On Harnack's pseudo-distance

By Hiroshi TANAKA*) (Received December 17, 1976)

1. Introduction and terminology

In this paper we shall give a sufficient condition for which the Harnack's pseudo-distance h_R (denoted by d_R in [5]) on an arbitrary Riemann surface R is a real distance and we shall investigate a relation among the Harnack's pseudo-distance h_R , the Kobayashi's distance d_R ([4]) and the Carathéodory's distance c_R (cf. [4]).

For an arbitrary (open or closed) Riemann surface R, we denote by HP = HP(R) the family of all positive harmonic functions on R. For any $a, b \in R$, we set

$$k_{R}(a,b)=\inf\left\{c\;;\;c^{-1}u(a)\leq u(b)\leq cu(a)\;\;\text{for any}\;\;u\in HP(R)\right\}$$

(Harnack's constant).

It is easy to see that $1 \le k_R(a, b) < \infty$ and $(a, b) \to k_R(a, b)$ is continuous. Furthermore the following properties are easy to see:

$$k_R(a, b) = k_R(b, a)$$
 and $k_R(a, b) \le k_R(a, c) k_R(c, b)$.

The following definition is due to J. Köhn (cf. [2]).

Definition 1. For any $a, b \in R$, we set $h_R(a, b) = \log k_R(a, b)$.

By definition, we see that $(a, b) \rightarrow h_R(a, b)$ is continuous and $R \in O_{HP}$ if and only if $h_R = 0$. Furthermore h_R is a (real) distance if and only if HP(R) separates points of R, i. e., for any $a, b \in R$ $(a \neq b)$, we can find $u \in HP(R)$ with $u(a) \neq u(b)$.

The following theorem is due to J. Köhn [5].

Theorem 1 (An extension of Schwartz-Pick's theorem). Let R, R' be two open Riemann surfaces. If f is an analytic mapping of R into R', then

$$h_R(a,b) \ge h_{R'}(f(a), f(b))$$
 for any $a, b \in R$.

In particular, if HP(R) separates points of R and R' is hyperbolic, then the equality holds if and only if f is an onto conformal mapping.

^{*)} 田 中 博

LEMMA 1 ([5]). In the case of $R = \{|z| < 1\}$, $h_R(a, b)$ equals the Poincaré-Bergman metric on R, i. e.,

$$h_R(a, b) = \log \frac{1+r}{1-r},$$

where $r = \left| \frac{b-a}{1-\bar{a}b} \right|$ $(a, b \in R)$.

2. Class A

In the following we denote by ∂E the relative boundary of a subset E of a Riemann surface R. Furthermore, for a closed set X, we denote by C(X) the family of all real-valued continuous functions on X. For an open set G in R and $f \in C(\partial G)$, we refer to [3] for the definition and properties of Dirichlet solution H_f^a .

Definition 2. We denote by \mathcal{A} the family of all hyperbolic Riemann surfaces R which satisfy the following condition:

For any closed disk K in R, L_{oR-K} $f^{(1)} = H_f^{R-K}$ in $R - K(f \in C(\partial K))$ implies f = 0.

Lemma 2. Let R' be an arbitrary Riemann surface. If K' is a closed disk in R', then R=R'-K' belongs to \mathcal{A} .

PROOF. Let K be any closed disk in R. Let f be any function in $C(\partial K)$ with $L_{oR-K} f = H_f^{R-K}$ in R-K. We denote by u the common function. Let D be an open disk in R with $D \cap K = \emptyset$ and $K' \subset D$. By the aid of consistencies of operators L_o and H, we can show that

$$u = L_{oR-(D\cup\partial D)} u = H_u^{R-(D\cup\partial D)}$$
 in $D-K$.

Thus we see that $\partial u/\partial v = 0$ and u = 0 on ∂K . This implies that u = 0 in D-K. Hence u = 0 in R-K and f = 0.

Let R be a hyperbolic Riemann surface. Let R_D^* be the Royden compactification of R and let $\mathcal{L}_D = R_D^* - R$ (cf. [3]). For $a \in R$, we denote by μ_a the harmonic measure on \mathcal{L}_D with respect to a. Let $a_0 \in R$ be fixed once for all and let $\mu \equiv \mu_{a_0}$. It is known that there exists a uniquely determined normal derivative, say $\psi[g_a]$, of g_a with respect to μ in the sense of F - Y. Maeda [6]. The existence and uniqueness of $\psi[g_a]$ are μ - a. e. For $f \in C(\mathcal{L}_D)$, we denote by $H_f^{R^*}$ the Dirichlet solution of f on R_D^* .

Lemma 3 (cf. [6]). Let f be a continuous fuction on Δ_D . Then

$$H_f^{R*}(a) = \frac{1}{2\pi} \int_{A_D} f(\xi) \, \phi \left[g_a \right] (\xi) \, d\mu(\xi) \qquad (a \in R).$$

¹⁾ See [1] for the definition and properties of the operator L_0 .

THEOREM 2. If a Riemann surface R belongs to the class \mathcal{A} , then h_R is a distance.

PROOF. It is sufficient to prove that HB(R) separates points of R. Let a and b be any points in R such that $H_f^{R*}(a) = H_f^{R*}(b)$ for any $f \in C(\Delta_D)$. It follows from Lemma 3 that $\psi[g_a] = \psi[g_b]$ or $\psi[g_a - g_b] = 0$ on $\Delta_D \mu - a$. e. By the aid of Theorem 8 in [6], we see that there is a closed disk K in R such that $K - \partial K \ni a$, b and $L_{\partial R - K}(g_a - g_b)^{2} = g_a - g_b = H_{(g_a - g_b)}^{R - K}$ in R - K. By the assumption on R, we see that $g_a - g_b = 0$ in R - K. Thus we obtain that a = b. This completes the proof.

COROLLARY. If a Riemann surface R belongs to \mathcal{A} , then HBD(R) separates points of R.

PROOF. Let a, b be points in R with $a \neq b$. Then there is an $f \in C(\Delta_D)$ with $H_f^{R^*}(a) \neq H_f^{R^*}(b)$. Since $C_D(\Delta_D) = \{ f \in C(\Delta_D) : H_f^{R^*} \in HD(R) \}$ is dense in $C(\Delta_D)$ with respect to the uniform convergence topology on Δ_D (cf. [6]), we have the Corollary.

3. Invariant distances

Let R be an arbitrary Riemann surface. We denote by c_R (resp. d_R) the Carathéodory's distance (resp. the Kobayashi's distance) on R (cf. [4]).

THEOREM 3. For an arbitrary Riemann surface R, we have the following inequalities:

$$d_R(a, b) \ge h_R(a, b) \ge c_R(a, b)$$
 $(a, b \in R)$.

Furthermore these invariant pseudo-distances do not identically equal one another.

PROOF. The inequalities follow from Proposition 1.4 and Proposition 2.5 of IV in [4]. Let R be a closed Riemann surface with genus ≥ 2 . Then d_R is a distance (cf. Corollary 4.13, IV, in [4]) but $h_R=0$. Hence $d_R\neq h_R$ for such an R. On the other hand, let $D=\{|z|<1\}$ and $D_o=\{0<|z|<1\}$. Then it is easy to see that $h_D\neq h_{D_o}$ and $c_D=c_{D_o}$. This completes the proof.

References

- [1] L. AHLFORS and L. SARIO: Riemann surfaces, Princeton Univ. Press, 1960.
- [2] J. BLIEDTNER und K. JANBEN: Harnacksche Kegel und Metric in harmonischen Räumen, Math. Ann., 198 (1972), 85-97.
- [3] C. CONSTANTINESCU und A. CORNEA: Ideale Ränder Riemannscher Flächen,

²⁾ $L_{oR-K}(g_a-g_b)$ is denoted by $(g_a-g_b)^K$ in [6].

Springer Verlag, 1963.

- [4] S. KOBAYASHI: Hyperbolic manifolds and holomorphic mappings, Marcel Dekker Inc., New York, 1970.
- [5] J. KÖHN: Die Harnacksche Metrik in der Theorie der harmonischen Fnnktionen, Math. Zeitschr., 91 (1966), 50-64.
- [6] F-Y. MAEDA: Normal derivatives on an ideal boundary, J. Sci. Hiroshima Univ., Ser. A-I 28 (1964), 113-131.

Department of Mathematics Hokkaido University