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A uniqueness theorem for surfaces in the large

By Samuel I. GOLDBERG
(Received February 18, 1976)

1. Introduction

It has long been conjectured that among the compact (connected)
oriented surfaces in E^{3} only the sphere has constant mean curvature \mu . This
was established by H. Hopf [4] for surfaces of genus zero. For arbitrary
genus a proof was given by A. D. Aleksandrov [1] under the assumption
that there are no self intersections, i.e. , for surfaces embedded in E^{3} .
Recently S.-S. Chern and the author [2] showed that a closed orientable
surface of constant \mu such that K^{2}\geqq C/2\mu^{2} is a sphere. (K is the Gaussian
curvature and C is a nonnegative scalar invariant of the Gauss map of the
immersed surface.) In this note the following theorem is obtained by
a similar method.
THEOREM. A closed orientable surface in E^{3} of constant mean curvature \mu

with K(\mu^{2}-K)\geqq-C/4\mu 2 is a sphere.
T. Klotz and R. Osserman [6] proved that a complete surface im-

mersed in E^{3} with constant \mu and K\geqq 0 is a sphere, a plane, or a right
circular cylinder. Our method also yields a new proof of this since under
the conditions K is a superharmonic function. (Observe that in the
Theorem, K is not assumed to be nonnegative.)

2. Harmonic Mappings

To prove the theorem, the well-known fact that the Gauss map of
a surface S in E^{3} is harmonic if the mean curvature is constant, is used.
A brief review of the theory as given in [3] is now presented.

Let M and N be smooth oriented Riemannian manifolds of dimensions
m and n, respectively, with the metrics ds_{M}^{2} and ds_{N}^{2}, and let f:Marrow N be
a smooth mapping. Locally, then, ds_{M}^{2}= \sum\omega_{i}^{2} and ds_{N}^{2}= \sum\omega_{a}^{*^{2}}

- where the
\omega_{i} , i=1, \cdots , m and \omega_{a}^{*} , a=1, \cdots , n are linear differential forms in M and N,
respectively. (Corresponding quantities in N are denoted with an asterisk.)
We write f^{*} \omega_{a}^{*}=\sum A_{i}^{a}\omega_{i} . The covariant differential D of A_{i}^{a} is defined by
(_{\backslash }2.1)

DA_{i}^{a} \equiv dA_{i}^{a}+\sum_{j}A_{f}^{a}\omega_{fi}+\sum_{b}A_{i}^{b}\omega_{ba}^{*}=\sum_{j}A_{ij}^{a}\omega_{f} (say)
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with A_{ij}^{a}=A_{fi}^{a} , where the \omega_{fi} and \omega_{ba}^{*} are the connection forms of ds_{M}^{2}

and ds_{N}^{2}, respectively. (In the sequel, the symbol f^{*} is omitted from such
formulas with no resulting confusion.) The mapping f is said to be har-
u nit if \sum A_{ii}^{a}=0 .

Taking the exterior derivative of (2. 1) and using the structure equa-
tions in M and N, we get if f is harmonic, the Laplacian

\sum_{k}A_{ikk}^{a}=\sum_{k}A_{k}^{n}R_{ki}-\sum_{b,c,d,k}R_{bae’ l}^{*}A_{k}^{b}A_{\acute{k}}A_{i}^{d} ,

where R_{ki} is the Ricci tensor of ds_{M}^{2} and R_{bacd}^{*} is the curvature tensor of
ds_{N}^{2}. Let u= \sum(A_{i}^{a})^{2}. Then, its Laplacian \Delta u=\sum u_{kk} is given by

(2. 2) \frac{1}{2}\Delta u=\sum_{a,i,f}(A_{if}^{a})^{2}+\sum_{a,i,f}R_{if}A_{i}^{a}A_{f}^{a}-_{a_{i}},\sum_{b,c,el}

,

_{\acute{f}},R_{abcd}^{*}A_{i}^{a}A_{f}^{b}A_{i}^{c}A_{f}^{a} .

The details of the proof of this formula may be found in [3].
The last term in (2. 2) may be expressed as

(2. 3) \sum R_{abcd}^{*}A_{i}^{a}A_{f}^{b}A_{i}^{c}A_{j}^{d}=2\sum_{i<j}R^{*}(A_{i}, A_{f})||A_{i}\Lambda A_{j}||^{2},

where A_{i} is the local vector field with components (A_{i}^{1_{ }},\cdots, A_{i}^{n}) and R^{*}(A_{i}, A_{j}\rangle

denotes the sectional curvature of N along the section spanned by A_{i} and
A_{f} at each point.

3. Proof of the Theorem
Let M=S, N=the unit sphere in E^{3} with the constant curvature

metric, and let f:Sarrow N be the Gauss map. In this case, A_{i}^{a}=h_{ia} , i, a=
1,2, where the h_{ia} are the coefficients of the second fundamental form of
the immersion. Since \mu=const. , f is a harmonic map. Noting that 2\mu=
h_{11}+h_{22}, K=h_{11}h_{22}-(h_{12})^{2}, u=4\mu-22K and A_{ij}^{a}=h_{ifa} , the formula (2. 2) yields
after an elementary computation,

(3. 1) - \Delta K=4K(\mu^{2}-K)+\frac{C}{\mu^{2}}’-

where C is the nonnegative scalar invariant of f given by C= \mu\sum 2(h_{ijk})^{z}.
For, the r.h.s. of (2. 3) equals 2K^{2} since R^{*}(A_{i}, A_{f})=1 and \sum_{i<f}||A_{i}\Lambda A_{f}||^{2}

=K^{2}. By hypothesis, K(\mu^{2}-K)\geqq-C/4\mu 2, so S being compact, K must be
a positive constant. Thus, S is a sphere.

It was shown in [2] that on a surface of constant mean curvature in
E^{3} the function log K^{2} is superharmonic wherever K\neq 0 . However, we
were unable to obtain a geometrical interpretation of this fact.

If K\geqq 0 and \mu=const. , formula (3. 1) says K is a superharmonic
function. We assume S is complete. If K\equiv 0, formula (3. 1) says that
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S is either a plane or a right circular cylinder. If K\not\equiv 0 and S is compact,
it is a sphere by the theorem. If K\not\equiv 0 and S is not compact, \backslash Theorem
15 in A. Huber [5] says that S is parabolic. It follows that K is a con-
stant greater than zero, so S is compact, and we have a contradiction.
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