Hyperinvariant subspaces for contractions of class C_0

By Mitsuru UCHIYAMA
(Received August 2, 1976)

1. Introduction

Let T be a bounded operator on a separable Hilbert space \mathfrak{H}. A subspace \mathfrak{G} of \mathfrak{H} is said to be hyperinvariant for T if \mathfrak{G} is invariant for every operator that commutes with T. In [2] the hyperinvariant subspaces for a unilateral shift were determined, and those for an isometry in [1]. Recall that T is said to be of class C_0 if T is a contraction (i.e., $\|T\| \leq 1$) and $T^n \to 0$ (strongly) as $n \to \infty$. Hence a unilateral shift is of class C_0. Let T be of class C_0. Then it necessarily follows that

$$\delta^* \equiv \dim (1-TT^*) \mathfrak{G} \geq \dim (1-T^*T) \mathfrak{G} \equiv \delta$$

(see [6]). In the case of $\delta^* = \delta < \infty$, in an earlier paper [8] we established a canonical isomorphism between the lattice of hyperinvariant subspaces for T and that for the Jordan model of T. In this paper we extend this result to the case of $\delta < \delta^* < \infty$. For an operator T of this class we shall present complete description of the hyperinvariant subspaces \mathfrak{R} with the property that every subspace of \mathfrak{R} hyperinvariant for T is hyperinvariant for the restricted operator $T|\mathfrak{R}$. The author wishes to express his gratitude to Prof. T. Ando for his constant encouragement.

2. Preliminaries

Let θ be an $n \times m$ $(\infty > n \geq m)$ matrix over H^∞ on the unit circle. Such a matrix θ is called inner if $\theta(z)$ is isometry a.e. on the unit circle. For such an inner function θ a Hilbert space $\mathfrak{G}(\theta)$ and an operator $S(\theta)$ are defined by

$$\mathfrak{G}(\theta) = H^*_n \ominus \theta H^*_m \quad \text{and} \quad S(\theta)h = P_\theta(Sh) \quad \text{for} \ h \ in \ \mathfrak{G}(\theta),$$

where H^*_n is the Hardy space of n-dimensional (column) vector valued functions, P_θ is the projection from H^*_n onto $\mathfrak{G}(\theta)$, and S is the simple unilateral shift, that is, $(Sh)(z) = zh(z)$. A contraction T of class C_0 with $\delta = n$ and $\delta = m$ is unitarily equivalent to an $S(\theta)$ of this type [7]. Thus in the sequel we may discuss $S(\theta)$ in place of T.

For a completely non unitary contraction T, it is possible to define
Hyperinvariant subspaces for contractions of class C_{0}

\[\phi(T) \text{ for every function } \phi \text{ in } H^\infty. \] In particular, for $S(\theta)$ given above $\phi(S(\theta))$ can be equivalently defined by the following:

\[\phi(S(\theta)) h = P_\theta \phi h \text{ for } h \text{ in } \mathfrak{H}(\theta) \text{ (see [5], [7]).} \]

If there is a function ϕ such that $\phi(T) = 0$, then T is said to be of class C_{0}. T of class C_{0} with $\delta \leq \delta_* < \infty$ is of class C_{0} if and only if $\delta = \delta_*$ [7].

Suppose T_1 is a bounded operator on \mathfrak{H}_1 and T_2 a bounded operator on \mathfrak{H}_2. If there exists a complete injective family $\{X_\alpha\}$ from \mathfrak{H}_1 to \mathfrak{H}_2 (i.e., for each α, X_α is an one to one bounded operator from \mathfrak{H}_1 to \mathfrak{H}_2 and $\cap X_\alpha \mathfrak{H}_1 = \mathfrak{H}_2$) such that for each α $X_\alpha T_1 = T_2 X_\alpha$, then we write $T_1 \preceq T_2$. If $T_1 \preceq T_2$ and $T_2 \preceq T_1$, then T_1 and T_2 are said to be completely injection-similar, and denote by $T_1 \approx^{ci} T_2$ [6].

An $n \times m \ (n \geq m)$ normal inner matrix N' over H^∞ is, by definition, of the form:

\[
N' = \begin{bmatrix}
\phi_1 & 0 & \cdots & 0 \\
0 & \phi_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \phi_m \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\end{bmatrix}
\]

where, for each i, ϕ_i is a scalar inner function and a divisor of its succesor. Then

\[
S(N') = S(\phi_1) \oplus \cdots \oplus S(\phi_m) \oplus S \cdots \oplus S \nabla_{n-m}
\]

is called a Jordan operator.

Let θ be an $n \times m \ (\infty > n \geq m)$ inner matrix over H^∞ and N a corresponding normal matrix, i.e., N is the $n \times m$ normal inner matrix of the form (2), where $\phi_1, \phi_2, \ldots, \phi_m$ are the "invariant factors" of θ, that is,

\[
\phi_k = \frac{d_k}{d_{k-1}} \text{ for } k = 1, 2, \ldots, m,
\]

where $d_0 = 1$ and d_k is the largest common inner divisor of all the minors of order k. In this case, Nordgren [4] has shown that there exist pairs of matrices Δ_i, Λ_i and $\Delta'_i, \Lambda'_i \ (i = 1, 2)$ satisfying

\[
\Delta_i \theta = N \Lambda_i, \\
\theta \Lambda'_i = \Delta'_i N, \\
(\det \Lambda_i) (\det \Lambda'_i) \wedge d_m = 1,
\]
(5) \((\det \Delta_1) (\det \Delta'_1) \cap (\det \Delta_2) (\det \Delta'_2) = 1\),
(5') \((\det \Delta_1) (\det \Delta'_1) \cap (\det \Delta_2) (\det \Delta'_2) = 1\),

where \(x \cap y\) denotes the largest common inner divisor of scalar function \(x\) and \(y\) in \(H^\infty\). Setting

\((6)\) \(X_i = P_{N} \Delta_i |H(\theta)\) and
\((6')\) \(Y_i = P_{\theta} \Delta'_i |H(N)\) for \(i = 1, 2\),

\(\{X_1, X_2\}\) and \(\{Y_1, Y_2\}\) are complete injective families satisfying the following relations:

\((7)\) \(X_i S(\theta) = S(N) X_i\) and
\((8)\) \(S(\theta) Y_i = Y_i S(N)\) for \(i = 1, 2\).

This implies \(S(\theta) \cap S(N)\) (cf. [6]).

To every subspace \(\mathfrak{L}\) of \(\mathfrak{S} (\theta)\), invariant for \(S(\theta)\), there corresponds an unique factorization \(\theta = \theta_2 \theta_1\) of \(\theta\) such that \(\theta_1\) is an \(k \times m\) inner matrix and \(\theta_2\) is an \(n \times k\) inner matrix \((n \geq k \geq m)\) satisfying

\(\mathfrak{L} = \theta_2 \{H_k^2 \ominus \theta_1 H_m^2\} = \theta_2 H_k^2 \ominus \theta H_m^2\).

In this case \(S(\theta) \parallel \mathfrak{L}\) and \(P_{\theta} S(\theta) \parallel \mathfrak{L}\) are unitarily equivalent to \(S(\theta_1)\) and \(S(\theta_2)\), respectively. For this discussion see [7].

Let \(M\) be an \(m \times m\) normal inner matrix over \(H^\infty\). Then, in [8], we showed that, in order that a factorization \(M = M_2 M_1\) corresponds to a subspace hyperinvariant for \(S(M)\), it is necessary and sufficient that both \(M_1\) and \(M_2\) are \(m \times m\) normal inner matrices.

3. Jordan operator

Let \(N = \begin{bmatrix} M \\ 0 \end{bmatrix}\) be an \(n \times m\) normal inner matrix over \(H^\infty\), that is, \(M\) is an \(m \times m\) normal inner matrix over \(H^\infty\). Then \(S(N)\) on \(\mathfrak{S} (N)\) are identified with

\(S(M) \oplus S_{n-m}\) on \(\mathfrak{S} (M) \oplus H_m^2\),

where \((S_{n-m} h)(z) = z h(z)\) for \(h\) in \(H_m^2\).

Let \(\mathfrak{R}\) be a hyperinvariant subspace for \(S(N)\). Then it is clear that \(\mathfrak{R}\) is decomposed to the direct sum,

\(\mathfrak{R} = \mathfrak{R}_1 \oplus \mathfrak{R}_2\),

where \(\mathfrak{R}_1\) is a subspace of \(\mathfrak{S} (M)\), hyperinvariant for \(S(M)\), and \(\mathfrak{R}_2\) is a subspace of \(H_m^2\), hyperinvariant for \(S_{n-m}\). In this case we have the fol-
Lema 1. For \(\mathfrak{R}_1 \) and \(\mathfrak{R}_2 \) which are hyperinvariant for \(S(M) \) and \(S_{n-m} \), respectively, in order that the direct sum \(\mathfrak{R} = \mathfrak{R}_1 \oplus \mathfrak{R}_2 \) is hyperinvariant for \(S(N) \), it is necessary and sufficient that \(\mathfrak{R}_2 = \{0\} \) or there exists an inner function \(\phi \) such that \(\mathfrak{R}_2 = \phi H_{n-m}^2 \) and \(\mathfrak{R}_1 \supseteq \phi (S(M)) \mathfrak{H}(M) \).

Proof. An operator \(X = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \) commutes with \(S(N) \), if and only if \(Y_{ij} \) satisfy the following conditions:

\[
Y_{11} S(M) = S(M) Y_{11}, \quad Y_{12} S_{n-m} = S(M) Y_{12},
\]
\[
Y_{21} S(M) = S_{n-m} Y_{21}, \quad Y_{22} S_{n-m} = S_{n-m} Y_{22}.
\]

Since \(S(M)^n \rightarrow 0 \) as \(n \rightarrow \infty \) and \(S_{n-m} \) is isometry, we have \(Y_{21} = 0 \). Thus if \(\mathfrak{R}_2 = \{0\} \), then it follows that \(X \mathfrak{R} \subseteq \mathfrak{R} \) for every \(X \) commuting \(S(N) \). By the lifting theorem (cf. [5], [7]), a bounded operator \(Y_{12} \) from \(H_{n-m}^2 \) to \(H(M) \) intertwines \(S_{n-m} \) and \(S(M) \), if and only if there is an \(m \times (n-m) \) matrix \(\Omega \) over \(H^\infty \) such that \(Y_{12} = P_M \Omega \). Thus, if \(\mathfrak{R}_2 = \phi H_{n-m}^2 \) and \(\mathfrak{R}_1 \supseteq \phi (S(M)) \mathfrak{H}(M) \) for some inner function \(\phi \), then we have

\[
X \mathfrak{R} = (Y_{11} \mathfrak{R}_1 + Y_{12} \phi H_{n-m}^2) \oplus Y_{22} \phi H_{n-m}^2
\]
\[
\subseteq (\mathfrak{R}_1 + P_M \phi H_{n-m}^2) \oplus \phi H_{n-m}^2
\]
\[
\subseteq (\mathfrak{R}_1 + P_M \phi H_{m}^2) \oplus \phi H_{n-m}^2
\]
\[
= (\mathfrak{R}_1 + \phi (S(M)) \mathfrak{H}(M)) \oplus \phi H_{n-m}^2
\]
\[
\subseteq \mathfrak{R}_1 \oplus \phi H_{n-m}^2 = \mathfrak{R}
\]

for every \(X \) commuting with \(S(N) \).

Conversely suppose \(\mathfrak{R} = \mathfrak{R}_1 \oplus \mathfrak{R}_2 \) is hyperinvariant for \(S(N) \), and \(\mathfrak{R}_2 \neq \{0\} \). Then by [2] there exists an inner function \(\phi \) such that \(\mathfrak{R}_2 = \phi H_{n-m}^2 \). Let \(\Omega_i \) (\(i = 1, 2, \ldots, m \)) be the \(m \times (n-m) \) matrix such that the \((j, k)\)-th entry of \(\Omega_i \) is 1 for \((j, k) = (i, 1)\) and 0 for \((j, k) \neq (i, 1)\). Setting

\[
X_i = \begin{bmatrix} 0 & Y_i \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad Y_i = P_M \Omega_i,
\]
each \(X_i \) commutes with \(S(N) \), hence we have \(\mathfrak{R}_1 \supseteq \sum_{i=1}^{m} Y_i \phi H_{n-m}^2 = P_M \phi H_{m}^2 = \phi (S(M)) \mathfrak{H}(M) \). This completes the proof.

Theorem 1. In order that a factorization \(N = N_2 N_1 \) of \(N \) into the product of an \(n \times k \) inner matrix \(N_2 \) and an \(k \times m \) inner matrix \(N_1 \) (\(n \geq k \geq m \)) corresponds to a hyperinvariant subspace \(\mathfrak{R} \) for \(S(N) \), it is necessary and sufficient that \(N_1 \) and \(N_2 \) are normal matrices satisfying (i) or (ii):

(i) \(k = m \),
(ii) \(k=n \) and \(N_2 \) has the form \[
\begin{bmatrix}
M_2 & 0 \\
0 & \phi_{1_{n-m}}
\end{bmatrix}
\]

PROOF. First, assume that \(k=m \), and both \(N_1 \) and \(N_2 \) are normal inner matrices. Then, setting \(N_2 = \begin{bmatrix} M_2 \\ 0 \end{bmatrix} \), it follows that \(N_2 \{ H_m^2 \oplus N_1 H_m^2 \} = M_2 \{ H_m^2 \oplus N_1 H_m^2 \} \) is hyperinvariant for \(S(M) \) (see [8]). Therefore, by Lemma 1, it is hyperinvariant for \(S(N) \). Next, assume that \(N_1 \) and \(N_2 \) are normal matrices satisfying (ii). Set \(N_1 = \begin{bmatrix} M_1 \\ 0 \end{bmatrix} \). Then we have

\[
\mathcal{R} = N_2 \{ H_m^2 \oplus N_1 H_m^2 \} = M_2 \{ H_m^2 \oplus M_1 H_m^2 \} \oplus \phi H_{n-m}^2 .
\]

Normality of \(M_1 \) and \(M_2 \) implies that \(M_2 \{ H_m^2 \oplus M_1 H_m^2 \} \) is hyperinvariant for \(S(M) \). On the other hand, normality of \(N_2 \) implies \(M_2 H_m^2 \supseteq \phi H_{n-m}^2 \), and hence we have

\[
M_2 H_m^2 \oplus M H_{n-m}^2 \supseteq \phi \{ S(M) \} \phi (M) .
\]

Thus from Lemma 1 we deduce that \(\mathcal{R} \) is hyperinvariant for \(S(N) \).

Conversely, first, assume that \(\mathcal{R} = \mathcal{R}_1 \oplus \{0\} \) is hyperinvariant for \(S(N) \), and \(N = N_2 N_1 \) is the factorization corresponding to \(\mathcal{R} \). Since \(S(N)|\mathcal{R} = S(M)|\mathcal{R}_1 \) is of class \(C_0 \), \(S(N_1) \) is of class \(C_0 \) (cf. 2). This implies that \(N_1 \) is an \(m \times m \) inner matrix, that is, \(k=m \). Setting \(N_2 = \begin{bmatrix} M_2 \\ \Gamma \end{bmatrix} \), where \(M_2 \) is an \(m \times m \) matrix and \(\Gamma \) an \((n-m)\times m\) matrix, we have

\[
M = M_2 N_1, \quad \mathcal{R}_1 = M_2 \{ H_m^2 \oplus N_1 H_m^2 \} \quad \text{and} \quad \Gamma H_m^2 = \{0\} .
\]

Since \(\Gamma = 0 \) and \(N_2 \) is inner, it follows that \(M_2 \) is inner. Thus the hyperinvariance of \(\mathcal{R}_1 \) corresponding to \(M = M_2 N_1 \) implies that \(M_2 \) and \(N_1 \) are \(m \times m \) normal inner matrices. Next assume that \(\mathcal{R} = \mathcal{R}_1 \oplus \phi H_{n-m}^2 \) and \(\mathcal{R}_1 \supseteq \phi \{ S(M) \} \phi (M) \). Clearly we have

\[
P_{\mathcal{R}_1} S(N) |\mathcal{R}^1 = P_{\mathcal{R}_1} S(M) |\mathcal{R}_1 \supseteq \phi (1_{n-m}) .
\]

where \(\mathcal{R}_1^1 \) denotes the orthogonal complement of \(\mathcal{R}_1 \) in \(\phi (M) \). Since the right-hand operator is of class \(C_0 \) (page 129 of [7]), \(S(N_2) \) is of class \(C_0 \). This implies that \(N_2 \) is an \(n \times n \) matrix; i.e., \(k=n \). To the hyperinvariant subspace \(\mathcal{R}_1 \) for \(S(M) \) there corresponds a factorization \(M = M_2 M_1 \), where \(M_1 \) and \(M_2 \) are \(m \times m \) normal inner matrices. Thus setting \(N_2' = \begin{bmatrix} M_2 \\ 0 \\
0 & \phi_{1_{n-m}} \end{bmatrix} \) and \(N_1' = \begin{bmatrix} M_1 \\ 0 \end{bmatrix} \), it is clear that \(N = N_2' N_1' \) and \(\mathcal{R} = N_2' \{ H_m^2 \oplus N_1' H_m^2 \} \). From
the uniqueness of the factorization of N into product of two inner matrices corresponding to (hyper) invariant subspace \mathfrak{R}, only this factorization $N = N_2'N_1'$ corresponds to \mathfrak{R}, that is, $N_2 = N_2'$ and $N_1 = N_1'$. Since

$$M_2(H_m \oplus M_1 H_m^*) = \mathfrak{L} \supseteq \phi S(M) \mathfrak{R} = M_2 \phi H_m^*,$$

we have $M_2 H_m^* \supseteq \phi H_m^*$; this implies that every entry of M_2 is a divisor of ϕ. Therefore N_2 is an $n \times n$ normal inner matrix. Hence N_1 and N_2 are normal inner matrices satisfying (ii).

4. Lattice isomorphism

Let θ be an $n \times m$ inner matrix and N be the corresponding normal inner matrix. Set

$$\alpha(\mathfrak{I}) = \bigvee \mathfrak{I} \{ Z \mathfrak{R} : ZS(\theta) = S(N)Z \}$$

and

$$\beta(\mathfrak{I}) = \bigvee \mathfrak{I} \{ W \mathfrak{R} : WS(N) = S(\theta)W \}$$

for each subspace \mathfrak{I} and \mathfrak{R} hyperinvariant for $S(\theta)$ and $S(N)$, respectively, where $\bigvee \mathfrak{I}_i$ denotes the minimum subspace including all \mathfrak{I}_i. Since $S(\theta) \subseteq S(N)$, it is clear that $\alpha(\mathfrak{I})$ is the non trivial hyperinvariant subspace for $S(N)$, if \mathfrak{I} is non trivial.

Lemma 2. If $\theta = \theta_2 \theta_1$ is the factorization corresponding to a non trivial hyperinvariant subspace \mathfrak{I} for $S(\theta)$, then θ_1 is an $m \times m$ inner matrix, or θ_2 is an $n \times n$ inner matrix.

Proof. Let $S(\theta) = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$ and $S(N) = \begin{bmatrix} S_1 & * \\ 0 & S_2 \end{bmatrix}$ be the triangulations corresponding to $\phi(\theta) = \mathfrak{I} \oplus \mathfrak{I}^\perp$ and $\phi(N) = \alpha(\mathfrak{I}) \oplus \alpha(\mathfrak{I})^\perp$, respectively. Theorem 1 implies that S_1 or S_2 is of class C_0. First, suppose $u(S_1) = 0$ for some u in H^∞. For the bounded operator X_1 given by (6) and every f in \mathfrak{I}, in virtue of (3), it follows that

$$X_1 u(T_1)f = X_1 u\Bigl(S(\theta)\Bigr) f = P_N A_1 P_N u f = P_N A_1 u f,$$

$$= P_N u A_1 f = u \Bigl(S(N)\Bigr) X_1 f = 0.$$

Since X_1 is an injection, we have $u(T_1) f = 0$, which implies that T_1 is of class C_0, that is, θ_1 is an $m \times m$ inner matrix. Next suppose S_2 is of class C_0, hence so is S_2^*. For Y_i given by (6)' and every Z such that $ZS(\theta) = S(N)Z$, in virtue of (8), Y_iZ commutes with $S(\theta)$; this implies $Y_i Z \mathfrak{I} \subseteq \mathfrak{I}$ and hence $Y_i \alpha(\mathfrak{I}) \subseteq \mathfrak{I}$. Thus we have $Y_i \mathfrak{I}^\perp \subseteq \alpha(\mathfrak{I})^\perp$. From this and (8), for each
If \(h \in \mathfrak{L}^\perp \), it follows that
\[
Y_i^* T_i^* h = S_i^* Y_i^* h \quad \text{for} \quad i = 1, 2.
\]
From this we can deduce that
\[
Y_i^* u (T_i^*) h = u (S_i^*) Y_i^* h \quad \text{for every} \quad u \in H^\infty,
\]
(see (7) chap 3). Since \(Y_1 \mathfrak{H}(N) \lor Y_2 \mathfrak{H}(N) = \mathfrak{H}(\theta) \), we have \(u (T_i^*) = 0 \) for \(u \) satisfying \(u (S_i^*) = 0 \). Therefore \(\theta_2 \) is an \(n \times n \) inner matrix. This completes the proof.

The following theorem implies that the mapping \(\alpha : \mathfrak{L} \longrightarrow \alpha (\mathfrak{L}) \) is isomorphism from the lattice of hyperinvariant subspaces for \(S(\theta) \) onto that for \(S(N) \), and its inverse is given by \(\beta : \mathfrak{R} \longrightarrow \beta (\mathfrak{R}) \).

Theorem 2. For \(X_i \) and \(Y_i \) \((i = 1, 2)\) given by (6) and (6)',
\[
\alpha (\mathfrak{L}) = X_1 \mathfrak{L} \lor X_2 \mathfrak{L}, \quad \text{and} \quad \beta \ast \alpha (\mathfrak{L}) = \mathfrak{L},
\]
\[
\beta (\mathfrak{R}) = Y_1 \mathfrak{R} \lor Y_2 \mathfrak{R} \quad \text{and} \quad \alpha \ast \beta (\mathfrak{R}) = \mathfrak{R},
\]
where \(\mathfrak{L} \) and \(\mathfrak{R} \) are arbitrary hyperinvariant subspaces for \(S(\theta) \) and \(S(N) \), respectively.

Proof. Let \(\theta = \theta_2 \theta_1 \) and \(N = N_2 N_1 \) be the factorizations of \(\theta \) and \(N \) corresponding to \(\mathfrak{L} \) and \(\alpha (\mathfrak{L}) \), respectively. Then the proof of Lemma 2 implies that both \(\theta_1 \) and \(N_1 \) are \(k \times m \) matrices and both \(\theta_2 \) and \(N_2 \) are \(n \times k \) matrices, where \(k = n \) or \(k = m \). Since \(X_i \mathfrak{L} \subseteq \alpha (\mathfrak{L}) \) and \(Y_i \alpha (\mathfrak{L}) \subseteq \mathfrak{L} \), it clearly follows that
\[
\Delta_i \theta_2 H_k^2 \subseteq N_2 H_k^2 \quad \text{and} \quad \Delta_i' N_2 H_k^2 \subseteq \theta_2 H_k^2,
\]
which guarantee the existence of \(k \times k \) matrices \(A_i \) and \(B_i \) over \(H^\infty \) satisfying
\[
\Delta_i \theta_2 = N_2 A_i \quad \text{and} \quad \Delta_i' N_2 = \theta_2 B_i.
\]
This and (3) implies that
\[
A_i \theta_1 = N_1 A_i \quad \text{and} \quad B_i N_1 = \theta_1 A_i'.
\]
By (13) we have
\[
\Delta_i' \Delta_i \theta_2 = \theta_2 B_i A_i,
\]
and by (13')
\[
B_i A_i \theta_1 = \theta_1 A_i' A_i.
\]
Thus, if \(k = n \), then \(\det A_i \) is a divisor of \((\det \Delta_i) (\det \Delta_i') \), and if \(k = m \) then \(\det A_i \) is a divisor of \((\det \Delta_i) (\det \Delta_i') \). To prove the first relation of (11), suppose that
Hyperinvariant subspaces for contractions of class C_0

$$f \in \alpha(\mathfrak{L}) \ominus \{X_1 \mathfrak{L} \vee X_2 \mathfrak{L}\}.$$

Then f is orthogonal to $\Delta_1 \theta_2 H^2 \ominus \Delta_2 \theta_2 H^2$. On the other hand, $f \in \alpha(\mathfrak{L})$ implies the existence of g belonging to $H^2 \ominus N_1 H^2_m$ such that $f = N_d g$. Thus for every h in H^2, we have for $i=1,2$

$$0 = (f, \Delta_i \theta_2 h) = (N_d g, N_2 A_i h) = (g, A_i h).$$

If $k=n$, then, by (5) and Beurling's theorem

$$A_i H^2_n \supseteq (\det A_i) H^2_m \supseteq (\det A_i) \ (\det A_i') H^2_n$$

induce $A_1 H^2_n \vee A_2 H^2_n = H^2_n$ and hence $g=0$. If $k=m$, then it follows that from (13) and (4) $\det N_i$ is a divisor of d_m, and that $A_i H^2_m \supseteq (\det A_i) \ (\det A_i') H^2_m$; this implies, by (4), $N_1 H^2_m \vee A_i H^2_m = H^2_m$. Consequently we have $g=0$. Thus we showed that if $k=n$, then $\alpha(\mathfrak{L}) = X_1 \mathfrak{L} \vee X_2 \mathfrak{L}$, and if $k=m$, then $\alpha(\mathfrak{L}) = X_1 \mathfrak{L} = X_2 \mathfrak{L}$. The rest is proved in a similar way. Thus we can conclude the proof.

Corollary 1. Let θ be an $n \times m$ $(n>m)$ inner matrix over H^∞. Then for any non constant scalar inner function ϕ, $\overline{\phi(S(\theta)) \mathfrak{H}(\theta)}$ is a non trivial hyperinvariant subspace for $S(\theta)$.

Proof. Since $\{X_1, X_2\}$ is a complete injective family, it is clear that

$$\overline{\alpha(\phi(S(\theta)) \mathfrak{H}(\theta))} = \phi(\overline{S(N)}) \mathfrak{H}(N).$$

The following relation:

$$\mathfrak{H}(M) \oplus \phi H^2_{n-m} \supseteq \phi(S(N)) \mathfrak{H}(N) \supseteq \{0\} \oplus \phi H^2_{n-m}$$

implies that $\overline{\phi(S(N)) \mathfrak{H}(N)}$ is trivial and hence so $\phi(\overline{S(\theta)}) \mathfrak{H}(\theta)$ is by Theorem 2.

Corollary 2. $K\phi(S(\theta)) = \{h \in \mathfrak{H}(\theta) : \phi(S(\theta)) h = 0\}$ is a non trivial hyperinvariant subspace for $S(\theta)$ if and only if $\phi \wedge d_m \neq 1$.

Proof. It is clear that $K\phi(S(\theta))$ is hyperinvariant for $S(\theta)$ and

$$\alpha(K\phi(S(\theta))) = K\phi(S(N)) = K\phi(S(M) \oplus \{0\}).$$

Since, by the definition, we have $d_m = \det M$, we must show that $K\phi(S(M)) = \{0\}$ if and only if $\phi \wedge (\det M) = 1$.

But this results have already been proved in [3].

5. **Restricted operators**

For an arbitrary subspace \mathfrak{L} of $\mathfrak{H}(\theta)$ we define the subspace $\alpha'(\mathfrak{L})$ of
\[\mathfrak{H}(N) \]

Similarly define the subspace \(\mathfrak{R} \) of \(\mathfrak{H}(\theta) \) by

\[\mathfrak{R} = Y_1 \mathfrak{R} \vee Y_2 \mathfrak{R} \quad \text{for a subspace} \quad \mathfrak{R} \text{ of } \mathfrak{H}(N). \]

Then by Theorem 2 \(\alpha'(\mathfrak{L}) = \alpha(\mathfrak{L}) \) if \(\mathfrak{L} \) is hyperinvariant for \(S(\theta) \).

Theorem 3. Let \(\mathfrak{L} \) be a hyperinvariant subspace for \(S(\theta) \). If \(\mathfrak{L}' \) is a subspace of \(\mathfrak{L} \), hyperinvariant for \(S(\theta)|\mathfrak{L} \), then \(\alpha'(\mathfrak{L}') \) is a subspace of \(\alpha'(\mathfrak{L}) \), hyperinvariant for \(S(N)|\alpha'(\mathfrak{L}) \) and \(\beta'(\alpha'(\mathfrak{L}')) = \mathfrak{L}' \).

Proof. Let \(\theta = \theta_2 \theta_1 \) and \(N = N_2 N_1 \) be the factorization of \(\theta \) and \(N \) corresponding to \(\mathfrak{L} \) and \(\alpha'(\mathfrak{L}) = \alpha(\mathfrak{L}) \), respectively.

\[\mathfrak{L} = \theta_2 \{ H_i^2 \theta - \theta_1 H_i^2 \} \]

implies that \(\theta_2 | \mathfrak{H}(\theta_1) \) is unitary from \(\mathfrak{H}(\theta_1) \) onto \(\mathfrak{L} \). Hence, in virtue of

\[\left((S(\theta)|\mathfrak{L}) \right) \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right) = \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right) \left(S(\theta_1) \right), \]

it follows that \((\theta_2 | \mathfrak{H}(\theta_1))^{-1} \mathfrak{L}' \) is hyperinvariant for \(S(\theta_1) \). Now for \(A_i \) and \(B_i \) given by (13), from (14) or (14'). \(\det A_i \) \(\det B_i \) is a divisor of \(\det A_i' \) \(\det A_i' \) or \(\det A_i \) \(\det A_i \). Thus by (5) or (5)' we have

\[(17) \quad \det A_i \wedge \det B_i = 1. \]

It is easy to show that for \(X_i = P_{N_i} A_i | \mathfrak{H}(\theta_1) \),

\[X_i' \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right)^{-1} \mathfrak{L}' \vee X_i' \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right)^{-1} \mathfrak{L}' \]

is hyperinvariant for \(S(N_i) \), by making use of (13'), (4) and (17), as we have shown Theorem 2. By making use of (3), (4), (5) and (6). Since \(N_2 | \mathfrak{H}(N_1) \) is unitary from \(\mathfrak{H}(N_1) \) onto \(\alpha'(\mathfrak{L}) = \alpha(\mathfrak{L}) \),

\[\left((S(N)|\alpha(\mathfrak{L})) \right) \left(N_2 \mid \mathfrak{H}(N_1) \right) = \left(N_2 \mid \mathfrak{H}(N_1) \right) S(N_1) \]

implies that

\begin{align*}
N_2 \left(X_i' \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right)^{-1} \mathfrak{L}' \vee X_i' \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right)^{-1} \mathfrak{L}' \right) \\
= N_2 \left(P_{N_i} A_i \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right)^{-1} \mathfrak{L}' \vee P_{N_i} A_i \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right)^{-1} \mathfrak{L}' \right) \\
= P_{N_i} N_2 A_i \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right)^{-1} \mathfrak{L}' \vee P_{N_i} N_2 A_i \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right)^{-1} \mathfrak{L}' \\
= P_{N_i} A_i \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right)^{-1} \mathfrak{L}' \vee P_{N_i} A_i \theta_2 \left(\theta_2 \mid \mathfrak{H}(\theta_1) \right)^{-1} \mathfrak{L}' \\
= P_{N_i} \mathfrak{L}' \vee P_{N_i} \mathfrak{L}' = X_i \mathfrak{L}' \vee X_i \mathfrak{L}' = \alpha'(\mathfrak{L}')
\end{align*}

is hyperinvariant for \(S(N)|\alpha'(\mathfrak{L}) \). \(\beta'(\alpha'(\mathfrak{L}')) = \mathfrak{L}' \) is proved by the same way.
as Theorem 2. Thus we complete the proof.

The same argument as the proof of Theorem 3 yields.

Theorem 3'. Let \mathcal{N} be a hyperinvariant subspace for $S(N)$. If \mathcal{N} is a subspace of \mathcal{N}, hyperinvariant for $S(N)|\mathcal{N}$, then $\beta'(\mathcal{N})$ is a subspace of $\beta'(\mathcal{N})$, hyperinvariant for $S(\theta)|\beta'(\mathcal{N})$, and $\alpha'(\beta'(\mathcal{N})) = \mathcal{N}$.

Theorem 4. Let \mathcal{L} be a subspace hyperinvariant for $S(\theta)$. Then \mathcal{L} is a subspace of $\mathcal{H}(\theta)$, hyperinvariant for $S(\theta)$, if it is a subspace of \mathcal{L}, hyperinvariant for $S(\theta)|\mathcal{L}$.

Proof. Set $\alpha'(\mathcal{L}) = \mathcal{N}$ and $\alpha(\mathcal{L}) = \alpha(\mathcal{L}) = \mathcal{N}$. Theorem 3 implies that \mathcal{N} is hyperinvariant for $S(N)|\mathcal{N}$. Let $N = N_2N_1$ be the factorization of N corresponding to \mathcal{N}. Then $(N_2N_1)^{-1}\mathcal{N}$ is a subspace of $\mathcal{H}(N_1)$, hyperinvariant for $S(N_1)$. Since N_1 is a $k \times m$ ($k = n$ or $k = m$) normal inner matrix over H^∞, by Theorem 1 there is an $l \times m$ normal inner matrix N'_1 and an $k \times l$ normal inner matrix N'_2 such that

$$N_1 = N'_2N'_1 \text{ and } (N_2|\mathcal{H}(N_1))^{-1}\mathcal{N} = N'_2\{H^2_1 \ominus N'_1H^2_m\},$$

where $n \geq k \geq l \geq m$, and $l = m$ or $l = n$. It is easy to show that $N_2N'_2$ and N'_1 satisfy the condition (i) or the condition (ii) of Theorem 1; this implies that

$$\mathcal{N}' = N_2N'_2\{H^2_1 \ominus N'_1H^2_m\}$$

is hyperinvariant for $S(N)$. Thus

$$\beta(\mathcal{N}') = \beta'(\mathcal{N}') = \beta'(\alpha'(\mathcal{L}')) = \mathcal{L}'$$

is hyperinvariant for $S(\theta)$. Thus we conclude the proof.

Now, we determine a particular hyperinvariant subspace \mathcal{L}_* for $S(\theta)$ by the following relation:

$$\mathcal{L}_* = \{h \in \mathcal{H}(\theta) : S(\theta)^n h \to 0 \text{ as } n \to \infty\} \quad \text{(7) P. 73}.$$

Then, from $\alpha(\mathcal{L}_*) \subseteq \mathcal{H}(M)$ and $\beta(\mathcal{H}(M)) \subseteq \mathcal{L}_*$, it follows that $\alpha(\mathcal{L}_*) = \mathcal{H}(M)$.

Theorem 5. Let \mathcal{L} be a subspace hyperinvariant for $S(\theta)$. In order that if \mathcal{L}' is a subspace of \mathcal{L}, hyperinvariant for $S(\theta)$, then \mathcal{L}' is hyperinvariant for $S(\theta)|\mathcal{L}$, it is necessary and sufficient that there is a function ϕ in H^∞ such that

$$\mathcal{L} = \phi(S(\theta)\mathcal{H}(\theta)) \text{ or } \mathcal{L} = \phi(S(\theta)\mathcal{H}(\theta)) \cap \mathcal{L}_*.$$

Proof. Sufficiency. Case a: suppose $\mathcal{L} = \phi(S(\theta)\mathcal{H}(\theta))$ and hence $\alpha(\mathcal{L}) = \phi(S(N))\mathcal{H}(N)$. Let $N = N_2N_1$ be the factorization corresponding to $\alpha(\mathcal{L})$. Then $N_2 = \text{diag}(\phi_1, \cdots, \phi_m, \phi, \cdots, \phi)$, where $\phi_i = \phi_i \wedge \psi_i$ for $i = 1, 2, \cdots, m$. Set $\phi = \phi_i u_i$ and $\phi_i = \phi_i v_i$ for $i = 1, 2, \cdots, m$. Then it follows that for $i =
1, 2, \cdots, m-1,
\phi_{i+1} = \phi \land \psi_{i+1} = \phi_t u_t \land \phi_t v_t \frac{\phi_{i+1}}{\phi_t} = \phi_t \left(u_t \land \psi_{i+1} \frac{\phi_{i+1}}{\phi_t} \right).

Since \(u_t \land \psi_{i+1} = 1 \), this implies that
\begin{equation}
\frac{\phi_{i+1}}{\phi_t} \land \psi_{i+1} = 1.
\end{equation}

Let \(\mathcal{L}' \) be a subspace of \(\mathcal{L} \), hyperinvariant for \(S(\theta) \). Then there is the factorization \(N_1 = N_2' N'_1 \), where \(N'_1 \) is a \(k \times m \) inner matrix and \(N'_2 \) is an \(n \times k \) inner matrix, such that \(\alpha(\mathcal{L}') = N_2' \{ H_2' \cup N'_1 H_1' \} \) (see [7] P. 291). The hyperinvariance of \(\alpha(\mathcal{L}') \) implies that \(N_2' \) and \(N'_1 \) are normal inner matrices satisfying (i) or (ii) of Theorem 1. First, assume (i). Then \(N'_1 \) is an \(m \times m \) normal inner matrix and hence \(N'_2 \) is an \(n \times m \) inner matrix. From the normalities of \(N_2 N'_2 \) and \(N_2 \), we can deduce that \(N'_2 \) has the form \[
\begin{bmatrix}
M' \\
0
\end{bmatrix},
\]
where \(M' = \text{diag} (t_1, t_2, \cdots, t_m) \). Since \(\phi_t t_i \) is a divisor of \(\phi_t \), it follows that \(t_i \) is a divisor of \(\psi_{i+1} \) and, by (18), \(\phi_{i+1} \frac{\phi_{i+1}}{\phi_t} t_i = 1 \). Then normality of \(N_2 N'_2 \) implies that there is an inner function \(\omega_t \) such that \(\omega_t = \frac{\phi_{i+1} t_{i+1}}{\phi_t t_i} \). From \(t_i \omega_t = \frac{\phi_{i+1} t_{i+1}}{\phi_t t_i} \), \(t_{i+1} \), it follows that \(t_i \) is a divisor of \(t_{i+1} \). Thus \(N'_2 \) is normal. Hence \(N_2^{-1} \alpha(\mathcal{L}') = N'_2 \{ H_2' \cup N'_1 H_1' \} \) is hyperinvariant for \(S(N_1) \). Therefore \(\alpha(\mathcal{L}') \) is hyperinvariant for \(S(N_1) \alpha(\mathcal{L}) \). Consequently \(\beta' (\alpha(\mathcal{L}')) = \beta (\alpha(\mathcal{L}')) = \mathcal{L}' \) is hyperinvariant for \(S(\theta) \alpha(\mathcal{L}) \). Next assume that \(N_2 N'_2 \) and \(N'_1 \) satisfy (ii). Then we have \(N'_2 = \text{diag} (t_1, t_2, \cdots, t) \), for inner functions \(t_1, t_2, \cdots, t_m \) and \(t \). It is proved as above that \(t_i \) is a divisor of \(t_{i+1} \) for \(i = 1, 2, \cdots, m-1 \). Since \(\phi_m t_m \) is a divisor of \(\phi_t \), \(t_m \) is a divisor of \(u_m t \). On the other hand since \(t_m \) is a divisor of \(v_m \) and \(v_m \land u_m = 1 \), \(t_m \) is a divisor of \(t \). Thus it follows that \(N'_2 \) is normal. Consequently in the same way as above we can deduce that \(\mathcal{L}' \) is hyperinvariant for \(S(\theta) \mathcal{L} \).

Case b: suppose \(\mathcal{L} = \overline{\phi (S(\theta)) \mathcal{L} (\theta)} \cap \mathcal{L} \). Then by Corollary 1 and \(\alpha(\mathcal{L}_\Phi) = \overline{\phi (M)} \) we have
\[
\alpha(\mathcal{L}) = \overline{\phi (S(N)) \mathcal{L} (N)} \cap \overline{\phi (M)} = \overline{\phi (S(M)) \mathcal{L} (M)},
\]
because \(\alpha \) is a lattice isomorphism. Let \(N = N_2 N_1 \) be the factorization corresponding to \(\alpha(\mathcal{L}) \). Then it follows that
\[
N_2 = \begin{bmatrix} M_2 \\ 0 \end{bmatrix} \quad \text{with} \quad M_2 = \text{diag} (\phi_1, \phi_2, \cdots, \phi_m),
\]
where \(\phi_i = \phi \land \psi_i \) for \(i = 1, 2, \cdots, m \). Let \(\mathcal{L} \) be a subspace of \(\mathcal{L} \), hyperinvariant for \(S(\theta) \), and \(N_1 = N_2' N'_1 \) be the factorization of \(N_1 \) such that \(N =
\((N_2N_2')N_1' \) is the factorization of \(N \) corresponding to \(\alpha' (\mathfrak{V}) = \alpha (\mathfrak{V}) \). The hyperinvariance of \(\alpha (\mathfrak{V}) \) for \(S(N) \) implies that \(N_2N_2' \) and \(N_1' \) are normal inner matrices satisfying (i). In the same way as Case \(a \) it follows that \(N_2' \) is an \(m \times m \) normal inner matrix. Therefore it is simple to show that \(\mathfrak{V} \) is hyperinvariant for \(S(\theta)|\mathfrak{V} \).

Necessity. Let \(\mathfrak{V} \) be the hyperinvariant subspace for \(S(\theta) \) such that \(\mathfrak{V} \) is hyperinvariant for \(S(\theta)|\mathfrak{V} \), if \(\mathfrak{V} \) is a subspace of \(\mathfrak{L} \), hyperinvariant for \(S(\theta) \). Then, for every subspace \(\mathfrak{R}' \) of \(\alpha (\mathfrak{V}) \) such that \(\mathfrak{R}' \) is hyperinvariant for \(S(N) \), it follows from Theorem 3 that \(\beta (\mathfrak{V}') = \beta' (\mathfrak{V}') \) is hyperinvariant for \(S(\theta)|\mathfrak{V} \). Hence, by Theorem 3, \(\mathfrak{V}' = \alpha' (\beta' (\mathfrak{R}')) \) is hyperinvariant for \(S(N)|\alpha (\mathfrak{V}) \). Let \(N = N_2N_1' \) be the factorization corresponding to \(\alpha (\mathfrak{V}) \). Then \(N_2 \) and \(N_1 \) are normal inner matrices.

Case \(a' \): assume that \(N_1 \) and \(N_2 \) have the form:

\[
N_1 = \text{diag} (\xi_1, \xi_2, \ldots, \xi_m) \quad \text{and} \quad N_2 = \begin{bmatrix} M_2 \\ 0 \end{bmatrix}
\]

with \(M_2 = \text{diag} (\eta_1, \eta_2, \ldots, \eta_m) \).

Then it follows that \(\eta_i \) and \(\xi_i \) satisfy (18), that is \(\frac{\eta_i+1}{\eta_i} \) and \(\xi_i \) are relatively prime. In fact, if it were not true, then we have

\[
\omega \equiv \frac{\eta_i+1}{\eta_i} \wedge \frac{\xi_j}{\xi_{j-1}} \neq 1 \quad \text{for some} \quad j: 1 \leq j \leq i, \quad \xi_0 = 1 .
\]

Set

\[
M_2' = \text{diag} (\eta_1, \ldots, \eta_{j-1}, \eta_j \omega, \eta_j \omega, \ldots, \eta_i \omega, \eta_{i+1}, \ldots, \eta_m)
\]

\[
N_1' = \text{diag} (\xi_1, \ldots, \xi_{j-1}, \xi_j, \omega, \xi_{j+1}, \omega, \ldots, \xi_i, \omega, \xi_{i+1}, \ldots, \xi_m)
\]

and \(N_2' = \begin{bmatrix} M_2' \\ 0 \end{bmatrix} \). It is clear that \(\mathfrak{R}' \equiv N_2' \{ H_2 \oplus N_1' H_2 \} \) is a subspace of \(\alpha (\mathfrak{V}) \).

Since \(N_1' \) and \(N_2' \) are normal inner matrices, by Lemma \(\mathfrak{V} \) is hyperinvariant for \(S(N) \). However,

\[
(N_2 \mathfrak{S} (N_1))^{-1} N_2' \mathfrak{S} (N_1') = \text{diag} (1, \ldots, 1, \omega, \ldots, \omega, 1, \cdots 1) \mathfrak{S} (N_1')
\]

implies that \(\mathfrak{V}' \) is not hyperinvariant for \(S(N)|\alpha (\mathfrak{V}) \). Thus we have \(\frac{\eta_{i+1}}{\eta_i} < \xi_i = 1 \). Since \(\xi_i \) is a divisor of \(\xi_{i+1} \), it follows that

\[
\eta_m \wedge \psi_i = \eta_m \wedge (\eta_i \xi_i) = \eta_i \left(\frac{\eta_m}{\eta_i} \wedge \xi_i \right) = \eta_i .
\]

Thus we have

\[
\alpha (\mathfrak{V}) = \eta_m (S(M)) \mathfrak{S} (M) = \eta_m (S(N)) \mathfrak{S} (N) \cap \mathfrak{S} (M).
\]

Consequently \(\mathfrak{L} = \eta_m (S(\theta)) \mathfrak{S} (\theta) \cap \mathfrak{L}_* \).
Case b': assume that N_1 and N_2 are normal inner matrices satisfying (ii). In this case, we can show
\[
\mathfrak{L} = \phi(S(\theta)) \Phi(\theta)
\]
for some ϕ in H^∞ in the same way as Case a'. Thus we complete the proof of Theorem 5.

References