)

\leqq-CQ (x’, \rho(x’, \sigma), \sigma)+0(|\rho(x’, \sigma)-\theta(x’, \sigma)|) .

Hence we obtain (5. 22) by (2. 15). Therefore it suffices to show that
(6. 11), (6. 12) and the hypotheses are fulfilled by (P^{(*)}, B^{(*)}) .

Now the L^{2}-well posedness of (P^{0}, B)_{x’} implies that of the adjoint
problem. (See Theorem 2 in [8]). Furthermore from (2. 1), (5. 8), (5. 9),
(6. 5) and (6. 6) we obtain

(B^{\prime\prime(*)-1}B^{\prime(*)})(x’, \eta, \sigma)=-((B^{\prime\prime-1}B’) (-x_{0}, x’, -\eta, \sigma))^{*}

(see also the proof of Lemma 9. 1 in [11]), so
k_{II}^{(*f}(x’, \eta, \sigma)=-(k_{II1}(-x_{0}, x’, -\eta, \sigma))^{*} ,

k_{III}^{(*)}(x’, \eta, \sigma)=-(k_{III} (-x_{0}, x’, -\eta, \sigma))^{*}

and
Q^{(*)}(x’, \eta, \sigma)=\overline{-Q(-x_{0},x’,-\eta,\sigma)} .

Thus (6. 12) and the hypotheses for (P^{(*)}, B^{(*)}) follow from those for (P, B).
(See also (6. 7)). Similarly we obtain (6. 11) for (P^{(*)}, B^{(*)}), since (2. 11) and
(6. 9) imply that

Re \nu^{(*)}.(x’, \sigma)=- Re \nu (-x_{0}, x’, \sigma) ,

Im \nu^{(*)}(x’, \sigma)={\rm Im}\nu(-x_{0}, x’, \sigma) .

The proof is complete.
RE_{-M}ARK 6. 3. Condition (Hi) has been used only in deriving (3. 13)

from (3. 6). Therefore if the simple real zeros are absent then it may be
weakened so that

Re D(x’, \sigma)\leqq 0 or Im D(x’, \sigma)\geqq 0

according to the case (a) or (b) of (2. 4) respectively.
REMARK 6. 4. In the case where P(x, D) is a differential operator of

higher order we can also obtain the analogous results by reducing the
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problem in question to a system with (tangential) pseud0-differential opera-
tors. (See the proof of Corollary 7. 2 below).

\S 7. Applications

Consider the following problem for a strictly x_{0}-hyperbolic operator \tilde{P} :

(\tilde{P},\tilde{B}_{1^{ }},\cdots,\tilde{B}_{m})\{

\tilde{P}(x, D)u=f in 12,
\tilde{B}_{f}(x’, D)u=g_{f} on \Gamma,j =1, \cdots , m .

Here the principal symbols \tilde{P}^{0}(x, \tau, \sigma, \lambda) and \tilde{B}_{f}^{0}(x’, \tau, \sigma, \lambda) of \tilde{P} and \tilde{B}_{f} have
the following forms :

\tilde{P}^{0}=P_{1}^{0}\cdots P_{m}^{0} ,
\tilde{B}_{1}^{0}=B_{1}^{0} ,
\tilde{B}_{2}^{0}=B_{2}^{0}P_{1}^{0} ,
\tilde{B}_{3}^{0}=B_{3}^{0}P_{2}^{0}F_{1} ,

: ..\cdot

\tilde{B}_{m}^{0}=B_{m}^{0}P_{m-1}^{0}\cdots P_{1}^{0} ,

where P_{j}^{0}(x, D) , j=1, \cdots , m are homogeneous x_{0}-hyperbolic operators of
second order whose normal cones cut by \tau=1 do not intersect each other
and are bounded surfaces in the (\sigma, \lambda) space for every fixed x\in\Gamma- Further-
more B_{f}^{0}(x’, D),j=1 , \cdots , m are homogeneous boundary differential operators
at most of first order such that \Gamma is noncharacteristic for B_{j}^{0} . All the
coefficients are assumed to be real. (See [10], [2, 3]). Then we have

COROLLARY 7. 1. ([9]). The problem (\overline{P},\tilde{B}_{1}, \cdots,\tilde{B}_{m}) is L^{2}-well posed if
and only if every constant coeffiffifficients problem (\tilde{P}^{0},\tilde{B}_{1}^{0}, \cdots,\tilde{B}_{m}^{0})_{x’} , x’\in\Gamma is
L^{2}- wdl posed and the constants C in (1. 1) with respect to these problems
are independent of the parameter x’.

PROOF. Let (\tilde{P}^{00},1\tilde{B}, \cdots,\tilde{B}_{m}^{0})_{x’} be L^{2}-well posed for every x’\in\Gamma\cap Then
in view of Theorem it is enough to show that Conditions (i), (ii) and {it)
are fulfilled. We first see by the assumptions with respect to the normal
cones that Condition ( i) holds and for every j=1 , \cdots , m Pj{x,\tau,\sigma,\lambda) has
zeros \lambda_{f}^{+}(x, \tau, \sigma) and \lambda_{f}^{-}(x, \tau, \sigma) with positive imaginary part and negative
one when Im \tau<0 respectively. Let \tilde{L} and L_{f},j=1 , \cdots , m be the Lopa-
tinskii determinants of (\tilde{P}^{0},\tilde{B}_{1}^{0}, \cdots , \tilde{B}_{m}^{0}) and (P_{f}^{0}, B_{f}^{0}) . Then it follows from
(3. 2) and the proof of Theorem 1 in [2] respectively that

(7. 1) \tilde{L}=L_{1}\cdots L_{m} (nonzero factor)

and that every constant coefficients problem (P_{f}^{0}, B_{f}^{0})_{x^{l}}(x’\in\Gamma,j=1, \cdots, m) is
L^{2}-well posed. Hence we find by virtue of Theorem 3 in [16] and the
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realness of the coefficients of B_{f}^{0} that \tilde{L}(x’, \tau, \sigma) vanishes at a point (x^{0}, \tau^{0},
\sigma^{0})\in\Gamma\cross\Sigma if and only if Im \tau^{0}=0 and there is an index l such taht L_{l}(x^{0},
\tau^{0}, \sigma^{0})=0 (so B_{l}^{0} is of first order) and P_{l}^{0}(x^{0}, \tau^{0}, \sigma^{0}, \lambda) has a double real zero.
Furthermore we see by means of Condition (i) that such l is uniquely
determined by the point (x^{0}, \tau^{0}, \sigma^{0}) in question. Therefore from (7. 1) we
have

\tilde{L}(x’, \tau, \sigma)=L_{l}(x’, \tau, \sigma) (nonzero factor)

near (x^{0}, \tau^{0}, \sigma^{0}) . Hence it suffices to show that L_{l} fulfilles Conditions {it)
and {Hi). Now the former follows from (2. 4) with \lambda_{II}^{+}=\lambda_{l}^{+} , since

L_{l}(d, \tau, \sigma)=B_{l}^{0}(x’, \tau’ , \sigma’ , \lambda_{l}^{+}(x’, \tau’, \sigma’)) .
Therefore we find from the proof of the Corollary 6. 2 that D(x’, \sigma) is
nonpositive. This completes the proof.

In particular let
P_{f}^{0}(x, D)=D_{0}^{2}-a_{f}(x)^{2} \sum_{k=1}^{n}D_{k} , j=1, \cdots , m, 0<a_{m}<\cdots<a_{1}

and
B_{f}^{0}(x’, D)=D_{n}- \sum_{k=1}^{n-1}b_{fk}(x’)D_{k}-c_{f}(x’)D_{0}, j=1, \cdots , m .

Then Corollary in [9] is a special case of the following which is a con-
sequence of Corollary 6. 2.

Corollary 7. 2. Necessary and sufficient conditions for the problem
(\tilde{P},\tilde{B}_{1}, \cdots,\tilde{B}_{m}) to be L^{2}-well posed are that

(7. 2) ( \sum_{k=1}^{n-1}b_{jk}(x’)^{2})^{*}\leqq a_{f}(x’)c_{f}(x’), x’\in\Gamma,j=1 , \cdots , m

and that if L_{l}(x^{0}, \eta^{0}, \sigma^{0})=0 and P_{l}^{0}(x^{0}, \eta^{0}, \sigma^{0}, \lambda) has a double real zero, i.e. ,

(7. 3) \eta^{0}=\pm a_{l}(x^{0})|\sigma^{0}| and \sum_{k=1}^{n-1}b_{lk}(x^{0})\sigma_{k}^{0}+c_{l}(x^{0})\eta^{0}=0

for some l(1\leqq l<m) and (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma, then

(7. 4) ( \sum_{k=1}^{n-1}b_{fk}(x’)\sigma_{k}+c_{f}(x’)\eta)^{2}\leqq\pm C(\sum_{k=1}^{n-1}b_{lk}(x’)\sigma_{k}+c_{l}(x’)\eta)

for j=l+1 , \cdots , m and (x’, \eta, \sigma)\in\Gamma\cross\Sigma_{0} with \eta=\theta_{l}(x’, \sigma), according to \gamma,
)0=

\pm a_{l}(x^{0})|\sigma^{0}| respectively, where \theta_{l}(x’, \sigma)=\pm a_{l}(x’)|\sigma| and C is a positive
constant.

PROOF. It is known that for every fixed x’\in\Gamma(\tilde{P}^{0},\hat{B}_{1}^{\acute{0}}, \cdots,\tilde{B^{\backslash 0}}_{m})_{x’} is
L^{2}-well posed if and only if (7. 2) is valid and

(7. 5) ( \sum_{k=1}^{n-1}b_{lk}(x’)^{2})^{*}=a_{l}(x’)c_{l}(x’) (1\leqq l<m)
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implies

(7. 6) b_{fk}(x’)=c_{f}(x’)=0 (j=l+1, \cdots, m, k=1, \cdots, n-1) .
(See Theorem 1 in [3] and Lemma 4. 1 in [2]).

Now it follows from (7. 5) for fixed x’, say x^{0}, that (7. 3) is valid for
some (\eta^{0}, \sigma^{0}) . Moreover (7. 2), (7. 3) and(7. 4) give (7. 6) for x’=x^{0}, since
0<a_{f}(x^{0})<a_{l}(x^{0}) for j>l . Therefore every constant coefficients problem
(\tilde{P}^{0},\tilde{B}_{1}^{0_{ }},\cdots, \tilde{B}_{m}^{0})_{x’} may be assumed to be L^{2}-well posed.

Next to examine (7. 4) let (x^{0}, \eta^{0}, \sigma^{0})\in\Gamma\cross\partial\Sigma be a point satisfying (7. 3)
and reduce (\tilde{P},\tilde{B}_{1}, \cdots,\tilde{B}_{m}) to a system by the transformation:

V={}^{t}(\Lambda^{2m-1}u, \Lambda^{2m-2}D_{n}u, \cdots, D_{n}^{2m-1}u) .
Notice that the Lopatinskii determinant of the system thus obtained is
equal to that of the original problem modulo nonzero factor. Then we
find from \S 2 in [3] (in particular (2. 27) and (2. 28)) that k_{III} , k_{III} and Q
defined by (5. 9) (with Q=k_{IIII}) are as follows:
(7. 7) Q(x’, \tau, \sigma)=-\alpha_{l}(x’, \tau’, \sigma’) ,

(7. 8) k_{III}=0 , k_{III}=(k_{lf}^{l} ; jarrow l+1, \cdots, m) .
Here

(7. 9) \alpha_{f}(x’, \tau, \sigma)=\sum_{k=1}^{n-1}b_{j\prime k}(x’)\sigma_{k}+c_{f}(x’)\tau,j=1 , \cdots , m ,

(7. 10) k_{lf}^{l}(x’, \tau, \sigma)=|(B_{p}^{0}Q_{p}^{0})(\lambda_{f}^{-}) , (B_{p}^{0}Q_{p}^{0})(\lambda_{q}^{+});p\downarrow l, \cdots,j, qarrow l+1 , \cdots,j|(x’, \tau’, \sigma’)

where Q_{1}^{0}=1 , Q_{p}^{0}=P_{1}^{0}P_{2}^{0}\cdots P_{p-1}^{0},p=2 , \cdots , m, Q_{p}^{0}(\lambda_{q}^{+}) etc. are abbreviations for
Q_{p}^{0}(x’, \tau, \sigma, \lambda_{q}^{+}(x’, \tau, \sigma)) etc. respectively and we have omitted a nonzero
factor in (7. 10) Since (7. 7) and (7. 9) imply that Q(x’, \eta, \sigma) is real, we
find by virtue of (7. 7), (7. 8) and Corollary 6. 2 that (\overline{P},\tilde{B}_{1}, \cdots,\tilde{B}_{m}) is L^{2}-

well posed if and only if for some constant C>0

(7. 11) \sum_{f=l+1}^{m}|k_{lj}^{l}(x’, \eta, \sigma)|^{2}\leqq C\alpha_{l}(x’, \eta, \sigma) for \eta=a_{l}(x’)|\sigma| .

Furthermore by a simple calculation we see from (7. 10) that for j=l+1,
\ldots , m

k_{lj}^{l}(x’, \eta, \sigma)

=2(-1)^{f-l+1} \alpha_{j}Q_{j}^{0}(\lambda_{f}^{-})\prod_{q=l+1}^{f}Q_{l}^{0}(\lambda_{q}^{+})\lambda_{q}^{+|\begin{array}{llllll}1 \cdots 1 F_{l}(\lambda_{l+1}^{+}) \cdots \cdots F_{l}(\lambda_{f}^{+}) \vdots \vdots (P_{l}^{0} \cdots P_{j-2}^{0},)(\lambda_{l+1}^{+})\cdot .\cdot(P_{l}^{0} \cdots P_{f-2}^{0})(\lambda_{f}^{+})\end{array}|}

+O(|\alpha_{l}|+\cdots+|\alpha_{j’-1})
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=\alpha_{f}(x’, \eta’, \sigma’) . (nonzero factor)+O (|\alpha_{l}|+\cdots+|\alpha_{j-1}|)

Thus (7. 11) is equivalent to (7. 4) by (7. 9).

REMARK 7. 3. In [13] Sakamoto was concerned with another iterated
problem (\tilde{P},\hat{B}_{1^{ }},\cdots,\hat{B}_{m}) such that \hat{B}_{f}^{0}=B_{f}^{0_{k\neq j}}IIP_{k}^{0}, where \hat{B}_{f}^{0} is the principal
symbol of \hat{B}_{j} . For convenience let P_{j}^{0} and B_{f}^{0} be the same ones as in
Corollary 7. 2. Then we see that both k_{III} and k_{III} in (7. 8) vanish. Thus
we find from the preceding argument that (\tilde{P},\hat{B}_{1^{ }},\cdots,\hat{B}_{m}) is L^{2}-well posed
if and only if (P_{f}^{0}, B_{f}^{0}),j=1 , \cdots , m are L^{2}-well posed.
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ADDED IN PROOF: The statement of Corollary 7.1 is also valid in
the case where the coefficients of B_{f}^{0}(x’,D) are complex-valued, if Condition
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