On conjugation families

By Masahiko MIYAMOTO (Received February 12, 1976)

1. Introduction.

In his paper [2], Goldschmidt has proved a generalization of Alperin's theorem in [1]. The purpose of this paper is to give another proof of his result in [2], namely, to show that his family defined in [2] is a conjugation family.

Let p be a prime, G be a finite group, $Syl_p(G)$ denote the set of Sylow *p*-subgroups of G, and P be an element of $Syl_p(G)$. Let \mathcal{S} be the set of all pairs (H, T) such that H is a nontrivial subgroup in P and T is a subgroup in $N_G(H)$.

Our notation corresponds to that of Alperin [1], Goldschmidt [2], and Glauberman [3]. Let \mathscr{F} be a subset of \mathscr{S} , H be a subgroup of P, and L be a finite group.

- a) Suppose that A and B are nonempty subsets of P and $g \in G$. We say that A is \mathscr{F} -conjugate to B via g if there exist elements $(H_1, T_1), \dots, (H_n, T_n)$ in \mathscr{F} and g_1, \dots, g_n in G such that $g_i \in T_i (i=1, \dots, n)$, $A^g = B$, where $g = g_1 \dots g_n$, and $A \subseteq H$ and $A^{g_1 \dots g_i} \subseteq H_{i+1} (i=1, \dots, n-1)$.
- b) We say that \mathscr{F} is a conjugation family (for P in G) if it has the following property: whenever A and B are nonempty subsets of P and $g \in G$ and $A^g = B$, then A is \mathscr{F} -conjugate to B via g.
- c) We say that H is a tame intersection (in P) if $H=P\cap Q$ for some $Q\in Syl_p(G)$ and $N_P(H)\in Syl_p(N_G(H))$. In particular, there is a Sylow p-subgroup R of G such that $N_R(H)\in Syl_p(N_G(H))$ and $P\cap R=H$.
- d) We say that L is p-isolated if, for some S∈Syl_p(L), ⟨N_L(E): 1≠ E≤S⟩ is a nontrivial proper subgroup of L. In particular, if L is p-isolated, then there exists S₁ in Syl_p(L) such that S∩S₁=1. THEOREM A.

For each $(H, N_{G}(H)) \in \mathcal{S}$, we assign a normal subgroup K_{H} of $N_{G}(H)$. Let \mathcal{F} be the set of all pairs $(H, T) \in \mathcal{S}$ satisfying the following conditions i), ii), iii), and iv).

- i) H is a tame intersection in P.
- ii) H=P or the factor group $N_{G}(H)/H$ is p-isolated.

iii) If $K_{\mu} \cap P \not\leq H$, then $T \leq K_{\mu}$.

iv) For each element x in $T \cap N_P(H) - H$, $\langle x^T \rangle = T$.

Then \mathcal{F} is a conjugation family.

As corollaries of Theorem A, we can have several conjugation families. COROLLARY 1 (Goldschmidt's family in [2]).

Let \mathscr{F}_1 be the set of all pairs $(H, T) \in \mathscr{S}$ satisfying the conditions i) and ii) in Theorem A and the following condition iii)':

iii)' If either $O_{p',p}(N_{G}(H)) \cap P \neq H$ or $C_{P}(H) \not\leq H$ holds, then $T \leq C_{G}(H)$. Then \mathscr{T}_{1} is a conjuttion family.

COROLLARY 2.

For each $(H, N_{G}(H)) \in \mathcal{I}$, we assign a normal series $H \ge H_{1} \ge H_{2} \ge \cdots \ge H_{n}$ of $N_{G}(H)$. Let \mathscr{F}_{2} be the set of all pairs $(H, T) \in \mathcal{I}$ satisfying the conditions i) and ii) in Theorem A and the following condition iii)":

iii)" If there exists an element t in P-H with the property that $[t, H_i] \subseteq H_{i+1}$ $(i=1, \dots, n-1)$, then $T \leq C_{N_{\mathbf{G}}(H)}(H_1/H_n)$.

Then \mathcal{F}_2 is a conjugation family.

COROLLARY 3.

Let \mathscr{I}_3 be the set of all pairs $(H, T) \in \mathscr{S}$ satisfying the conditions i) and ii) in Theorem A and the following conditions iii)''':

iii)''' If $C_P(\Omega_1(Z(H))) \not\leq H$, then $T \leq C_G(Z(H)) \cap N_G(H)$.

Then \mathcal{F}_3 is a conjugation family.

MAIN THEOREM.

For each subgroup H in P, we assign a normal subgroup $K_{\mathbb{H}}$ of $N_{\mathfrak{G}}(H)$. For an arbitrary conjugation family \mathscr{F}^* , we define a family \mathscr{F} to be the set of all pairs $(H, T) \in \mathscr{F}$ satisfying the conditions a), b), c), d), and e).

- a) H is a tame intersection in P.
- b) H=P or the factor group $N_{g}(H)/H$ is p-isolated.
- c) If $K_H \cap P \not\leq H$, then $T \leq K_H$.
- d) For each element x in $T \cap N_P(H) H$, $\langle x^T \rangle = T$.
- e) $(H^{g}, L) \in \mathscr{F}^{*}$ for some element g in G and some subgroup L in $N_{G}(H^{g})$.

Then \mathcal{T} is a conjugation family.

2. Proof of Main Theorem.

Let \mathscr{S}_1 be the set of all pairs $(H, T) \in \mathscr{S}$ satisfying the conditions that

 $(H^s, L) \in \mathscr{F}^*$ for some element s in G and a subgroup L in $N_G(H^s)$. Clearly, \mathscr{S}_1 contains \mathscr{F}^* and \mathscr{F} and we have that \mathscr{S}_1 is a conjugation family.

Suppose that \mathscr{F} is not a conjugation family. Therefore, there are a subset A in P and an element g in G such that $A^{g} \subseteq P$ and A is not \mathscr{F} -conjugate to A^{g} via g. Choose such a pair (A, g) with maximal order $|\langle A \rangle|$. Set $B = A^{g}$ and let $\sum = \{\mathscr{T} | \mathscr{F}_{1} \supseteq \mathscr{T} \supseteq \mathscr{F}$ and A is \mathscr{T} -conjugate to B via g $\}$.

We introduce an order on Σ as follows. First, we define an order (\geq) on $\mathscr{S}: (H_1, T_1) > (H_2, T_2)$ if one of the following conditions holds;

a) $|H_1| \geq |H_2|$.

b) $|H_1| = |H_2|$ and $|N_P(H_1)| \ge |N_P(H_2)|$.

- c) $|H_1| = |H_2|, |N_P(H_1)| = |N_P(H_2)|, \text{ and } |T_1 K_{H_1}| \leq |T_2 K_{H_2}|.$
- d) $|H_1| = |H_2|, |N_P(H_1)| = |N_P(H_2)|, |T_1 K_{H_1}| = |T_2 K_{H_2}|, \text{ and } |T_1| \leq |T_2|.$

And $(H_1, T_1) \approx (H_2, T_2)$ if $|H_1| = |H_2|$, $|N_P(H_1)| = |N_P(H_2)|$, $|T_1 K_{H_1}| = |T_2 K_{H_2}|$, and $|T_1| = |T_2|$.

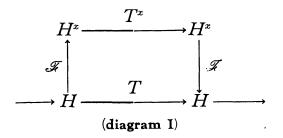
We define an order (\gg) on Σ . For $\mathscr{T}_1, \mathscr{T}_2 \in \Sigma$, we choose minimal elements (H_1, T_1) and (H_2, T_2) in $\mathscr{T}_1 - \mathscr{F}$ and $\mathscr{T}_2 - \mathscr{F}$, respectively, with respect to the above order (\gtrless) and we define $\mathscr{T}_1 \gg \mathscr{T}_2$ if either $(H_1, T_1) >$ (H_2, T_2) or $(H_1, T_1) \approx (H_2, T_2)$ and the number of minimal elements of $\mathscr{T}_1 \mathscr{F}$ is fewer than that of $\mathscr{T}_2 - \mathscr{F}$. Note that $\Sigma \neq \phi$, since \mathscr{L}_1 is a conjugation family, and $\mathscr{T} - \mathscr{F} \neq \phi$ for every $\mathscr{T} \in \Sigma$, since $\mathscr{F} \in \Sigma$. Let \mathscr{T} be a maximal element of Σ with respect to the order (\gg) . To prove Main Theorem, we will show that $\mathscr{T} \subseteq \mathscr{F}$, which is a contradiction. Let (H, T) be a minimal element of $\mathscr{T} - \mathscr{F}$ with respect to the order (\lessapprox) .

(1) $|H| \ge |\langle A \rangle|.$

Suppose false, then H contains no conjugates of A. Set $\mathscr{T}^* = \mathscr{T} - (H, T)$, then A is \mathscr{T}^* -conjugate to B via g. This contradicts the choice of \mathscr{T} .

(2) $N_P(H) \in Syl_p(N_G(H)).$

Suppose false, then P contains a conjugate L of H which satisfies $N_P(L) \in Syl_p(N_G(L))$. Then there is an element x in G such that $N_P(H)^x \geq N_P(L) \leq P$ and $H^x = L$. Since $|N_P(H)| \geq |H| \geq |A|$, we have that $N_P(H)$ is \mathscr{F} -conjugate to $N_P(H)^x$ via x by the choice of A. Thus, we may use $\{(H^x, T^x)\} \cup \mathscr{F}$ in place of $\{(H, T)\}$, namely, if X is $\{(H, T)\}$ -conjugate to X^y via y, then X is \mathscr{F} -conjugate to X^x via x and X^x is $\{(H^x, T^x)\}$ -conjugate to X^{yx} via y^x and X^{yx} is \mathscr{F} -conjugate to X^y via x^{-1} , (see the diagram I). Set $\mathscr{F}^* = \{\mathscr{T} - (H, T)\} \cup \{(H^x, T^x)\} \cup \mathscr{F}$. Then A is \mathscr{F}^* -conjugate to B via g, which implies that $\mathscr{F}^* \in \Sigma$. However, since $|N_P(H^x)| \geq |N_P(H)|$,



we have $(H^x, T^x) > (H, T)$. Thus, we have that $\mathscr{T}^* \gg \mathscr{T}$, a contradiction.

(3) P=H or $N_{g}(H)/H$ is *p*-isolated.

Suppose false, then $N_{G}(H) = \langle N_{N_{G}(H)}(P_{i}) : N_{P}(H) \geq P_{i \neq H} \rangle$. Thus, if *H* is $\{(H, N_{G}(H))\}$ -conjugate to H^{t} via *t*, then there are elements t_{i} in $N_{N_{G}(H)}(P_{i})$ such that $t = t_{1} \cdots t_{k}$ and *H* is $\{(P_{1}, N_{N_{G}(H)}(P_{1}))\}$ -conjugate to $H^{t_{1}}$ via t_{1} and $H^{t_{1}\cdots t_{i-1}}$ is $\{(P_{i}, N_{N_{G}(H)}(P_{i}))\}$ -conjugate to $H^{t_{1}\cdots t_{i}}$ via t_{i} . Hence, *H* is $\{(P_{i}, N_{N_{G}(H)}(P_{i})): N_{P}(H) \geq P_{i} \neq H\}$ -conjugate to H^{t} via *t*. Therefore, we may use $\{(P_{i}, N_{N_{G}(H)}(P_{i})): N_{P}(H) \geq P_{i} \neq H\}$ in place of $\{(H, T)\}$. Since $|P_{i}| \geq |H| \geq |A|$ for every P_{i} , we may use \mathscr{K} in place of $\{(P_{i}, N_{N_{G}(H)}(P_{i})): N_{P}(H) \geq P_{i} \neq H\}$, by the choice of A. Thus we may use \mathscr{K} in place of $\{(H, T)\}$. Set $\mathscr{T}^{*} = \mathscr{T} - (H, T)$. Then A is \mathscr{T}^{*} -conjugate to B via g, which contradicts the choice of \mathscr{T} .

(4) H is a tame intersection.

Since P=H or $N_{g}(H)/H$ is *p*-isolated, there is $Q \in Syl_{p}(G)$ such that $N_{Q}(H) \in Syl_{p}(N_{g}(H))$ and $P \cap N_{Q}(H) = H$ by the definition (d). Thus $P \cap Q = H$. On the other hand, $N_{P}(H) \in Syl_{p}(N_{G}(H))$ by (2). Thus H is a tame intersection in P.

(5) If $K_H \cap P \not\leq H$, then $T \leq K_H$.

Suppose false, then $P_0 = K_H H \cap P \geq H$ and $T \leq K_H$. Then $N_G(H) = N_{N_G(H)}(P_0) K_H$ by the Frattini argument. Thus we may use $\{(P_0, N_{N_G(H)}(P_0))\} \cup \{H, K_H\}$ in place of $\{(H, T)\}$. Since $|P_0| \geq |H| \geq |A|$, we may use \mathscr{F} in place of $\{(P_0, N_{N_G(H)}(P_0))\}$. Thus we may use $\mathscr{F} \cup \{(H, K_H)\}$ in place of $\{(H, T)\}$. Set $\mathscr{F}^* = \{\mathscr{F} - (H, T)\} \cup \{(H, K_H)\}$. Then A is \mathscr{F}^* -conjugate to B via g. Thus, we have $\mathscr{F}^* \in \Sigma$. But, since $|TK_H/K_H| > 1$, we have $\mathscr{F}^* \gg \mathscr{F}$, a contradiction.

(6) For each element x in $T \cap N_P(H) - H$, $\langle x^T \rangle = T$.

Suppose false, then $T_0 = \langle x^T \rangle$ is a proper normal subgroup of T and $T_0 \cap P \not\leq H$. Let Q_1 be a Sylow *p*-subgroup of T contains $T \cap P$ and Q be a Sylow *p*-subgroup of $N_G(H)$ contains Q_1 . Then $Q \cap N_P(H) \not\leq H$. Since $N_G(H)/H$ is *p*-isolated, there is an element z in $N_G(H)$ such that $Q^z = N_P(H)$ and $z \in \langle N_{N_G(H)}(P_i) \colon N_P(H) \geq P_i \not\geq H \rangle$. Thus H is \mathscr{F} -conjugate to

 H^z via z by the choice of A. Hence, we may assume that $P_0 = T_0 \cap P \in Syl_p(T_0)$. Then $T = N_T(P_0H) T_0$ by the Frattini argument. Thus, we may use $\{(P_0H, N_T(P_0H))\} \cup \{(H, T_0)\}$ in place of $\{(H, T)\}$. Since $|P_0H| \ge |H| \ge |A|$, we may use \mathscr{F} in place of $\{(P_0H, N_T(P_0H))\}$ by the choice of A. Set $\mathscr{F}^* = \{\mathscr{T} - (H, T)\} \cup \{(H, T_0)\}$. Then $\mathscr{F}^* \in \Sigma$ and $|T| > |T_0|$, we have that $\mathscr{F}^* \ll \mathscr{F}$, a contradiction.

This completes the proof of Main Theorem.

3. Proof of Corollaries.

PROOF of Theorem A.

By Alperin's theorem in [1], \mathcal{S} is a conjugation family. Therefore, Theorem A is a corollary of Main Theorem.

PROOF of Corollary 1.

Let \mathscr{I} be a conjugation family defined in Theorem A by taking $K_{H} = C_{\mathcal{G}}(H) O_{p',p}(N_{\mathcal{G}}(H))$. Let $(H, T) \in \mathscr{I}$. If $K_{H} \cap P \not\leq H$, then $T \leq C_{\mathcal{G}}(H) O_{p',p}(N_{\mathcal{G}}(H))$. Since $O_{p',p}(N_{\mathcal{G}}(H)) \leq C_{\mathcal{G}}(H) N_{P}(H)$ and $(P, N_{\mathcal{G}}(P)) \in \mathscr{I}$, $\{\mathscr{I} - (H, T) \} \cup \{(H, C_{\mathcal{G}}(H))\}$ is a conjugation family. By repeating these steps, we have that \mathscr{I}_{1} is a conjugation family.

PROOF of Corollary 2.

Let \mathscr{F} be a conjugation family defined in Theorem A by taking $K_H = N_G(H) \cup (\bigcap_{i=1}^{n-1} C_G(H_i/H_{i+1}))$. Let $(H, T) \in \mathscr{F}$. If $P \cap (\bigcap_{i=1}^{n-1} C_G(H_i/H_{i+1})) \not\leq H$, then $K_H \cap P \not\leq H$. Thus, $T \leq \bigcap_{i=1}^{n-1} C_G(H_i/H_{i+1}) \cap N_G(H)$ by Theorem A. Since $\bigcap_{i=1}^{n-1} C_G(H_i/H_{i+1}) \cap N_G(H) \leq N_P(H) O^p (\bigcap_{i=1}^{n-1} C_G(H_i/H_{i+1}))$ and $O^p (\bigcap_{i=1}^{n-1} C_G(H_i/H_{i+1})) \leq C_G(H_1/H_i)$. H_n and $(P, N_G(P)) \in \mathscr{F}$, $\{\mathscr{F} - (H, T)\} \cup \{(H, C_{N_G(H)}(H_1/H_n))\}$ is a conjugation family. By repeating these steps, we have that \mathscr{F}_2 is a conjugation family.

PROOF of Corollary 3.

Let \mathscr{F} be a conjugation family defined in Theorem A by taking $K_H = C_{\mathcal{G}}(\mathcal{Q}_1(Z(H))) \cap N_{\mathcal{G}}(H)$. Let $(H, T) \in \mathscr{F}$. If $K_H \cap P \not\leq H$, then $T \leq K_H$ by Theorem A. On the other hand, $K_H \leq O^p(G_{\mathcal{G}}(\mathcal{Q}_1(Z(H))) \cap N_{\mathcal{G}}(H)) N_P(H)$ and $O^p(C_{\mathcal{G}}(\mathcal{Q}_1(Z(H))) \cap N_{\mathcal{G}}(H)) \leq C_{\mathcal{G}}(Z(H)) \cap N_{\mathcal{G}}(H)$. Since $(P, N_{\mathcal{G}}(P)) \in \mathscr{F}$, $\{\mathscr{F} - (H, T)\} \cup \{(H, C_{\mathcal{G}}(Z(H)))\}$ is a conjugation family. By repeating these steps, we have that \mathscr{F}_3 is a conjugation family.

References

- [1] J. L. ALPERIN: Sylow intersections and fusion, J. Algebra 6 (1967), 222-241.
- [2] D. M. GOLDSCHMIDT: A conjugation family for finite groups, J. Algebra 16 (1970), 138-142.
- [3] G. GLAUBERMAN: Global and Local Properties of Finite Groups, "Finite simple group" edited by M. B. Powell and G. Higman, Academic press, London and New York, (1971).

Department of Mathematics Hokkaido University