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On Harnack’s pseudo-distance
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(Received December 17, 1976)

1. Introduction and terminology

In this paper we shall give a sufficient condition for which the Harnack’s
pseudo-distance Ay (denoted by dz in [5]) on an arbitrary Riemann surface R
is a real distance and we shall investigate a relation among the Harnack’s
pseudo-distance hr, the Kobayashi’s distance dr ([4]) and the Carathéodory’s
distance cg (cf. [4]).

For an arbitrary (open or closed) Riemann surface R, we denote by
HP=HP (R) the family of all positive harmonic functions on R. For any
a, bER, we set

kr(a,b) = inf {c; c'u(@=u(b)=cu(a) for any u< HP (R)}

(Harnack’s constant).
It is easy to see that 1=ky(a, b)< oo and (a, b)—kg(a, b) is continuous.
Furthermore the following properties are easy to see:

krp(a, b) =kg(b,a) and kg(a, b)<kz(a,c)kz(c, b).
The following definition is due to J. Kéhn (cf. [2]).

DEFINITION 1. For any a, bER, we set hg(a, b)=log kg(a, b).

By definition, we see that (a, b)—hg(a, b) is continuous and R&Ogp
if and only if Az=0. Furthermore Ay is a (real) distance if and only if
HP (R) separates points of R, i.e., for any a, bR (a#b), we can find u&
HP (R) with u (a)7u (b).

The following theorem is due to J. Kohn [5].

THEOREM 1 (An extension of Schwartz-Pick’s theorem). Let R, R

be two open Riemann surfaces. If f is an analytic mapping of R into
R, then

hrla, b)=hy ( fla), f(B)) for any a,bER.

In particular, if HP(R) separates points of R and R is hyperbolic, then
the equality holds if and only if f is an onto conformal mapping.

*) B od
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LemMa 1 ([5]). In the case of R={|z| <1}, hgr(a, b) equals the Poin-
caré-Bergman metric on R, i.e.,

hz(a, b) =log~ii_—:,

(a, bER).

where r=

b—a
1—ab
2. Class .«

In the following we denote by 0E the relative boundary of a subset
E of a Riemann surface R. Furthermore, for a closed set X, we denote
by C(X) the family of all real-valued continuous functions on X. For an
open set G in R and feC(9G), we refer to for the definition and pro-
perties of Dirichlet solution H.

DerINITION 2. We denote by .« the family of all hyperbolic Riemann
surfaces R which satisfy the following condition :

For any closed disk K in R, Lyz_x f°=H¥ ¥ in R—K(feC(@K))
implies f=0.

LemMA 2. Let R be an arbitrary Riemann surface. If K' is a closed
disk in R, then R=R —K' belongs to .«.

Proor. Let K be any closed disk in R. Let f be any function in
C(0K) with Lyz_x f=HF " in R—K. We denote by « the common func-
tion. Let D be an open disk in R with DN K=0 and K'CD. By the aid

of consistencies of operators L, and H, we can show that
U= LOR—(DUGD) U= Hg—(DUBD) in D—K.

Thus we see that 9#/0v=0 and #=0 on 0K. This implies that #=0 in
D—K. Hence u=0 in R—K and f=0.

Let R be a hyperbolic Riemann surface. Let R} be the Royden com-
pactification of R and let 4,=R}—R (cf. [3]). For a=R, we denote by g,
the harmonic measure on 4, with respect to a. Let q,&R be fixed once
for all and let p=p, . It is known that there exists a uniquely determined
normal derivative, say ¢[g,], of g, with respect to ¢ in the sense of F—Y.
Maeda [6]. The existence and uniqueness of ¢ [g,] are y— a.e. For fe
C(4p), we denote by HF" the Dirichlet solution of f on Rj.

Lemma 3 (cl. [6]). Let f be a continuous fuction on 4,. Then

HF (@ =5\ fO¢l0l©du®)  (@eR),

D

1) See for the definition and properties of the operator Lo.
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THEOREM 2. If a Riemann surface R belongs to the class A, then hg
is a distance.

Proor. It is sufficient to prove that HB(R) separates points of R. Let
a and b be any points in R such that HF (a)=Hf'(b) for any f&C(dp).
It follows from that ¢ [g.)=¢ [gs] or ¢ [ga—gs] =0 on dp u— a.e.
By the aid of Theorem 8 in [6], we see that there is a closed disk K in
R such that K—0K>a, b and Lor_x(9a—95)” =09a— s =H{ %, in R—K. By
the assumption on R, we see that ¢g,—¢,=0 in R—K. Thus we obtain
that a=»b. This completes the proof.

COROLLARY. If a Riemann surface R belongs to .4, then HBD(R)
separates points of R.

ProOF. Let a, b be points in R with a#b. Then there is an fe
C(4p) with HF (a)#=H¥ (b). Since Cp(dp)={feC({dy); HFf €HD(R)} i
dense in C(dp) with respect to the uniform convergence topology on 4, (c f.

[6]), we have the

3. Invariant distances

Let R be an arbitrary Riemann surface. We denote by cz (resp. dr)
the Carathéodory’s distance (resp. the Kobayashi’s distance) on R (cf. [4]).

THEOREM 3. For an arbitrary Riemann surface R, we have the fol-
lowing inequalities :

dr(a, b) = hg(a, b) = cg(a, b) (a, bER).

Furthermore these invariant pseudo-distances do not identically equal one
another.

Proor. The inequalities follow from Proposition 1.4 and Proposition
2.5 of IV in [4]. Let R be a closed Riemann surface with genus =2. Then
dr is a distance (cf. Corollary 4.13, IV, in [4]) but Az=0. Hence dr#hz
for such an R. On the other hand, let D={|z|<1} and D,={0<]|z2|<1}.
Then it is easy to see that hp#hp, and cp=cp,. This completes the proof.
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