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1. Introduction

Fix a finite group G. Let % be a family of subgroups of G which
satisfies if He.Z and H'cH, then H'e#. Then G-bordism group of
G-manifolds is denoted by 24(G, #). And its elements are the bordism
classes [G, M] where M is a differentiable closed manifold and all isotropy
groups G, are in .#. Now we consider the index of G-manifolds. It is
well known that the index I is a bordism invariant of 2,.. And it is
extended naturally to the G-bordism invariant: I[: 2,(G, #)— RO(G),
where RO(G) is the Grothendieck group of G over R.

In this paper we compute the index of G-manifolds with #={1} in
RO(G) in the sense of R. Lee [5].

2. The homomorphism I: 2,,(G,.#)— RO(G)

Let M be a compact oriented differentiable G-manifold without bound-
ary and .#Z-free. The bilinear form @:H*(M;R)x H*(M; R)—R is
defined by @(x, y)=<{xUwy, [M]), where [M] is the orientation class of M.
Then by the Poincaré duality, @ is non-singular, symmetric and G-invariant.
In H*(M ; R), we set G-invariant maximal subspaces

V. = {xeH*(M; R)|0(z, £)>0 if z+0}
V.= {erZ"(M;R)IQ)(x, x)>0 if x=|=0}, then

I: 2,,(G, #)—RO(G) is defined by I[G, M]=[V,]—[V_] (see [4] pp. 578),
where [V.] is the equivalence class of V. in RO(G). Now by the well
known result (see pp. 85-86), it is proved that

(2.1) The correspondence I: 2,.(G, #)—RO(G) is

the well-defined homomorphism.

In particular, G={1}, since 2,,(G, #)=2,, and RO(G)=Z[K], where K is
a trivial representation, I: 2,,— RO(G) is I[M]=I(M)[K], where I(M)
is the index of M.
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Let H be a proper subgroup of G, then the extension homomorphism
iy : Qu(H, 7)— 24 (G, #) is defined by ix[H, M]=[G, GEM]' And simi-
larly the extension homomorphism z,: RO(H)— RO(G) is defined by
ix[V]1=[RG®V], where RG(rep. RH) is the group ring of G(rep. H)

RH

over R. And by the restriction of the action of G to that of H, the
restriction homomorphism is defined.

Then the following diagram is commutative.

vk
(G, &) ———— Qu(H, )
2.2) 7 ll
i*

ROG) —

Here * is the restriction homomorphism.

Tx
Qi (H) - ‘QM:(G)
(2.3) I . I
ROH) —= . RO(G)
Rroof. (2.2) is trivial and for (2. 3), let [H, M] be a element of 2,,(H),
since M is a free H-manifold, it follows that H*(G x M)=RGRQH*(M).
RH

And by the definition, I[H, M]=[V,]—[V_], then H,(M)=V,®V_. And
so H*(Gx M )=(RGR(>2 VQ(—B(RGJ@ V). RGg@ V. are the G-invariant maxi-
H H

mal subspaces for symmetric bilinear form on

H*(GxM), that is lix[H M]=[RGQV.]~[RGQV_].

Hence Ii [H, M]=1iI[H, M].

3. The index of G-manifolds in the case of #={1}

Fix a finite group G and #={1}. Let RG denote by the group ring
of G over R.

THEOREM. [I: 2,(G)—RO(G) and if [G, M]eR,(G),
then I[G, M]=I(M|G)[RG].

Proof. For the augmentation ey : 2,(G)—Q,, &[G, M]=[M]|G], the
reduced bordism group £,(G) is denoted by Ker [ex: 2,(G)—£2,]. Since
ex[H, M]=[M/H]=[G;<M/G]=s*i*[H, M] if [H, MeQ,(H), where iy is

the extension 2, (H)—2,(G), there is a following commutative diagram.
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0 — 3, (H) Q(H) —* 0, -0

0— 9,(G) —— (2.G)—F 0, —0
In particular, H={1}, then 2,(1)=0, &4 is identity. If [G, M]e®,(G), since
ex[G, M]=[M|G]=¢414x [M|G], [G, M]—i,[M]|G]eKer ex=2,(G), and hence
we have I[G, M1=Iix[M/G] (mod I(2,.(G)). By (2.3), for H={1}, Lix[M]
G]=1(M|G)[RG], therefore I[G, M]=I(M|/G)[RG] (mod I(2,,(G)). (1)

Now, let C denote the class of torsion group consisting of the elements

of odd order.
Then there exists the following theorem in (pp. 41).

THEOREM. For any CW-pair (X, A), there is an isomorphism

0: 2,(X,A)= ) H,(X A;R2,) (modC)
pta=n
And the reduced bordism group £,(X) is denoted by Ker e [2,(X)—
2.(pp)], where ¢ is a collapsing map ¢ : X—pt. In particular 2,(G)=2,(BG).
Let X be connected, then by the construction of 8, the following diagram
is commutative.

10— 3,(X) ——— 2,(X) S 0, ——0

| b

0—Kerey— X Hy(X;Q) %> 5 H,(pt; 2)—>0

pta=n p+g=n

And Kereo= X H,(X;2), 2 H,(pt;2,)=42,, and so Mod C isomor-

>
p+a=n p+a=n

phism 6 induces the homomorphism 6, ; £,(X)— Y H,(X;2,). By the
, p+a=n
above commutativity, Ker 6,€C.

Now we consider X=BG and 6,: &,(G)— Y H,(G;®,). According

~ p+a=n
to the proposition of Cartan-Eilenberg, H,(G ;Z) is a torsion group. (see

prop. 2.5 pp. 236) And is also Y H,(G;&,) since each 2, is finitely

p+a=n
generated abelian group. And so Im 6, is a torsion group. Therefore

2,.(G) is a torsion group.

In the case I: 2,,(G)— RO(G), RO(G) is the free abelian group, and
its basis consist of the equivalence classes of irreducible representations.

Hence I(2,,(G))=0. And by (1), I[G, M]=I(M|G)[RG].

CorOLLARY. (J. A. Schafer [1], H-T-Ku and M-C-Ku [2]) Let G be
a finite group acting freely on M*. Then if G acts trivially on H*(M;
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R), the index I(M) is zero.

ExamMpPLE. Let CP* be a 4k-dimensional complex projective space.
We have I(CP*)=1. Let p be an odd integer. Denote 4k-dimensional
closed manifold M by connected sum of S'x.S*-! and p-disjoint copies of
CP*, Then M is diffeomorphic to L: L is

% CP8'%
CP P
£ s

~
~———

There exists an orientation preserving free Z,-action on L by the cyclic
permutation of each component. And so there exists an orientation
preserving free Z,-action on M via the diffeomorphism from M to L. And
hence we have [Z,, M]e,.(Z).
In the case p: odd, RO(Z,)=Z[K]+Z[V\]+ -+ Z[V,_;], where K is
P__

. . i . 1) . .
a trivial representation and each Vi<z=1-~—-—2—~> is the representation :
Z,={C> {: generator,

cos 2m — sin 2mi
R

sin -2~ cosgﬂi

Y 2 P
Since M/Z, is diffeomorphic to the manifold attached one handle to CP*,
it is cobordant to CP*. By the easy computation, I[Z,, M]=[K]+[Vi]

o+ [Vl

REMARK. We consider the case where G=Z, and .# is non-trivial.
Let Z,=<{T) and M” be fixed points set and denote self-intersection by
(MT)?.  Then

Sign (7, M)=I((M")?), where Sign (T, M)=trace (T*|V,)—trace (T*|V_).
(This is the proposition 6.15 in [3]) Using this result, it follows that if
[Z,, M€R,(Z,, %), then

I: ‘QU: (Zz, -_g-) '_"’RO (Zz) iS

1[Z,, M]=% (I(M)+I(M"))) [K]+3 (I(M)—I(M"))) [K_], where K_ is one
dimensional representation T— —1. And so, if Z, acts as =1 on H*(M;
R), then I(M)= £I(M?}). (Of course it follows also from the prop. 6.15
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in [3])
NoTE. In the unoriented case, the similar result was proved by R.
Stong in [8]. If Z, acts on a 2n-dimensional unoriented manifold, then

1(M)=2(M?}) (mod 2).
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