A uniqueness theorem for surfaces in the large

By Samuel I. GOLDBERG

(Received February 18, 1976)

1. Introduction

It has long been conjectured that among the compact (connected) oriented surfaces in E^3 only the sphere has constant mean curvature μ . This was established by H. Hopf [4] for surfaces of genus zero. For arbitrary genus a proof was given by A. D. Aleksandrov [1] under the assumption that there are no self intersections, *i.e.*, for surfaces embedded in E^3 . Recently S. -S. Chern and the author [2] showed that a closed orientable surface of constant μ such that $K^2 \ge C/2\mu^2$ is a sphere. (K is the Gaussian curvature and C is a nonnegative scalar invariant of the Gauss map of the immersed surface.) In this note the following theorem is obtained by a similar method.

THEOREM. A closed orientable surface in E^3 of constant mean curvature μ with $K(\mu^2 - K) \ge -C/4\mu^2$ is a sphere.

T. Klotz and R. Osserman [6] proved that a complete surface immersed in E^3 with constant μ and $K \ge 0$ is a sphere, a plane, or a right circular cylinder. Our method also yields a new proof of this since under the conditions K is a superharmonic function. (Observe that in the Theorem, K is not assumed to be nonnegative.)

2. Harmonic Mappings

To prove the theorem, the well-known fact that the Gauss map of a surface S in E^3 is harmonic if the mean curvature is constant, is used. A brief review of the theory as given in [3] is now presented.

Let M and N be smooth oriented Riemannian manifolds of dimensions m and n, respectively, with the metrics ds_M^2 and ds_N^2 , and let $f: M \to N$ be a smooth mapping. Locally, then, $ds_M^2 = \sum \omega_i^2$ and $ds_N^2 = \sum \omega_a^{*^2}$, where the $\omega_i, i=1, \dots, m$ and $\omega_a^*, a=1, \dots, n$ are linear differential forms in M and N, respectively. (Corresponding quantities in N are denoted with an asterisk.) We write $f^* \omega_a^* = \sum A_i^a \omega_i$. The covariant differential D of A_i^a is defined by

(2.1)
$$DA_i^a \equiv dA_i^a + \sum_j A_j^a \omega_{ji} + \sum_b A_i^b \omega_{ba}^* = \sum_j A_{ij}^a \omega_j \quad (say)$$

with $A_{ij}^a = A_{ji}^a$, where the ω_{ji} and ω_{ba}^* are the connection forms of ds_M^2 and ds_N^2 , respectively. (In the sequel, the symbol f^* is omitted from such formulas with no resulting confusion.) The mapping f is said to be *har*monic if $\sum A_{ii}^a = 0$.

Taking the exterior derivative of (2, 1) and using the structure equations in M and N, we get if f is harmonic, the Laplacian

$$\sum_{k} A^{a}_{ikk} = \sum_{k} A^{a}_{k} R_{ki} - \sum_{b,c,d,k} R^{*}_{bacd} A^{b}_{k} A^{c}_{k} A^{d}_{i},$$

where R_{ki} is the Ricci tensor of ds_M^2 and R_{bacd}^* is the curvature tensor of ds_N^2 . Let $u = \sum (A_i^a)^2$. Then, its Laplacian $\Delta u = \sum u_{kk}$ is given by

(2.2)
$$\frac{1}{2} \Delta u = \sum_{a,i,j} (A_{ij}^a)^2 + \sum_{a,i,j} R_{ij} A_i^a A_j^a - \sum_{\substack{a,b,c,d \\ i,j}} R_{abcd}^* A_i^a A_j^b A_i^c A_j^d.$$

The details of the proof of this formula may be found in [3].

The last term in (2, 2) may be expressed as

(2.3)
$$\sum R^*_{abcd} A^a_i A^b_j A^c_i A^d_j = 2 \sum_{i < j} R^* (A_i, A_j) ||A_i \wedge A_j||^2,$$

where A_i is the local vector field with components (A_i^1, \dots, A_i^n) and $R^*(A_i, A_j)$ denotes the sectional curvature of N along the section spanned by A_i and A_j at each point.

3. Proof of the Theorem

Let M=S, N= the unit sphere in E^3 with the constant curvature metric, and let $f: S \rightarrow N$ be the Gauss map. In this case, $A_i^a = h_{ia}$, i, a =1, 2, where the h_{ia} are the coefficients of the second fundamental form of the immersion. Since $\mu = \text{const.}$, f is a harmonic map. Noting that $2\mu =$ $h_{11}+h_{22}$, $K=h_{11}h_{22}-(h_{12})^2$, $u=4\mu^2-2K$ and $A_{ij}^a=h_{ija}$, the formula (2.2) yields after an elementary computation,

(3.1)
$$-\Delta K = 4K(\mu^2 - K) + \frac{C}{\mu^2},$$

where C is the nonnegative scalar invariant of f given by $C = \mu^2 \sum (h_{ijk})^2$. For, the r. h. s. of (2.3) equals $2K^2$ since $R^*(A_i, A_j) = 1$ and $\sum_{i < j} ||A_i \wedge A_j||^2 = K^2$. By hypothesis, $K(\mu^2 - K) \ge -C/4\mu^2$, so S being compact, K must be a positive constant. Thus, S is a sphere.

It was shown in [2] that on a surface of constant mean curvature in E^3 the function log K^2 is superharmonic wherever $K \neq 0$. However, we were unable to obtain a geometrical interpretation of this fact.

If $K \ge 0$ and $\mu = \text{const.}$, formula (3.1) says K is a superharmonic function. We assume S is complete. If $K \equiv 0$, formula (3.1) says that

S. I. Goldberg

S is either a plane or a right circular cylinder. If $K \neq 0$ and S is compact, it is a sphere by the theorem. If $K \neq 0$ and S is not compact, Theorem 15 in A. Huber [5] says that S is parabolic. It follows that K is a constant greater than zero, so S is compact, and we have a contradiction.

References

- A. D. ALEKSANDROV: Uniqueness theorem for surfaces in the large V, Vestnik Leningrad Univ. Ser. Mat. Meh. Astronom. 13 (1958), 5-8.
- [2] S.-S. CHERN and S. I. GOLDBERG: On the volume decreasing property of a class of real harmonic mappings, Amer. Journ. Math. 97 (1975), 133-147.
- [3] S. I. GOLDBERG and T. ISHIHARA: Harmonic quasiconformal mappings of Riemannian manifolds, Amer. Journ. Math., 98 (1976), 225-240.
- [4] H. HOPF: Lectures on differential geometry in the large, mimeographed notes, Stanford University, 1956.
- [5] A. HUBER: On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13-72.
- [6] T. KLOTZ and R. OSSERMAN: Complete surfaces in E³ with constant mean curvature, Comment. Math. Helv. 41 (1966-67), 313-318.

University of Illinois Urbana, Illinois 61801