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On conjugation families

By Masahiko MIYAMOTO
(Received February 12, 1976)

1. Introduction.

In his paper [2], Goldschmidt has proved a generalization of Alperin’s
theorem in [1]. The purpose of this paper is to give another proof of his
result in [2], namely, to show that his family defined in [2] is a conjuga-
tion family.

Let p be a prime, G be a finite group, Syl_{p}(G) denote the set of
Sylow p-subgroups of G, and P be an element of Sylp{G). Let .\mathscr{S} be the
set of all pairs (H, T) such that H is a nontrivial subgroup in P and T is
a subgroup in N_{G}(H) .

Our notation corresponds to that of Alperin [1], Goldschmidt [2], and
Glauberman [3]. Let \mathscr{F} be a subset of \mathscr{S}, H be a subgroup of P, and L
be a finite group.

a) Suppose that A and B are nonempty subsets of P and g\in G . We
say that A is \mathscr{F}-conjugate to B via g if there exist elements (H_{1} ,
T_{1}), \cdots , (H_{n}, T_{n}) in \mathscr{F}- and g_{1}, \cdots , g_{n} in G such that g_{i}\in T_{i}(i=1, \cdots, n),
A^{g}=B, where g=g_{1}\cdots g_{n}, and A\subseteq H and A^{g_{1}\cdots g_{i}}\subseteq H_{i+1}(i=1, \cdots, n-1).

b) We say that -
\mathscr{F} is a conjugation family (for P in G) if it has the

following property: whenever A and B are nonempty subsets of
P and g\in G and A^{g}=B, then A is.\mathscr{F}_{r}-conjugate to B via g.

c) We say that H is a tame intersection (in P) if H=P\cap Q for some
Q\in Syl_{p}(G) and N_{P}(H)\in Syl_{p}(N_{G}(H)) . In particular, there is a Sylow
p subgroup R of G such that N_{R}(H)\in Syl_{p}(N_{G}(H)) and P\cap R=H.

d) We say that L is p-isolated if, for some SeSylp{L), \langle N_{L}(E):1\neq

E\leq S\rangle is a nontrivial proper subgroup of L. In particular, if L is
p-isolated, then there exists S_{1} in Syl_{p}(L) such that S\cap S_{1}=1 .

THEOREM A.
For each (H, N_{G}(H))\in.\mathscr{S} , we assign a normal subgroup K_{H} of N_{G}(H) .

Let \mathscr{F} be the set of dl pairs (H, T)\in \mathscr{S} satisfying the following conditions
i), ii), iii), and iv).

i) H is a tame intersection in P.
ii) H=P or the factor group N_{G}(H)/H is p-isolated.
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iii) If K_{E}\cap P\not\leq H, then T\leq K_{H}.
iv) For each dment x in T\cap N_{P}(H)-H, \langle x^{T}\rangle=T.

Then \mathscr{F} is a conjugation family.
As corollaries of Theorem A, we can have several conjugation families.
COROLLARY 1 (Goldschmidt’s family in [2]).

Let \mathscr{F}_{1} be the set of all pairs (H, T)\in.\mathscr{S} satisfying the conditions i)
and ii) in Theorem A and the following condition iii)’: :

iii)’ If either O_{pp},,(N_{G}(H))\cap P\neq H or C_{P}(H)\not\leq H holds, then T\leq C_{G}(H).
Then - T_{1}, is a conjuation family.

COROLLARY 2.
For each (H, N_{G}(H))\in.\mathscr{S} ., we assign a normal series H\geq H_{1\neq}^{>}H_{2\neq}>\cdots>-\neq

H_{n} of N_{G}(H) . Let \mathscr{F}_{2} be the set of a^{f},l pairs (H, T)\in.\mathscr{S} satisfying the
conditions i) and ii) in Theorem A and the following condition iii)’ :

iii)’ If there exists an element t in P-H with the property that [t, H_{i}]\subseteq

H_{i+1} (i=1, \cdots, n-1), then T\leq C_{N_{G}(H)}(H_{1}/H_{n}) .
Then \mathscr{F}_{2} is a conjugation family.

COROLLARY 3.
Let \mathscr{F}_{3} be the set of all pairs (H, T)\in.\mathscr{S} satisfying the conditions i)

and ii) in Theorem A and the following conditions iii)’ :

iii)’ If C_{P}(\Omega_{1}(Z(H)))\not\leq H, then T\leq C_{G}(Z(H))\cap N_{G}(H) .
Then \mathscr{F}_{3} is a conjugation family.

MAIN THEOREM.
For each subgroup H in P, we assign a normal subgroup K_{H} of

N_{G}(H). For an arbitrary conjugation family - \mathscr{F}^{*}, , we define a family -r,
to be the set of all pairs (H, T)\in \mathscr{S} satisfying the conditions a ), b ), c ), d ),

and e ).

a) H is a tame intersection in P.
b) H=P or the factor group N_{G}(H)/H is p-isolated.
c) If K_{H}\cap P\not\leq H, then T\leq K_{H}.
d) For each element x in T\cap N_{P}(H)-H, \langle x^{T}\rangle=T.
e) (H^{g}, L)\in \mathscr{F}^{*} for some elment g in G and some subgroup L in

N_{G}(H^{g}) .
Then \mathscr{F} is a conjugation family.

2. Proof of Main Theorem.

Let .\mathscr{S}_{1} be the set Of all pairs (H, T)\in.\mathscr{S} satisfying the cOnditiOns that
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(H^{s}, L)\in\swarrow, *for some element s in G and a subgroup L in N_{G}(H^{s}) . Clearly,
.\mathscr{S}_{1} contains ,\mathscr{F}^{*} and \mathscr{F} and we have that .\mathscr{S}_{1} is a conjugation family.

Suppose that \swarrow _{\subset} is not a conjugation family. Therefore, there are
a subset A in P and an element g in G such that A^{g}\subseteq P and A is not
\mathscr{F}-conjugate to A^{g} via g. Choose such a pair (A, g) with maximal order
|\langle A\rangle| . Set B=A^{g} and let \sum=\{.\mathscr{T}|.\mathscr{S}_{1}\supseteq.\mathscr{T}\supseteq \mathscr{F} and A is \mathscr{T} -conjugate to
B via g }.

We introduce an order on \Sigma as follows. First, we define an order
(_{\simeq}^{>}) on .\mathscr{S} : (H_{1}, T_{1})>(H_{2}, T_{2}) if one of the following conditions holds;

a) |H_{1}|\neq>|H_{2}| .
b) |H_{1}|=|H_{2}| and |N_{P}(H_{1})|^{\sim}’\neq|N_{P}(H_{2})| .
c) |H_{1}|=|H_{2}| , |N_{P}(H_{1})|=|N_{P}(H_{2})| , and |T_{1}K_{H_{1}}|\leq|T_{2}K_{H_{l}}| .
d) |H_{1}|=|H_{2}| , |N_{P}(H_{1})|=|N_{P}(H_{2})| , |T_{1}K_{H_{1}}|=|T_{2}K_{H_{2}}| , and |T_{1}|\leq|T_{2}| .

And (H_{1}, T_{1})\approx(H_{2}, T_{2}) if |H_{1}|=|H_{2}| , |N_{P}(H_{1})|=|N_{P}(H_{2})| , |T_{1}K_{H_{1}}|=|T_{2}K_{H_{2}}| ,
and |T_{1}|=|T_{2}| .

We define an order (,\searrow>) on \Sigma . For \mathscr{T}_{1}, \mathscr{T}_{2}\in\Sigma, we choose minimal
elements (H_{1}, T_{1}) and (H_{2}, T_{2}) in \mathscr{T}_{1^{-}}- \mathscr{F}_{r} and \mathscr{T}_{2}-,\mathscr{F}, respectively, with
respect to the above order (_{\approx}^{>}) and we define \mathscr{T}_{1}\gg \mathscr{T}_{2} if either (H_{1}, T_{1})>

(H_{2}, T_{2}) or (H_{1}, T_{1})\approx(H_{2}, T_{2}) and the number of minimal elements of \mathscr{T}_{1}-

\mathscr{F} is fewer than that of \mathscr{T}_{2}-\mathscr{F} Note that \Sigma\neq\phi, since .\mathscr{S}_{1} is a conjugation
family, and \mathscr{T}-\mathscr{F}\neq\phi for every \mathscr{T}\in\Sigma, since \mathscr{F}\xi

\Sigma . Let \mathscr{T} be a maximal
element of \Sigma with respect to the order (\gg) . To prove Main Theorem,
we will show that \mathscr{T}\subseteq \mathscr{T},

’ which is a contradiction. Let (H, T) be a mini-
mal element of \mathscr{T}-\mathscr{T} with respect to the order (_{\approx}^{<}) .

(1) |H|\geq|\langle A\rangle| .
Suppose false, then H contains no conjugates of A. Set \mathscr{F}^{*}.=\mathscr{T}-(H,

T), then A is \mathscr{T}^{*}-conjugate to B via g. This contradicts the choice
of \mathscr{T} .

(2) NP(H)eSylp (No (H)).

Suppose false, then P contains a conjugate L of H which satisfies
NP(L)eSylp\{No(L)) . Then there is an element x in G such that N_{P}(H)^{x>}\neq

N_{P}(L)\leq P and H^{x}=L . Since |N_{P}(H)|\neq>|H|\geq|A| , we have that N_{P}(H) is
\mathscr{F}-conjugate to N_{P}(H)^{x} via x by the choice of A. Thus, we may use
\{(H^{x}, T^{x})\}\cup \mathscr{F}, in place of \{(H, T)\} , namely, if X is \{(H, T)\} -conjugate to
X^{y} via y, then X is \mathscr{F}-conjugate to X^{x} via x and X^{x} is \{(H^{x}, T^{x})\} -con-
jugate to X^{yx} via y^{x} and X^{yx} is \mathscr{F}-conjugate to X^{y} via x^{-1}, (see the dia-
gram I). Set \mathscr{T}^{*}=\langle\prime \mathscr{T}-(H, T)\}\cup\{(H^{x}, T^{x})\}\cup \mathscr{F} . Then A is \mathscr{T}^{*}-conjugate
to B via g, which implies that \mathscr{T}^{*}\in\Sigma . However, since |N_{P}(H^{x})|\geqq|N_{P}(H)| ,



On conjugation families 49

T^{x}

H^{x}--H^{x}

\mathscr{F}|

T
\downarrow K

-H–H-(diagram I)

we have (H^{x}, T^{x})>(H, T) . Thus, we have that \mathscr{T}^{*}\gg \mathscr{T},\cdot a contradiction.
(3) P=H or N_{G}(H)/H is p-isolated.
Suppose false, then N_{G}(H)=\langle N_{N_{6}(H)}(P_{i}):N_{P}(H)\geq P_{i}^{>}.H\rangle= . Thus, if

H is \{(H, N_{G}(H))\} -conjugate to H^{t} via t, then there are elements t_{i} in
N_{N(H)}.(P_{i}) such that t=t_{1}\cdots t_{k} and H is \{(P_{1}, N_{N_{G}(H)}(P_{1}))\} -conjugate to H^{t_{1}}

via t_{1} and H^{t_{1}\cdots t_{i-1}} is \{(P_{i}, N_{N_{G}(H)}(P_{i}))\} -conjugate to H^{t_{1}\cdots t_{i}} via t_{i} . Hence, H
is \{(P_{i}, N_{N_{G}(H)}(P_{i})):N_{P}(H)\geq P_{i\neq}’\sim H\} -conjugate to H^{t} via t. Therefore, we
may use \{(P_{i}, N_{N_{G}(H)}(P_{i})):N_{P}(H)\geq P_{i\neq}^{>}H\} in place of \{(H, T)\} . Since |P_{i}|_{}^{\sim}\acute,

|H|\geq|A| for every P_{i} , we may use \mathscr{F} in place of \{(P_{i}, N_{N_{G}(H)}(P_{i})):N_{P}(H)

\geq P_{i\neq}>H\} , by the choice of A. Thus we may use \mathscr{F} in place of \{(H, T)\} .
Set \mathscr{T}^{*}=\mathscr{T}-(H, T) . Then A is \mathscr{T}^{*}-conjugate to B via g, which con-
tradicts the choice of \mathscr{T} .

(4) H is a tame intersection.
Since P=H or N_{G}(H)/H is p-isolated, there is Q\in Syl_{p}(G) such that

N_{Q}(H)\in Syl_{p}(N_{G}(H)) and P\cap N_{Q}(H)=H by the definition (d). Thus P\cap Q

=H. On the other hand, N_{P}(H)\in Syl_{p}(N_{G}(H)) by (2). Thus H is a tame
intersection in P.

(5) If K_{H}\cap P\not\leq H, then T\leq K_{H}.
Suppose false, then P_{0}=K_{H}H\cap P^{>}\neq H and T\not\leq K_{H} . Then N_{G}(H)=

N_{N_{G}(H)}(P_{0})K_{H} by the Frattini argument. Thus we may use \{(P_{0}, N_{N_{G}(H)}(P_{0}))\}

\cup\{H, K_{H})\} in place of \{(H, T)\} . Since |P_{0}|^{>}-\neq|H|\geq|A| , we may use ,\mathscr{F} in
place of \{(P_{0}, N_{N_{G}(H)}(P_{0}))\} . Thus we may use \mathscr{F}\cup\{(H, K_{H})\} in place of \{(H,
T)\} . Set \mathscr{T}^{*}=\{\mathscr{T}-(H, T)\}\cup\{(H, K_{H})\} . Then A is \mathscr{T}^{*}-conjugate to B via
g. Thus, we have \mathscr{T}^{*}\in\Sigma . But, since |TK_{H}/K_{H}|>1 , we have.\mathscr{T}^{*}\gg \mathscr{T},
a contradiction.

(6) For each element x in T\cap N_{P}(H)-H, \langle x^{T}\rangle=T.
Suppose false, then T_{0}=\langle x^{T}\rangle is a proper normal subgroup of T and

T_{0}\cap P\not\leq H. Let Q_{1} be a Sylow p-subgroup of T contains T\cap P and Q be
a Sylow p subgroup of N_{G}(H) contains Q_{1} . Then Q\cap N_{P}(H)\not\leq H. Since
N_{G}(H)/H is p-isolated, there is an element z in N_{e}(H) such that Q^{z}=

N_{P}(H) and z\in\langle N_{N_{G}(H)}(P_{i}) : N_{P}(H)\geq P_{i\neq}>H\rangle . Thus H is \mathscr{F}-conjugate to
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H^{z} via z by the choice of A. Hence, we may assume that P_{0}=T_{0}\cap P\in

Syl_{p}T)\} . Then T=N_{T}(P_{0}H)T_{0} by the Frattini argument. Thus, we may
use \{(P_{0}H, N_{T}(P_{0}H))\}\cup\{(H, T_{0})\} in place of \{(H, T)\} . Since |P_{0}H|^{>}\neq|H|\geq

|A| , we may use r\mathscr{F} in place of \{(P_{0}H, N_{T}(P_{0}H))\} by the choice of A. Set
\mathscr{T}^{*}=\{\mathscr{T}-(H, T)\}\cup\{(H, T_{0})\} . Then \mathscr{T}^{*}\in\Sigma and |T|>|T_{0}| , we have that
\mathscr{T}^{*}\ll \mathscr{T} , a contradiction.

This completes the proof of Main Theorem.

3. Proof of Corollaries.

PROOF of Theorem A.
By Alperin’s theorem in [1], \cdot \mathscr{S} is a conjugation family. Therefore,

Theorem A is a corollary of Main Theorem.
PROOF of Corollary 1.
Let \mathscr{F} be a conjugation family defined in Theorem A by taking K_{H}=

C_{G}(H)O_{pp},,(N_{G}(H)) . Let (H, T)\in \mathscr{F}r If K_{H}\cap P\not\leq H, then T\leq C_{G}(H)O_{pp},,
(N_{G}(H)) . Since O_{pp},,(N_{G}(H))\leq C_{G}(H)N_{P}(H) and (P, N_{G}(P))\in \mathscr{F}, \{\mathscr{F}-(H,
T)\{\cup\{(H, C_{G}(H))\} is a conjugation family. By repeating these steps, we
have that \mathscr{T}r1 is a conjugation family.

PROOF of Corollary 2.
Let \mathscr{T}, be a conjugation family defined in Theorem A by taking K_{H}=

NP(H) ( \bigcap_{i=1}C_{G}(H_{i}/H_{i+1}))n1 . Let (H, T)\in \mathscr{F} . If P\cap(\overline{\bigcap_{i=1}}C_{G}(H_{i}/H_{i+1}))\not\leq Hn1, then

K_{H}\cap P\not\leq H. Thus, T\leq\overline{\bigcap_{i=1}}C_{G}(H_{i}/H_{i+1})n1\cap N_{G}(H) by Theorem A. Since n1 \bigcap_{i=1}C_{G}

(H_{i}/H_{i+1}) \cap N_{G}(H)\leq N_{P}(H)O^{p}(\bigcap_{i=1}C_{G}(H_{i}/H_{i+1}))n1 and o^{p}(\overline{\bigcap_{i=1}}C_{G}(H_{i}/H_{i+1}))\leq C_{G}(H_{1}/n1

H_{n}) and (P, N_{G}(P))\in \mathscr{F}, \{\mathscr{F}-(H, T)\}\cup\{(H, C_{N_{G}(H)}(H_{1}/H_{n})\} is a conjugation
family. By repeating these steps, we have that \mathscr{F}_{2} is a conjugation
family.

PROOF of Corollary 3.
Let ,\mathscr{T}, be a conjugation family defined in Theorem A by taking K_{H}=

C_{G}(\Omega_{1}(Z(H)))\cap N_{G}(H) . Let (H, T)\in \mathscr{F} . If K_{H}\cap P\not\leq H, then T\leq K_{H} by
Theorem A. On the other hand, K_{H}\leq O^{p}(G_{G}(\Omega_{1}(Z(H)))\cap N_{G}(H))N_{P}(H)

and O^{p}(C_{G}(\Omega_{1}(Z(H)))\cap N_{G}(H))\leq C_{G}(Z(H))\cap N_{G}(H) . Since (P, N_{G}(P))\in \mathscr{F},
\{\mathscr{F}-(H, T)\}\cup\{(H, C_{G}(Z(H)))\} is a conjugation family. By repeating these
steps, we have that \mathscr{F}_{3} is a conjugation family.
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