On a theorem of S. Chowla

By Tadashige Okada

(Received May 4, 1976)

Let p be an odd prime. Then S. Chowla [3] proved the following theorem.

Theorem. The $\frac{p-1}{2}$ real numbers $\cot (2 \pi a / p), a=1,2, \cdots, \frac{p-1}{2}$ are linearly independent over the field \boldsymbol{Q} of rational numbers.

Other proofs were given by Hasse [4], Iwasawa [5] and by Ayoub [1], [2].

In this note, we shall show the following theorem, which is a generalization of the above theorem, by means of improving the method of Chowla's proof.

Theorem. Let n be an integer with $n>2$ and let T be a set of representatives $\bmod n$ such that the union $\{T,-T\}$ is a complete set of residues prime to n. Then the $\phi(n) / 2$ real numbers $\cot (\pi a / n), a \in T$ are linearly independent over Q, where $\phi(n)$ is the Euler totient function.

Proof. Let D be the set of all Dirichlet characters to the modulus n. For a map

$$
F:(\boldsymbol{Z} / n \boldsymbol{Z})^{\times} \longrightarrow \boldsymbol{C}
$$

from the multiplicative $\operatorname{group}(\boldsymbol{Z} \mid n \boldsymbol{Z})^{\times}$of the residue class ring $\boldsymbol{Z} / n \boldsymbol{Z}$ to the complex field \boldsymbol{C}, we define the Fourier transform by

$$
\hat{F}(\chi)=\frac{1}{\phi(n)} \sum_{\substack{a(\operatorname{mon} \pi \\(a n n)=1}} F(a) \bar{\chi}(a) \quad(\chi \in D) .
$$

Then the inversion formula

$$
F(a)=\sum_{x \in D} \hat{F}(\chi) \chi(a) \quad(a \in Z,(a, n)=1)
$$

holds.
We define

$$
H(a)=-\frac{1}{n} \sum_{x=1}^{n-1} e^{-2 \pi i a x / n} \log \left(1-e^{2 \pi i x / n}\right) \quad(a \in Z) .
$$

The formulas (6) and (16) in Lehmer [7] yield

$$
\hat{H}\left(x_{0}\right)=\frac{1}{n} \sum_{p \mid n} \frac{\log p}{p-1},
$$

where χ_{0} is the principal character to the modulus n.
For $\chi \neq \chi_{0}$ we have easily

$$
\hat{H}(\chi)=\frac{1}{\phi(n)} L(1, \bar{x}) .
$$

Hence the inversion formula yields

$$
\begin{equation*}
H(a)=\frac{1}{n} \sum_{p \mid n} \frac{\log p}{p-1}+\frac{1}{\phi(n)} \sum_{x \neq x_{0}} L(1, \bar{\chi}) \chi(a) \quad(a \in Z,(a, n)=1) . \tag{1}
\end{equation*}
$$

The formulas (6) and (12) in Lehmer [7] yield

$$
\frac{\pi}{n} \cot \left(\frac{\pi a}{n}\right)=H(a)-H(-a) \quad(a \in Z, a \neq 0(\bmod n)) .
$$

From this and (1),

$$
\begin{align*}
& \frac{\pi}{n} \cot \left(\frac{\pi a}{n}\right)=\frac{1}{\phi(n)} \sum_{x \neq \chi_{0}}(\chi(a)-\chi(-a)) L(1, \bar{\chi}) \tag{2}\\
& \quad=\frac{2}{\phi(n)} \sum_{x(-1)=-1} \chi(a) L(1, \bar{\chi}) \quad(a \in Z,(a, n)=1) .
\end{align*}
$$

Let ζ denote a primitive n-th root of unity. Then the Galois group of $\boldsymbol{Q}(\zeta)$ over \boldsymbol{Q} is given by the mappings $\sigma_{a}: \zeta \longrightarrow \zeta^{a}(a \in S)$, where S is a complete set of residues prime to n.

We set

$$
f(x)=\frac{1}{i} \cot \left(\frac{\pi x}{n}\right) .
$$

Clearly, $f(b)$ belongs to $\boldsymbol{Q}(\zeta)$ for any integer b and $f(b)^{\sigma^{a}}=f(a b)$.
Suppose that there exist $C_{b} \in \boldsymbol{Q}$ such that

$$
\sum_{b \in T} C_{b} f(b)=0 .
$$

Then applying the mappings $\sigma_{\bar{a}}(a \in T)$, we get

$$
\sum_{b \in \mathcal{F}} C_{b} f(\bar{a} b)=0,
$$

where \bar{a} is defined by $\bar{a} a \equiv 1(\bmod n)$.
Then by the Frobenius determinant relation (see [6; p. 284]) and (2), we have that

$$
\begin{aligned}
\operatorname{det}_{a, b \in F}[f(a b)]= & \operatorname{II}_{x(-1)=-1}\left(\sum_{a \in \mathcal{X}} \bar{\chi}(a) f(a)\right) \\
& =\operatorname{III}_{x(-1)=-1}\left(\sum_{a \in T} \bar{X}(a) \sum_{\varphi(-1))=-1} \frac{2 n}{\pi i \phi(n)} \psi(a) L(1, \bar{\psi})\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{n}{\pi i}\right)^{\frac{\phi(n)}{2}} \prod_{x(-1)=-1}\left(\sum_{\varphi(-1)=-1} L(1, \bar{\psi}) \sum_{a \in T} \frac{2}{\phi(n)} \bar{\chi}(a) \phi(a)\right) \\
& =\left(\frac{n}{\pi i}\right)^{\frac{\phi(n)}{2}} \prod_{x(-1)=-1} L(1, \chi) \neq 0 .
\end{aligned}
$$

Hence $C_{b}=0$ for all $b \in T$, as required.

References

[1] R. Ayoub: On a theorem of S. Chowla, J. Number Theory, 7 (1975), 105-107.
[2] R. Ayoub: On a theorem of Iwasawa, J. Number Theory, 7 (1975), 108-120.
[3] S. Chowla: The nonexistence of nontrivial linear relations between the roots of a certain irreducible equation, J. Number Theory, 2 (1970), 120-123.
[4] H. HAsSE: On a question of S. Chowla, Acta Arith. 18 (1971) 275-280.
[5] K. Iwasawa: On a theorem of Chowla, (see [1; p. 105]).
[6] S. LANG: Elliptic functions, Addision-Wesley, 1973.
[7] D. H. Lehmer: Euler constants for arithmetical progressions, Acta Arith. XXVII (1975), 125-142.

Tadashige Okada
Hachinohe Institute of Technology
Ohbiraki, Hachinohe
Aomori, Japan

