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Construction of a parametrix for the Cauchy problem

of some weakly hyperbolic equation I.

By Atsushi YosHIKAWA
(Received September 20, 1976)

§ 0. Introduction

Consider the partial differential operator
(0. 0) P=D:—23%_Di+alt, x)D,+ X%, b;(t, ) D;+c(t, 2)

in R**'. Here a, by, -+, b,, ¢ are C* functions of (¢, x)=(¢, z, -*-, L) ER X
R", and

D, = —id/ot, D; = —idlox;, (j=1,,n)

12=—1 as usual. We are going to construct a parametrix for the Cauchy
problem associated to the operator P:

(0.1) (Pu) t, x) = 0, t>0, z=€R",
(0.2) u(0, ) = f(x), Du(0, x) = ¢ (z), xER",
f, g being distributions in &' (R").

For simplicity, we shall assume that

(0.3) Im X%, 6;(0, x) &;] be uniformly bounded

for all xeR" and £=(&, -+, £,) on the unit sphere S" 1.

Let

(0. 4) m(o) = — % + % sup {a Im >;%.,5;(0, x) éj} , a2=1,

the supremum being taken over (x,&)eR»xXS* 1,
We then have the following

THEOREM. There exist symbols

Pa(t, xz, &) ESn@te,m@te
b,(t, x, &) = Sn@+e,
(0. 5) put, 2, )
q.(t, x, §) = Sm@te=1/2 2m@)+2¢,
£)

(
g.(t, x, e Smoterz gt =1 (t, 2,6l ER . XR"XR"
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such that

0. 6) E(f,9) ¢ )
= Zd_il 27,_- Slgmgneﬂm—y’e)%tzm/z)p”(t’ x, E)f(?/) a’y dg

S ei[(m—yf)"‘”tzle'/m ﬁ, (t, X, E)f(y)dy dé
S ¢l o atiela g (1 1, €) g (y)dy dE

+ Z”=i1(2ﬂ)_nss ez[(a:—y O+at’lel/2} & (t o E) ( )d’y ds
RO R®

gives a parametriz for the Cauchy problem (0. 1) (0.2) in R, X R*. Namely,
for u=E(f,g), (0.1) holds in R,xR" modulo C*(R,xR" and (0.2) on
R* modulo C*(R". The integrals in (0.6) are taken as oscillatory ones
of Hormander [4]. In (0.5), ¢ is an arbitrary positive number and can

be dropped if n=1 and b,(0, x) is independent of x.

In the above statement, S™ and S™* for real m, k are respectively a
variant of the symbol class of Hormander S7%, e.g., [4], and one of the
class of Boutet de Monvel [1]. They will be difined by Definitions and
below.

Note that }.%_,5,;(0, z)&; coincides with the value of the subprincipal
symbol of the operator P at the intersection of the surface t=0 and the
characterisitic variety of P. As will be clear from the discussions below
(in particular, proofs of Propositions and B.5), the requirement (0. 3)
is inessential. We only need to restrict supports of f and ¢ and localize
m(o) accordingly.

We remark that the quantity m(¢) appears in the explicit computation
of Chi for the simplest case. Related discussions are also found as the
index of well-posedness in Ivrii and Petkov [7].

For weakly hyperbolic operators, the investigations of the necessary
conditions of well-posedness have progressed much in recent years. See in
particular the expository article of Ivrii and Petkov [7] (also [5]). As to
the sufficient conditions, several authors, especially Oleinik [9], Ivrii [6], Me-
nikoff [8], obtained a priori estimates for classes of operators including the
operator P treated here. However, our construction allows to derive quite
explicit informations of general nature concerning the solutions. In this
respect, our method may provide some insight though it has yet many short-
comings for the time being.

The main step in the proof of is the construction of “taming”



Construction of a parametriz for the Cauchy problem 315

terms p,(t, x,&) and gq,(¢ x,€). The initial condition is absorbed in these
terms. Here the asymptotic behaviors of the solutions of certain second
order ordinary differential equations play important roles. These are ex-
plained in §§1 to 3. The operator being tamed, the remaining construc-
tions of ,(t, z,€) and §,(t, x, &) are much simpler. These constructions will
be done in §4. Thus our program will be:

1. Heuritsics
2. Asymptotic properties of the solutions of the equation :

(D24 B—2) u(t) = e*it2h(s), (BEC);

3. Construction of the taming terms;

4. Completion of the proof of [Theoreml

The method used here is also applicable to the inhomogeneous case
and to a more general class of operators. These extensions are actually
done in our articles scheduled to appear in the next issue.

§ 1. Heuristics.

Let
1.1 Eff)(t, ) =
= Toeui2n)y [[eerortamp e, 5,8 £l0) dyd
and
1.2) E(g)(t, ) =

= 2o=ma(27)7" ﬁ gtemv. ot 802 g (¢, 1, &) g(y) dyds .
We begin by a speculation that E, is given formally by the integral:

(1.3) Eff)t @) = @n | [eevople, 20,97 0) duds

Here p(t, x,¥, &) is the symbol to be specified.
Now apply the operator P formally to E, Then

(1. 4) PEy(f) (¢, x) = (Zn)-n” ¢@1,9 Pp(t, x, Y, &) f () dydE ,
where
(1. 5) P~ =P (t,x,&; Dy, Dy) =

= D} —#2|¢|2—282 ) 8Dy — 12 25D+ alt, ) D,
+ 23nbi(t, x) &+ D5oabs(t, ) D+, )
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Assume that p(¢, x, v, &) be given by a formal sum:
(1 6) P(t’ Xy y’ E) - Z;:=0Pk(t’ Z, Y, E)

Here, for each k&, p.(¢, x, vy, &) is semi-homogeneous of degree —k/2, that is,

De(A7V2, x,Y, 28) = T¥2p(t, 2, 3, &)

for 2>0.
On the other hand, we expand af(t, x), b,(t, ) and c(¢, ) in Taylor series
so that

a(t, x) = Xir-oa(x) t*,

B(t, x,§) = 25105t 2) &5 = 2i¥-0Bu(x, §) t*,

B(t, z, D,) = §=1bj(t’ x) D; = 2 r-oBy(z, Dy) t*,

c(t, ) = Ji-ocu(x) t*.
Then we obtain the following expansion of P~ respecting semihomogeneity :
(1.7) P = 215..P5,
each P; being semi-homogeneous of degree —j/2+1. More precisely,
( Py = Di —2*|§]*+ By(x, §)

Pl = ay(x) D, +tBy(x, §) ,

(1. 8) P = ta)(x) D,+t*By(x, §) —2t* 3% _,&;D;+ By(x, D) +¢o(x) ,
Py = t2ay(x) D+ By(x, §) +t By (x, D)+tcy(x),
Pl = —23 7 \Di4-t3ay(x) D+t By(x, §) +t2By(x, D)+ t%c,(x) ,

and

(1 9) P_;\Z tj‘laj_l(x)Dt-l—thj(x, E) +tj-sz_2 (x, D)+tj_2Cj_2(x)
for j=5.

Therefore,

(1.10) Popt, 2,9, §) = 270 20 s45-1Le Pi(t, 2,9, 6)

gives an expansion of P7p(t, z,v,§) respecting semi-homogeneity, ;-
P:p; being semi-homogeneous of degree 1—10/2.
Hence, by solving the equations

(1. 11) Zk+j=lPIc\Pj(t! x,Y, f) = 0, l= 0, 1, 2, cer,

successively, we can determine each pi(¢, x,¥,&). The initial conditions to

be posed should be
(1' 12) PO(O’ x, y’ 5) - 1’ DtPO(O! x’ y, E) = 0
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and
(1.13) 2i(0,2,9,€) = 0, Dip;(0, z,9,§) =0
for j=1.
We proceed to E,(g) in a similar manner. Set
(1. 14 Eg) (6. 2) = a7 | [ervoq(t, 2,8 gt0) e,
where
(1.15) 9t .Y, €) = Li-odlt, 1Y, €)»

each ¢ being semi-homogeneous of degree —k/2—1/2. Then by the equa-
tions

(1. 16) 2ime=tPra(t, 1.y, 6) =0, 1=0,1,--,
with the initial conditions

(1.17) %0, ,9,€) =0, D,q(0, z,y,§) =1
and

(1.18) 9,0, z,9,§) = 0, Duq;(0, ,9,€) =0

for j=1, we can successively determine every g¢:(z, x,¥, &).
We shall show in § 3 that p(¢, z,v, &) and ¢.(z, x, v, &) can be expressed
in the forms

(1.19) pilt, 2,9, 8) = Za=¢1€m2‘5”2pka(t, z, §)
and
(1’ 20) qk(t’ x’ y’ E) = Za=ileiatzle[/2qko(t9 x’ E) i

Here py,(t, 2, &) and g, (¢, x, &) are respectively semi-homogeneous of degree
—k/2 and —k/2—1/2. Furthermore they satisfy appropriate estimates by
the results of §2 (cf. Proposition 3.5). This allows us to find symbols
2.(t, x, &) and q,(t, x, &) with

(1' 21) Pu(t: x, §)~ Z?=0ka(t’ Z, E)
and
(1' 22) q, (t’ X, §)~ Z?:o‘Ika(t’ x, E)

in a well-defined manner (cf. |Corollary 3. 14).
However, the equations corresponding to (1.11) and (1. 16) are not ex-
actly satisfied. Instead, we have

(1. 23) P"Z":ileiaczlelmpa(t’ z 5) — Za=i1eiatzlel/2;'.a(t’ z, 5)
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and

(1_ 24) P-’~Za=ilem2|e|/2qa(t’ z, 5) — Z,=i1€""tz‘“/2§a(t, z, 5) .

Here #(t, x,&) and §,(t z,£) are, though not smoothing, essentially flat at
t=0 (cf. Proposition 3.15). In this sense, we call p,(¢, z,¢) and q.(¢, x, §)
taming terms. In fact, as will be shown in §4, this flatness allows us to
solve ordinary transport equations determined by the operator P. We can
thus determine the remaining 5,(¢, x, &) and q,(z, z, &).

§2. Asymptotic properties of the solutions of the equation
(D+ B—t2) u (t)=e*“"2h(t), (B<C).

We first determine a fundamental pair of the solutions of the equation
(2.1) (D}4+B—t)u(t) =0, BeC.

This is essentially equivalent to determine a fundamental system of the solu-
tions of the equation

2.2 (D?+2¢ tD,—4iop,) v(t) = 0,
where
(2. 3) ' p:%—l——zﬂ, ?=1;

for we have
(2. 4) (D4 B—12) {e""2w(t)} = et /2(D}+ 20t D, —4iop,) w(t) .

PrOPOSITION 2.1. A fundamental system of the solutions of the equa-
tion (2.1) is given by

(2. 5) G () = Do nsCle29,(t, B),
(2. 6) G (t) = D01 C2e%¢, (¢, B);
here
'(1/2) _e=t 1,
2.7) C”IZT((p_/_,))e ()
I(3/2 _oni l+,,
(2. 8) Cf:’le(—L;)Je > (3 "),
2.9 bl By = U s i),

a*=1; for complex a, c, ¥(a,c;2) is a confluent hypergeometric function :
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(2.10) ¥ (a,c;=2)

= F{;—(ic——F)l) Ola,c;z)+ Fgf(;)l) 2@(a—c+l, 2—c; —2),

larg 2| <3xn/2, 2'~¢ being the principal branch with ® Humbert's symbol
@(a,c Z) lFl(a’C z)

Proor: We determine ¢'(t) and ¢%(#) by requiring
(2. 11) §0) =1, ¢"(0) =0
(2.12) #2(0) = 0, #¥(0) =1.

Then by (2. 2) and (2. 4), ¢/ (t)=e"“"2¢i(t), j=1, 2, form a fundamental system
of the solutions of (2.2) for ¢=1. By (2.11) and (2.2), we see that ¢'(¢)
is an even function of ¢ on the real axis. Thus, letting ¢*(t)=U (%), we
see that U(0)=1, and

— 482U (¢%) —(42% +2) U’ (¢?) — 4ipy U (2% =0.
Therefore, if

(2.13) f —420" (2) —(42i+2) U’ (2) —4ip,U(2) = 0,
| U)=1,
then ¢'(¢)= (t“’) Let U(2)=U(—iz2). Then, from (2.13), we have

1

—izU"(—iz)-I—<~~2— +iz) U (—iz)—mU(—iz)=0.

In particular, if U(2) satisfies

(2.14) { 20" (2)+ (% —z) U (2)—p0(z) =0,
00) =1

then

(2. 15) Q) = O(—ir?) .

As is well-known (e. g., Erdélyi et al. [3]), the solution of (2.14) is given by

(2. 16) O(z) = @( N %; z>

In a similar way, since ¢?(t) is an odd function of ¢ on the real axis, we
have

(2.17) 2 (t) = tV(—it?
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with

(2.18) { 2 "(z)+<—§— —z) V' (2)— (#H— %) V() =0,
V() =1,

or

(2.19) Viz) = ¢<yl—|——21—, %; z) .

Note that @(a,c; 2) is an entire function of 2. Now we recall the follow-
ing well-known relation (e. g., [3]):

(2.20) @ (a,c; 2

= F(];<-C-)a)_ e (a,c; 2)+ 5((2)) @Y (c—a,c; —=2),

a, ¢ being complex numbers and ¢ =sgn Im 2. Therefore, for real ¢,

2.21 .
=gy e g i)
(3)
+ F(ﬂl) eﬁﬂ_’e—itzw(#—l’ —2_a Z.tz)v
and
3
)
2.22 2 . 1 3 .
( ) ¢2(t) — m e——ﬂ(#r"i‘) tW(ﬂl—!“ _2_ , 7; —Zt2>

()

" 1 3 .
FPE oy S kg, i),

Meanwhile, from (2.10), we have, for complex q,
1
e 72
?If<a, 5 wt)

1) :
_ 2 @ 1 °2> 2 ot @ Il . 2)
I'la 5

w

with |arg (—i0t?)| <3zn/2. We take an entire branch

nio

(—iot)t = e 1 ¢
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1 1
r(z) () .
= ——~2T@<a, % ; —iat2> + T(a)zﬁ__ e_Tt¢<a+—;—, —g— ; —iat2>

is an entire funcition of # by the right hand side. Similarly,

1 3
(2. 24) tw<a+7,7;——iaﬁ>

1 1
F(“z‘) 13 . F(é‘) w (1
:Wt@ a+—é~,7; —10t +—~1—~e4 @(a,—z—; —10t
I’<a+~2—>

is an entire function of ¢ by the right hand side. From (2.23) and (2. 24),
we deduce

(2. 25) l’f(a, —;— : —z'at2> = e_%atl’f<a+ é—, —g— : —iat2) .

Of course, this is a particular case of the well-known relation (e.g., [3]):
U(ag,c;2)=2"V(a—c+1,2—c;2).

Rewriting (2. 21) and (2. 22) by using (2. 25), we get

(2. 26) B (t) = /241 ()
1
: F(*z‘) ] 2
— Za:ilean /2 ['(ﬂ_”) e axz#alp'(#” 2 5 —ZO't>
and
(2.27) B2 (t) = €' 12g2 (¢)

3
.2 F(?) —ori (X+p,) 1
- Za=j:lent /2_1:1(1 _#) (4 Zﬂ w(ﬂv’ ? > _0t2> .

Then by (2.7), (2.8), (2.9) and (2. 26), (2. 27), we have (2.5) and (2. 6). This
completes the proof of the proposition.

COROLLARY 2.2. Let
&a(t) — e’iot’/2¢a(t’ B), o2=1.
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Then
(2. 28) 3.(t) = —2iaC? ,¢' (1) +2i0CL,$2(2),

a?=1, and they form a fundamental pair of the solutions of the equation
(2.1).

Proor. By (2.7) and (2. 8),

(2. 29) CIC? — CL,Ct = (e~ sin npr_y —e~ sin nm) =L
COROLLARY 2. 3.
(2. 30) g,(—t, B) ="ty (2, B)

27
YT Ti—p) ©

ProoF. Since the equation (2.1) is invariant under a rotation by an
integral multiple of z, we see that @,(—2), ¢?=1, satisfy the equation (2. 1),
Thus from [Corollary 2.2, we have

Bo(—1) = Do=2147 &,(t)-
Then by (2.29), (2.7), (2.8), we have

—ani(#,,—%)e—iatzsb_a(t’ B), ¢*=1.

cc,+cc:
A=t —cree=¢ ™
20 ,C2, 2 o=~

A =T O T Tl A—p)
COROLLARY 2.4. Let ¢'(t,7), ¢*(t, 7) be solutions of the equation (2.1)

with

(2. 31) o, 7)=1, ¢Y({t,t)=0 when t=r,
(2.32) MR, 7)=0, ¢¥(,1)=1 when t=r.
Then

239 g0 == Teus 5 {imwgle, By~ g/ (e, Blee=r0, 0, B),

2.3 gt =— Dous 5 ¢ole B3¢, B).
Proor. We know that ¢/(¢, 0)=¢’(¢), j=1,2. Let

(2. 35) ¢’ (t,v) = 2iaal(t)g*(), j=1,2.
Then we have from (2. 31) and (2. 32)
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(2. 36) ¢! (L, 7) = ¢¥ (1) ¢' (1) — 4" (1) $°(2),
(2.37) ¢*(t, 7) = —¢*(2) ¢ (1) + (1) $*(2).
In particular,

(2.38) 8t 7) = — e g?(t, ).
Now,

$2(t, 1) = — (D0e 1 Cie" g, (z, B))( T = aChei* g (¢, B))
+(ZoeasCle 4, (z, B))( D caaChet”*72g, (¢, B))
= (Cicz—l - C];1Cf) Zo=d:laeio(t2_72)/2¢—u(7, B) ¢v (t, B) ’

which is nothing but (2.34). From (2.34) and (2. 38) we get (2.33).

In the following section, we shall mainly be concerned with the case
where B depends on parameters. Taking this into account, we shall assume
in the remaining part of this section that B is a C* function on a C* mani-

fold 2:

(2.39) BeC>(Q).

For the sake of simplicity, we make a further assumption that
(2. 40) Im B is uniformly bounded on £ ;

thus, by (2. 3), so are Rey,, ¢>°=1.

Let Y be an open sector in C\{0} or in some Riemann surface over
C\{0}. It is convenient to introduce the following notations.

DerFINITION 2.5. For real v, we denote by O*(3, 2) the space of all
functions f(2, ®), holomorphic in 23 and C* in w&®, such that for any
differential operator 4 on £, we have

(2. 41) | 4f (2, 0)]| =C(1 +]2])"

for 2, |2|=1, and wcK. Here Y is any closed subsector of 2, K any
compact subset of 2 and C a positive constant depending on 2’, K and 4.
All the functions appearing in the remaining part of this section are
smooth on 2. We generally omit the variables @ of £ in the expressions
of these functions.
Let f(2)=f(z, ) be a function which is holomorphic in 2 and C* on
2, and f*(2)=s*(z, ») a formal series of the form:

(2.42) FE(2) = Dj-ollog 2)72°3 2150 f 27",
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vj, fx€CR). U, for any N,

(2. 43) f2)—27-o(log 2)i22s 3 ¥ fin2 €OV (Z, Q)
with limy_.ey= —oo, then we say that f*(z) is the asymptotic expansion of
f(2) in the sector X, and write
(2. 44) Sf(2)~f*(2).

ProrosiTION 2.6. Let
(2. 45) OX(t, B)=t"2) 7 art™ %,
with
(2. 46) <ﬂ.,)k<ﬁ.,+ %)k

ap = A (to)* k=0,1,2,--..

Here

(Qg=TI(a+k)/[(a), £=0,1,2,---.
for complex a. Then
(2. 47) ¢.(t, By~ (¢, B)

in the sector

(2. 48) S-——-{tEC\{O} ; 1argt]<%}.
Proor. Let

(2. 49) g* <p,, —é* ; z) =g " )2 (lo) Fapz7k.

We claim

(2. 50) q’(#ﬂ é— ; z>~?f* (ﬂa, % ; z)

in the sector Y={|arg 2|/ <3x/2}. Then since t=.S implies —igt?cy and
U 5 —iott) = (—io) *g2 t, B),
(2. 47) follows from (2.50) and (2.9) in view of
(_io-)_ﬂa — (e"""":/z)_/‘o' — e""iﬂalz .

To prove (2.50), we employ the following integral representation for the

function ¥ (cf. [3]):
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1
(2.51) 1’”(#.,, 5 z>
1 (0+)
=5 e Il —#a)f € T 1)V dL.
[C T :

1 ] . .
Here —n<0<n, — 5T <f+arg =< —;— m, and the contour of integration is

a loop starting (and ending) at #=oo0e” and encircling 0 counter-clockwise.
Let

(2.52) px(C, 0) = (1+8)7 V2 — 310 o (— 1) (1, +1/2)L*/ R !
and

1 0+)
(2. 53) Ry(z, @) = ¢ I(1— ,u,,)S e 0y (C, @) L.
Substituting (2. 52) to (2.51), we have
(2.52) Ry(2, ) = W(y,,, ~21— ; z> —g ke )N (io) Fapz7h .

Now pn(l, 0)=C"*"1p7({, w) if

(G, ) = (= D7 (412w, | (1= (L5002 Rds/N .
Thus, by (2. 53),

Ry(z, ) = g%e‘#vﬂ' [(1—p)z#ed-1

(0+)
x| et (271 L, w) L.

ooe't(a-i,-arg z)

Hence, it is readily seen, by virtue of (2.40), that

Ry(z, 0)€0¥(Z, 2),
where
ey =supg(—Re y,)—N—1+¢,
¢ being an arbitrary positive number.
REMARK 2.7. Let
u¥(@t)=t* D 5 bit™%, by=1.

Then a formal substitution of «*(¢) into (2. 2) shows g= —2u,, bu=ar, by,
=0, £=0,1,2,---. That is, ¢¥(¢, B) is a formal solution of (2. 2).
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ProrosiTION 2.8. Let

(2. 55) 9t) =g, ) €0V (s, Q)
for sufficiently large N>0. Then the equation

(2. 56) (D2 420tD,— 4iop,)v(t) = g (¢)
has a solution

(2.57) () = v(t, @) €0~F(S, 2),

¢ being an arbitrary positive number.

Proor. By (2.4) and [Proposition 2.1, ¢i()=e *"24/(¢), j=1,2, form
a fundamental pair of the solutions of the equation (2.2). Thus

2.5 vl)=| WEH-FOFEO+FEFE 6 dr

(o]

gives a particular solution of (2.56). Here

(2. 59) W (z) = ' (c)¢* (r) — §*(2) " (v)

is the wronskian. Note that

W(0)=1
and
W' () = —20tiW (z),
whence
(2. 60) W (r) = e~

On the other hand,
— 0§ (z) + P (z) 2 (2)
= et {— G1(3gH )+ 6 2)gD)
— e—ia(tz+rz)/2¢2 (t, ‘Z')

1 . et
— 7e—za(tz+r’)/zza,=ﬂo.ew (t*—r )/2¢—a" (z', B) Oy (t, B).

ol

—— %y (e, Bt By e, B gt B

by (2.37) and (2. 34).
Hence, by (2.58) (2.59) (2. 60), we have

2.6 ol)="3"{ ¢ BoE deg B

(-]

+ —12£§ e—ia(t’—r’)gb, (z, B) ¢(t)dr¢_,(t, B) = vy (t) +vs(2).

z
o
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— . 1 ~
Now by [Proposition 2. 6 and since g+ fa="5, We see that

(2. 26) vE0V(S, 0),

¢ any positive number. When ¢ lies in any closed subsector of S, we can
choose a path of intergration in S in such a way that

Im o2 < Im o072,

that is,
T
argt<argr<—g for 6=1

or

—%<arg r<argt for ¢=—1.

Thus again by [Proposition 2.6, we have
(2. 63) v e~V (§, Q)
¢ any positive number. (2.57) now follows from (2.62) and (2. 63).

ProPOSITION 2.9. Let h(t)=h(t,w) be entire analytic in t with the
following asymptotic expansion in the sector S:

(2. 64) h(t)~t* i ohit™®,  he#0.
If v+2u, is not a non-negative integer, then the solution of the equation
(2. 65) (D: 4 B—12) u(t) = e™"/2h (z:)

has the following asymptotic expansion in the sector S modulo a homo-
geneous solution :

(2. 66) e 2y ()~ 32 it
where
1

u,—=u_; =0,
Proor. Let
R*(t) =t ) 5oohat ™"
and

v¥(t) = £ 2 R-ouat TF
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We first show that ei”/2v*(¢) is a formal solution of
(Di+ B—1?) {e"/20% ()} = e "/%h* (),
or equivalently
(2. 68) (Di+20t D, — 4iop,) v*(t) = h*(t).
But then we see that (2.68) is equivalent to
| —(v—k+2) v—k+ 1)y —20i (v+2p, — B) uz = hy,
u; =0 for £<O0.
or just (2.67). Now let
ht) =02 ohut ™+ hy(t).
Then
(2. 69) hyeO(S, ),
ey——o00 as N—oo.
Therefore, if we set
v(t) = e () = ¢ LYt F oy (),
then
(D% +20tD,—4iop,) vy (t)
=hy@)F+@—N+1)—Nuy_ & ¥ 1+p—N)v—N—1uy—¥2,
Hence, by [Proposition 2. 8 and (2. 69),
vye0¥(S, Q),
ey=max (ey, Reyv—N—1)+¢, ¢>0.

Just in the same way, we have the following two corollaries.

CoroLLARY 2.10. Let h(t) be as in Poposition 2.9. If m=v+2y,
is a non-negative integer, then the solution of the equation (2.65) has the
Sollowing asymptotic expansion in the sector S modulo a homogeneous solu-
tion :

(2.70) et 2y (1)
~ ) ettt F+un (t, B) logt .

k#m

here ¢ (¢, B) is defined by (2.45) and



Construction of a parametriz for the Cauchy pooblem 329

u, =0 for k<O,
uk:m{hk+(”—k+2> (v—k—|—1)uk_2} for k=m—1,
um=——2},—i{hm+(v—m+2) (v—m+1)um_2},

i = gy s T (=0 = 7= +2) = m 1) s

—-um[bj_2+2(v—— m—]—}-l) bj_1+20ibj]}

for j=1 with by=a, in (2.46) and by,,=0, 1=0,1,2,---, and &;, the Kro-
necker symbol.

Proor. Let
uy (t) = 2g-ottut ™",
k+m
and
w* (t) = ug (£) +ung’ (¢, B) logt
Then

(2.71) (D% 20tD,—4iop,) u*(t)
= (D?+ 20t D, — 4iop,) uy (t) + wm(— 20t +172 — 21t D;) ¢ (¢, B)
= h*(¢)
by the choice of u,.
CoROLLARY 2.11. Let h}(t), I=0,1, ---, L, be formal series of the form
(2.72) h¥(e) = e ohut ™.

Assume that h(t) be entire analytic in t and have the following asymptotic
expansion in the sector S':

(2.73) h(t)~ 27-o(log )t (z).

Then the solution u(t) of the equation (2.65) has the following asymptotic
expansion in the sector S modulo a homogeneous solution :

(2. 74) e (§) m T et (log 2 (1, B)
+ 2o D h=olog 88 2 e owi s ut ™
cii1-;=0 when v,+2p, is not a non-negdtive integer.
Proor. We only need to show that
(2.75) (D?+ 20t D, —4iop,) v*(t) = 2.7, (log 2)'h; (2)
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has the formal solution of the form
(2. 76) v¥(t) = 2lio 215 0Ci41- 5 (log )¢5 (¢, B)
+ Do y-ollog 8 Y5 gwi_ s at 7",
Let
A*@) =5 0 ohat ",

We examine the formal solution of
2.77) (Di+20tD, — diop,) 7% () = (log £)h*(2).
Let o*(t)=(log t)*@*(t). Then
(2.78) (D2 +20tD, — 4iap,){(log £)\a* (1)}

= (log t)}(D}+ 20t D, — 4ioy,) @*(¢)

+ (log &)Y —2lei — 2Lt~ D, + 1t~ 2) @w* (¢)

+ (log £~ — Ui~ Dr—*@* (1)} .

Hence, if 5+2y, is not a non-negative integer, we can solve @y*(f) from

(2.79) | (D?+ 20t D, — 4iop,) @k (t) = h*(2)
in the form
(2. 80) Wy (t) = L5 oWot "

Thus, setting ¥ (¢)=(log t)'@wg (t) + o7 (t), we see from (2. 77) (2. 78) (2. 79) that
Ty () satisfies

(2. 81) (D2+ 20t D, — 4iop,) 0 (¢)
= (log 2)'~ A () +(log £)"~2h3 (2)
with
hE (t) = I[ — 201 — 24t 1D, 172 @i ()
and
R =—1(I—1)t 2wt ).

Therefore, we can solve #f(¢) in a similar manner so that we finally obtain
the formal solution of (2.77) in the form

(2.82) ¥ (t) = 5= (log t)m} ,(t),
(2. 83) Wi () = 17,50, 5 87"

On the other hand, if +42y,=#i is a non-negative integer, we set
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(2. 84) Wi (t) = Wey(t) + & log - (¢, B)
as in (2.71). Here
(2. 85) Weo(t) = tT'ZZco;q'wOOkt_k

Then substituting o*(¢) =(log ¢)'@g (£) + o7 (¢) in (2. 77), we can determine @e;
and & so that of(¢) satisfies (2. 81) with
{ — 201 — 2t D, + -2t (£) — (I + 1) &t~ 27 (¢, B)}
and
k¥ (e) = — LI — 1) 2avgs(2).

Thus, we can solve 9f () in a similar manner so that we ﬁhally obtain the
formal solution of (2.77) in the form

(2. 86) ¥ (2) = lj+10C1+1 j(log t>j¢;k (t, B)
+ 235-ollog )i} ;,0(),
(2. 87) Wi 40(t) = tﬁZE:ng_j,o,kt"“.

Now (2. 82), (2.83). (2.86), (2.87) show that the formal solution of (2.75)
is given in the form (2.76).

REMARK 2.12. In order to estimate py,(¢, x, &) and ¢z, =, &) of (1.19)
and (1.20), we shall use [Corollary 2.11| in the case when all vy, 42y, are
non-negative integers.

REMARK 2.13. |Corollary 2. 11| shows that roughly the equation
(D24 B—1?) u(t) = e**20(r), >0,

has a solution
u(t) = e:tit2/20(t»+s)+ Z.,:ilei””z/zo(t'“”")

as t—oo in the sector S. Here ¢ reflects possible logarithmic terms in the
asymptotic expansions. The second term in the right hand side represents
the modification by a homogeneous solution and those additional logarithmic
terms appearing in (2. 74).

REMARK 2.14 A similar discussion also applies to the equation of the
form

(2. 88) (D24 B—12) u(t) = e’ ~212g(z) h(t),
d?=1. We first solve v(¢) from

(D?+ 20t D, — 4iop,) v(t) = h(t)
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with a good asymptotic property. Then

u(t) = e =12 () v(f)
is a particular solution of (2. 88). Thus

A(t) = &2 (c) v(t) — g (z) v(z) $ (2, 7)
—g(0){v'(x) +ioro(2)} $2(¢, 7)
is a solution of (2. 88) with
2(z)=0, @'(z)=0.

Thus, in particular, if A(f)=0(**), g (r)=0(z***) in the sector .S, then

a(f) = e @ =2 0(p+) O(er+)
+ Zo,=ileia’(tz_,2)/2O(Tﬁ+v+1—2ﬂ_a+c+¢') O(t_"’”v')
if Rev=—2Rey, Here ¢ and ¢ should be interpreted as in Remark 2.13.

§ 3. Construction of the taming terms

We proceed to solve the equations (1.11) and (1.16) with the initial
conditions (1.12), (1.13) and (1.17) (1.18). As we have mentioned in §1,
the solutions pi(z, z, 9, &) and q.(¢, x, ¥, &) are to be in the forms (1.19) and
(1. 20).

ProrositioN 3.1. Let |§|=1. The initial value problem :

(3.1) (D} + Bo(x, §) — 22§17 polt, 2,9, €) =0,
(3.2) 200, 2,9, €) =1, Dp(0, x,9,6) =0,
is solved by

(3.3) Doty 2,9, 8) = T 1€ 192p4, (2, 2, £) ;
here

(3.4) Pt 7 &) = Cig, (161, B, §/I¢1))

with CY, ¢, as defined by (2.7) and (2.9).

Proor. By the semi-homogeneity, po(t, z, ¥, §)=po(|§|V%, x, ¥, &/|E]).
Then py(t, x,y, £/|€|) satisfies (2.1) and (2.11) with B=By(x, &/|¢]).

In a similar way, we have
ProrosiTiON 3.2. Let |§|=1. The initial value problem :

(3' 5) (D§+Bo(x, E)_t2l5|2)q0(t’ X, y’ E) =09
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(3- 6) qO(O’ z, Y, E) =0, tho(o’ z,Y, 5) =1,

is solved by

(3.7) Qolts 2, Y, &) = X e s1€ 182, (8, , £) ;
here

(3 8) qu(t7 Z, 5) - i'&l_l/chgba(l&l llzt’ BO(xa E/‘S'))

with C? and ¢, as defined by (2.8) and (2.9).
By applications of [Proposition 2.6 and (Corollary 2.11, we have the
following estimates.

ProrosiTION 3.3. Let K be any compact subset of R". For any non-
negative integer l, and non-negative integral multi-indices a=(ay, -+, ay),

B=(B1 ***5 B)s
3.9)  IDID:Dipu(e, 3,8 S CLLHIg o]t ety
and
(3.10) | DiDsD2qo, (¢, x, &) < C (14 |§[)m@*e1/2-1A1(|g] =1 4 gZymi@temi/z
for t=0, x=K, |¢|=1. Here ¢ is an arbitrary positive number and C
is a positive constant depending on K, ¢, I, a, B; m(a) is defined by (0. 4).
ProoF. In view of semi-homogeneity, we can apply [Proposition 2. 6|
with 2=R*x 8" ! and B=By(x, £/|¢|). Then (3.9) and (3. 10) are immediate
from (3.4) and (3. 8).
REMARK 3.4. If n=1 and By(z, &) is independent of z, then ¢ in (3. 9)
and (3.10) can be dropped. The choice of m(s) can be localized (cf. (0. 4)
and the discussions after in §0).

To determine p,(t, z, &) and g, (¢, x, &) for j=1 we proceed by induction
on j.

Assume for k<j

(3.11) Pelt, T, Yy &) = Yioe 1€ 2Py, (2, 7, €)
and |
(3 12) | qx (t’ Z, y’ E) = Za:ﬂ:leiatzw”zqm(t’ Z, E) .

Here, pi(t, x,8) and glt, x,€) are semi-homogeneous of degree —k/2 and
—k/2—1/2, respectively.

Set
(3. 13) ot 2, &) = et 82 Py {eiatzlel/2pj_kﬂ(t’ z, 5)}
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and
(3. 14) s _aolt, 2, 8) = e—iaczél/ZP;‘{eiatzlﬂ/qu_k,a(t, z, 5)}

for k=1,-.--,j. Then since P~ is semi-homogeneous of degree —#k/2+1,
r_i.t, x, &) and st_,,(t, z, &) are semi-homogeneous of degree —j/2+1 and
—7/2+1/2, respectively. By (1.11) and (1.16), p;{(#, x,¥,§) and g;(t, z, Y, &)
satisfy

(3.15) (D2 By(x, &) —22|€19)p1(t, 2, Y5 ) = Domsa€™™ ¥2r (8, , ),
(3.16) (D By(x, ) —21€10) @5t 2, Y5 &) = Domur€ 'V, (¢, 2, €)
with the null initial data. Here,

(3' 17) rja(t’ X, E) = Ic=1r§—k,a(t9 xX, 5)
and
(3 18) s]'a(t’ Z, 5) - Z£=IS§—Is,a(t’ Z, 5)

are semi-homogeneous of degree —j/2+1 and —j/2+1/2, respectively.
Then
(3 19) Pja(t’ Z, E) zp?y'a(ti x, 5) - Za’=:§:1p,lia' (0’ xX, E) POa(t) zx, S)
- Zo'=:tl (Dtp_lja’) (O, Z, S) (Io,(t, X, 5)
and
(3' 20) qh(t’ Z, 5) = q}ja(t’ X, 5) - Zv'=:f:1q§v' (0’ Z, 5) POa(t’ x, 'E)
- Za'=:l:1 (th}o") (0’ Z, E) qoq (t’ x, 5) .

Here p},(¢, 2, &) and ¢}, (¢, x, &) are solutions of

(3.21) (D;+20t|§| D, + By(x, §) —10l§]) ph.(t, x, &) =142, x, &)
and
(3.22) (Di+20t|§] D, + By(x, §) —ial§]) g4 (t, x, §) =5, (¢, x, &),

respectively. In particular, p; (¢ z,£) and gq;,(¢, x, £) are semi-homogeneous
of degree —j/2 and —j/2—1/2, respectively.

ProposiTION 3.5. Let K be any compact subset of R". For any non-
negative integer l, and non-negative integral multi-indices a, B, we have

3.23)  IDIDDIpA(t, % §)] < ClL+I]mo+m1n (8] -1 pspmoo+eriire,
(3. 24) |DiDDeq,,(t, x, €)] < C(1+|g])m@+e=1/2-181 (|£] =1 4 g2)ymeo—et (j=D/2
and
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(3 25) |D§D2Dgr§_k’,,(t, x, E)l g C(l + [S[)m(a)+c+1—[ﬁl (lél -1 +t2)m(u)+s+ (Gj-0/2 R
(3.26) | DIDIDIS (8, 3, 8)] S CL [+ vami([g] 1 ppymoresumore

for t=0, z€K, |&§=1 (j=0,1,2,---; k=1,---,j, j=1). Here, cis an arbi-
trary positive integer and C is a positive constant depending on K, ¢, I, a, B.

ProoF. We show the estimates (3.23) and (3.25) for I=|a|=|8|=0.
(3.24) and (3.26) for I=|a|=|p| =0 follow in the same way. These esti-
mates for general a, B8, / follow in a similar manner by differentiations in
respective variables. '
Since p,,(t, x, &) and 7%_, (¢, x,§) are respectively semi-homogeneous of de-
gree —j/2 and —j/2+1, we may restrict £ on the unit sphere and write @
instead of &, so |w|=1. We claim

(3.27) Pinlt, 2 0) = Ct#+4(1 +o(1))

and, for k=1, ---,,

(3. 28) oty X, @) = C 2~ etd (1 +o(1))

in the sector S defined by (2.48). Here o(1)€O—'(S, R*x-8"1), ¢ being

arbitrary positive number, and

L
(3. 29) A=+ Bz o).

The estimates (3. 27) for j=0 follows from Propositions and 2. 6. (3. 28)
for j=k=1 follows from (3.13) and (1.8). Now assume (3.27) for j<J.
Then from (1.8), (1.9) and (3. 13), we have for k=1, -, J,

rhopalts 2, 0) = Cit*(1 +o(1)>c,_Kt—2ﬂ«+J-k(1 +o(1))
=C; 7+ (1+0(1)),

that is, (3.28) for j=J and k=1,---,J. Then by (1.11), Corollary 2.11]|
and Remarks 2.12 and 2.13, we have (3.27) for j=J. By the semi-homo-
geneity,

(3. 30) pilt, 1, §) = €172, (151V%, x, @),
(3.31) 7 kot T &) = |15 (€12, x, @)
o=¢&/|¢|. (3.30) and (3.27) now give
25t 2, &) < CIE|772(1+ &7 //H(1+ |€]V/2)72RAH,
which implies (3.23) for I=|a|=|8|=0. Similarly, (3.31) and (3.28) yield
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(3.25) for I=|a|=|p|=0. Co

REMARK 3.6. ¢ can be dropped in (3.23) (3.24) (3.25) (3.26) if n=1
and By(z, §) is independent of x. Also m{s) can be localized.

By Propositions and B.5, we can now apply a modified version
of results of Boutet de Movel [1]. For that purpose, we begin by intro-
ducing several notions in the forms we need. The first is the following
variant of the symbol classes of Hérmander (e. g., [4]).

DeFINITION 3.7. For real m, we denote by S™ the space of all C®
functions p(t, z,&) on B, XR*XR" such that for any non-negative integer
[, and non-negative integral multi-indces @, 8, we have

|DIDDEp(t, x, &) < C(14+|&])m1a

for 0=:=<T, z€K, |§|=1. Here, T is an arbitrary positive number, K
any compact subset of R", and C is a positive constant depending on 7T,
K, I, a, B. An element of S™ is called a symbol of degree m.

Just as HOrmander’s classes, we have

ProrosiTioN 3.8. Let p,e8™ %, j=0,1,2,---. Then there exists a
pES™ such that for all N

p— Xt €SV,
Two such symbols differ by a symbol of degree — oo.
The following is a variant of the classes of Boutet de Monvel [1].

DEeFINITION 3.9. For real m, x, we denote by S™* the space of all
C* functions p(¢, x,£) on R, X R*X R* such that for any non-negative in-
teger /, and non-negative integral multi-indices a, 8, we have

|DID2DPp(t, x, &) SC(1+ |&])ym=181(|g| 1 4 g2)2-u2

for 0=<t<T, z€K, |§/=1. Here T is any positive number, K any compact
subset of R", and C is a positive constant depending on T, K, [, a, B.

In this terminology, [Proposition 3.5 reads :

CoroLLARY 3.10 For j=0,1, 2,

(3. 32) Pi(t, T, §) S Sn@t M@t 2ts
(3.33) 21 (t, T, &) ESn@+ -2 M@ t20k ]
and for j=1,2, -, k=1, -,

(3. 34) rh_ ot 1, &) ESmE@ I ama bt

(3.33) st _ro(ty T, £) ESM@ T IM@ 20k ]
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For most properties of S™*, we invite the reader to consult Boutet de
Monvel [I]. However, we require the following properties.

ProposiTION 3.11. (i) SmcC.Sm0;
(i) Smec 8™, if m<m and m—r/2<m —F /2.
Proor. These are consequences of
7 =T+ =14 T7
for |¢]=1, 0=<:<T.
ProrosiTiON 3.12. Let peS™ and q&S™*. Then pgeSmim =+«

Proor. This is an immediate consequence of the Leibniz formula.
ProposiTION 3.13. Let p,&8™+i, j=0,1, 2, ---. Then there exists

a symbol p&S™* such that for all N
P— 2iap; ES™N.

Two such symbols differ by a symbols of degree m, vanishing to the in-
Sinite order modulo S~ on t=0.

Proor. This is just a variant of Proposition 1.11 (ii) of Boutet de
Monvel [I]. More explicitly, let x(8) be a C® function of =R such that
x(6)=0 for #<1/2 and y(6)=1 for §>1.

Then by setting
(e, &) = x(161/2) (1— 1 (29)

for 2=1, we can choose a sequence ;70 so that, for any N, the sequence

(2%, =
is bounded in S™**¥-2, Then
P = ZJQO%ZJPJ
satisfies the requirement.

Thus the construction of the taming terms are completed by the fol-
lowing

CoRrROLLARY 3.14. There exist symbols
Pc (t, Z, 5) ESm(")+“2m(a‘)+Zc
and
q.(t, x, £) & Sm@+e=1/2,2m(@+2¢
such that for all N
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(3. 36) Pt 2, 8)— X jenb st 1, ) = S0 +e2m t2e+ N
and
(3. 37) @t 2, &) — X jewqsn(ts 2, &) ESm@+e- V2 ImE@F2EN

ProoF. These are immediate consequences of [Proposition 3.13 and
(3.23), (3.33).

Recalling (1.1) and (1. 2), we have

CoROLLARY 3. 15.
(3.38) E(f)(0, z) = f (x)+(Rof ) (2),
(3.39) DyEy(f) (0, 2) = (Rif) (x),
(3. 40) E\(9) (0, x) = (Reg) (),
(3. 41) D,E(g) (0, x) = g(x)+(Rig) (x).
Here R, R,, R!, R, are operators with C* kernels.
Proor. These follow from [Corollary 3.14 and definitions of py (¢, x, &)
and ¢q,,(¢, x, &). |

PROPOSITION 3.16. Let # (¢, z, &) and 5,(t, x, &) be determined by (1. 23)
and (1.24), i.e.,

p (eiatﬂeI/ZPa(t, z, 5)) = glo1825 (1 1 £)

and

)2 (eiatzlel/2qa(t’ z, 5)) — (it 18125 (1, x4, £)
Then
(3.42) 7 (¢, x, &) e Snntite= = N = Sm@+e+12me+2ckN
and
(3. 43) 5(t, x, ) SO HVztee = (3 Gm@+YzhoImE 2N

Proor. Let N be any positive integer. Then by (3. 36)

= ) +
Pter+2 —Pa— Zk<N+2PkaESm(a)+s 2m(e) +2¢+ N+2 .

By (1.5),

P"'(eiatzlGI/ZPﬁV+2) — eiat’)6|/27‘>:”1\7+2
where
72 = (=262 58Dy oalt, 2)t|é] + L-1bs(6 26,
—i0]&| +20t|§| D, — 12 2351 D5+ 25-104(¢, ) Dy
+c(t, ) +alt, ) D+ D) pi+.
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Hence, by [Proposition 3.11] and 3. 12,

(3. 44) FNH2 = Gm@+et L 2m+2etN

By the Taylor expansion, we have
ZA+1 P/‘N+2,
P/\N+2 — tN+2aN+2 (t, )Dt+tN+sBN+3(t’ x, E)
+tN+lBN+1 (t’ X, Dx) +tN+1CN+1(t’ x),
P} being defined by (1.8) and (1.9). Then
ZN+1 "( iot? Ie|/22k<N+2Pka)
— Zj+k§N+1P;(eiat"’IeI/ZPk’)+ Zj+ng42Pf (eiacle/Zka).
By (3.15) (3.13) (3.17) the first sum vanishes. On the other hand
Zj+ng+2P;\(eiat2|5|/2Pka) — eiac2|e|/2;£N+2,

where

N2 — Zj+k2N+2r£a

by (3.13). Hence, by (3.34) and [Proposition 3. 11,

(3. 45) N+ = QM@ +et1,2m@) + 20+ N+2

Finally,
PAN+2(ezatzm/zZKNHPka) — eiat”lél/2f£lN+2,
where
PN = (tN+2aN+2(t, x) D0tV Pay 5 (t, 2)|€] +tV5 Byys(t, z, §)
+t¥ 1 By (t, 2, D)+ ¥+ ey a(t, x)) 2ik<+2 Pro-
Hence, by Propositions 3. 11 and 3. 12,

(3. 46) HIN+2 = Gm@+1+e,2m + 20+ N+ 1

Since 7 =N HN*2L /N2 we have (3.32) from (3.44), (3.45), (3.46).
(3. 43) follows in a similar manner.

Let
(3. 47) Fo(f) (¢, )

= Za=:|:l (Zn)—nsg et (Lz-y,e>+ot?181/2} fa(t, x, E)f(/y) d’!/ d&

and
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(3. 48) Fi(9) (¢, x)
— Zu=:!:1 (272.)—an e [Kz-y e>+at*181/2) §a‘(t, z, 5) g(y) dy d",: .

Now from Definition 3.9, we see S™ is the set of symbols .S™ which vanish
to the infinite order on t=0 modulo S-%, that is, p is the sum of a symbol
of degree —co and of a symbol of degree m which is flat at £=0. In our
discussions, we may discard symbols of degree —oo. In this sense, we may
assume in the following section that

(3.49) 7 (t, x, e Sm@tite

(3. 50) 3,(t, x, §) & Sm@ti/zte,

and

(3.51) (@t x, & and §,(t, x,&) are flat at t=0.

Summarizing, we have shown

ProrosiTiON 3. 17.

PE\(f)(t, x) = Fo(f) &, 2)+ Ko ) (&, ),
PE(9) (¢, x) = Fl(g) (t, x)-I'Kl(g) (2, x).

Here F, and F, are respectively defined by (3.47) and (3.48) with #, and
3, satisfying (3. 49), (3.50) and (3.51); K, and K, are operators with smooth

kernels on R, X R* X R".

§ 4. Completion of the proof of Theorem

We begin by the following
ProprosITION 4. 1. Let a(t) be a C® function of t=0. If a C* function

f@) of t=0 is flat t=0, then the equation
(4. 1) (tdjdt+a()ult)=f@), t=0,

has a solution u(t) which is flat at t=0.

Proor. Let b(t)=(a(t)—a(0))/t. b(¢) is a smooth function of #=0.
Set v(t)=t*Pu(t). Then v(z) satisfies the equation

(4. 2) (d/dt+b(t)vit) = =@ 1f (2).
The right hand side of (4.2) is flat at t=0.
Hence,

v(t) = St exp < — gt b(s)ds) 74O-1f(7) dr

0 T
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is a solution of (4.2). Furthermore, v(t) is flat at ¢=0.
Therefore,

u(t) =t vt
is flat at t=0, and is the solution of (4.1) as required.

Now we proceed to the construction of p,(¢, z, &) and §,(¢, z, &).
We set

(4.3) Ey(F) (¢, z)
= Y, (20 j j ¢ Semvetatienn b (1 2 8) £(y)dy dE .

(4. 4) E\(9) (¢, 2)
= Z":ﬂ(zn)_nss et (<z—y,6>+at%1¢1/2) (j,(t, z 5) g(y) dy dE .

A formal application of P to E,(f) and to E;(g) gives
(4.5 PE\(f) (2, 2)

= D e=z1(2m)7" ﬂ. ot (Sa—y,e>+ot’1€1/2) P.,ﬁ,(t, x, E)f(’.l/)d’!/ d¢

and
(4. 6) PE(g) (¢, 2)

= Dlo=s1 (27r)'"§$ ¢ (Semve>+alienn P (1, x4, €) g(y) dy dE,
where

4.77  P,=P,+P,
B, = 20t|¢|D,—2t23%_£,D;+ata (t, z)|€|
+ 25-1b4(t, x) 65— ail€],
Py=P=D;—*35..Di+alt, x) D+ 351 b,(t, ) Dy +c(t, 2).

Therefore, in view of [Proposition 3.17 and (4. 5), (4.6),

(4.8) E(f, 9) = Eo )+ Eo(f) + Er(g) + Ei(9)
is a parametrix of (0.1) if

(4.9) Pp,(t, x,8)+7.(t, x, )5

and

(4.10) Pa,(t, z, &) +5,t, 1, ES™™.

341
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To solve the equations (4.9) and (4.10) we set formally

(4.11) b.(t, 2, &) = 2L5-0Ps(ts 7, §)

and

4.12) @ (t, 2, §) = 215-G5(t, x, §)-

Then (4. 10) and (4. 11) are decomposed to the following systems of equations :
(4.13) Pupo(t, z,8)+7(t, 2,6) =0,

(4.14) Pupsnlt, 2,8+ Ppyslt, 2,6) =0, jZ1,

and

(4. 15) P.gu,(t, x, 8 +5.(t, . §) =0,

(4.16) Pt 2,8+ Pgjr.(t, 2,8 =0, jz1.

Then we have

ProrosiTiON 4.2. For j=0,1,2, --..

(4.17) Pi(t, x, §)eSm@tei

(4. 18) Gilt, x, &) ESm@+e=1/2=]

and

(4.19) Pi.(t, x, &) and §;,(t, x,8) are flat at t=0.

Proor. We note that the operator P, is of the form |¢|¢X,+d/t, x,
&/€])), where

X, = 20’Dt—'2t2?=1l§|—1$ij
and
a,(t, x, &/|¢]) = ata(t, )+ 25-1b,(t, 2)|&|~1&;—ai.

By (3. 49), (3.51) and Proposition 4.1, we see py, (¢, x, &) ES™?+* and is flat
at t=0, solving (4.13). Hence, from (4.14) and [Proposition 4.1 we see
Prt, 2, §)eS™@+=1 and is flat at t=0. In this way, we obtain (4.17) (4. 18)
and (4. 19).

Therefore, by [Proposition 3.8 we can now interprete (4.11) and (4. 12)
in the following sense.

ProprosiTION 4.3. There exist symbols p,(t, z,§)ES™* and §,(t, x, &)
eSmrOt 12 gyuch that for all N

ﬁa(t’ x’ E) - Zj<NﬁJa(t, Z, 6) e SnoteN
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and
(7,,(t, Z, E) - Zj<quu (t’ Z, E) ESM(")-H_IM_N.

COROLLARY 4. 4.

(4. 20) Ey(£)(0, 2) = (Rof) (@),
(4.21) D.Ey)f)(0, ) = (R, f) (2),
(4.22) E\(9) (0, ) = (Rig) (),

(4. 23) D.E\(g) (0, ) = (Rig) (¢, 2),
(4. 24) PEy(f)+Fo(f) = Ro(f) ¢, 2),
(4. 25) PE,(g)+Fi(g) = Ri(9) (¢, 2).

Here R, R, R, R, are smoothing operators on R" and R, K, are opera-
tors with smooth kernels on R, X R*X R".

Proor. These follow from our constructions. In fact, we can find
$, and §, so that Ry=R}=R,=R=0.

The proof of is now complete by (4.8) and Corollaries 4.4,
3.15 and Proposition 3.17.

References

[1] BOUTET DE MONVEL, L.: Hypoelliptic operators with double characteristics
and related pseudo-differential operators, Comm. Pure Appl. Math., 27
(1974) 585-639.

[2] CHI, MIN-YOU: On the Cauchy problem for a class of hyperbolic equations
with initial data on the parabolic degenerating line, Acta Math. Sinica,
8 (1958) 521-529 (Chinese Math. (1967) 246-254).

[3] ERDELYI, A. et al.: Higher Transcendental Functions, Vol. 1, McGraw Hil],
New York (1953).

[4] HORMANDER, L.: Fourier integral operators I, Acta Math., 127 (1971) 79-183.

[5] HORMANDER, L.: On the Cauchy problem for differential equations with double
characteristics (preprint).

[6] Ivri, V. YA.: The Cauchy problem for nonstrictly hyperbolic equations of
second order, Soviet Math. Dokl, 12 (1971) 1712-1716 (Dokl. Akad. Nauk
SSSR, 201 (1971) 778-781).

[7] IVRIL V. YA. and PETKOV, V. M.: Necessary conditions for the Cauchy pro-
blem for non-strictly hyperbolic equations to be well-posed, Russian
Math. Surv., 29 (1974) 1-70) (Uspekhi Mat. Nauk 29 (1974) 3-70).

[8] MENIKOFF, A.: The Cauchy problem for weakly hyperbolic equations, Amer. J.
Math., 97 (1975) 548-558.



344 A. Yoshikawa

[9] OLEINIK, O. A.: On the Cauchy problem for weakly hyperbolic equations,
Comm. Pure Appl. Math., 23 (1970) 569-589.
Added in the proof: Similar results to our present part have recently been

obtained by
S. ALINHAC: Paramétrix pour un systéme hyperbolique & multiplicité variable

(to appear).

Department of Mathematics
Hokkaido University



	\S 0. Introduction
	THEOREM. There ...

	\S 1. Heuristics.
	\S 2. Asymptotic properties ...
	\S 3. Construction of ...
	\S 4. Completion of the ...
	References

