Hyperinvariant subspaces for contractions of class $\boldsymbol{C}_{\text {. }}$

By Mitsuru Uchiyama

(Received August 2, 1976)

1. Introduction

Let T be a bounded operator on a separable Hilbert space \mathfrak{G}. A subspace \mathfrak{L} of \mathfrak{E} is said to be hyperinvariant for T if \mathbb{Z} is invariant for every operator that commutes with T. In [2] the hyperinvariant subspaces for a unilateral shift were determined, and those for an isometry in [1]. Recall that T is said to be of class $C_{.0}$ if T is a contraction (i.e., $\|T\| \leqq 1$) and $T^{* n} \longrightarrow 0$ (strongly) as $n \longrightarrow \infty$. Hence a unilateral shift is of class $C_{.0}$. Let T be of class C_{0}. Then it necessarily follows that

$$
\delta_{*} \equiv \operatorname{dim}\left(1-T T^{*}\right) \mathfrak{E} \geqq \operatorname{dim}\left(1-T^{*} T\right) \mathfrak{S} \equiv \delta
$$

(see [6]). In the case of $\delta_{*}=\boldsymbol{\delta}<\infty$, in an earlier paper [8] we established a canonical isomorphism between the lattice of hyperinvariant subspaces for T and that for the Jordan model of T. In this paper we extend this result to the case of $\delta<\delta_{*}<\infty$. For an operator T of this class we shall present complete description of the hyperinvariant subspaces 9ℓ with the property that every subspace of \mathfrak{N} hyperinvariant for T is hyperinvariant for the restricted operator $T \mid \mathfrak{R}$. The author wishes to express his gratitude to Prof. T. Ando for his constant encouragement.

2. Preliminaries

Let θ be an $n \times m(\infty>n \geqq m)$ matrix over H^{∞} on the unit circle. Such a matrix θ is called inner if $\theta(z)$ is isometry a. e. on the unit circle. For such an inner function θ a Hilbert space $\mathscr{S}(\theta)$ and an operator $S(\theta)$ are defined by

$$
\begin{equation*}
\mathfrak{S}(\theta)=H_{n}^{2} \ominus \theta H_{m}^{2} \quad \text { and } \quad S(\theta) h=P_{\theta}(S h) \quad \text { for } h \text { in } \mathscr{S}(\theta), \tag{1}
\end{equation*}
$$

where H_{n}^{2} is the Hardy space of n-dimensional (column) vector valued functions, P_{θ} is the projection from H_{n}^{2} onto $\mathfrak{K}(\theta)$, and S is the simple unilateral shift, that is, $(S h)(z)=z h(z)$. A contraction T of class $C_{\cdot 0}$ with $\delta_{*}=n$ and $\delta=m$ is unitarily equivalent to an $S(\theta)$ of this type [7]. Thus in the sequel we may discuss $S(\theta)$ in place of T.

For a completely non unitary contraction T, it is possible to define
$\phi(T)$ for every function ϕ in H^{∞}. In particular, for $S(\theta)$ given above $\phi(S$ $(\theta))$ can be equivalently defined by the following:

$$
\phi(S(\theta)) h=P_{\theta} \phi h \quad \text { for } h \text { in } \quad \mathscr{S}(\theta) \quad \text { (see [5], [7]) } .
$$

If there is a function ϕ such that $\phi(T)=0$, then T is said to be of class C_{0}. T of class C_{\cdot} with $\delta \leqq \delta_{*}<\infty$ is of class C_{0} if and only if $\delta=\delta_{*}$ [7].

Suppose T_{1} is a bounded operator on \mathfrak{S}_{1} and T_{2} a bounded operator on \mathfrak{S}_{2}. If there exists a complete injective family $\left\{X_{\alpha}\right\}$ from \mathfrak{K}_{1} to \mathfrak{S}_{2} (i. e., for each α, X_{α} is an one to one bounded operator from \mathfrak{S}_{1} to \mathfrak{S}_{2} and $\left.\vee X_{\alpha} \mathfrak{S}_{1}=\mathfrak{S}_{2}\right)$ such that for each $\alpha X_{\alpha} T_{1}=T_{2} X_{\alpha}$, then we write $T_{1}{ }^{\text {ci }}\left\langle T_{2}\right.$. If $T_{1}{ }^{\mathrm{ci}} \prec T_{2}$ and $T_{2}{ }^{\mathrm{ci}} \prec T_{1}$, then T_{1} and T_{2} are said to be completely injectionsimilar, and denote by $T_{1} \stackrel{\text { ci }}{\sim} T_{2}$ [6].

An $n \times m(n \geqq m)$ normal inner matrix N^{\prime} over H^{∞} is, by definition, of the form :

$$
N^{\prime}=\left.\left[\begin{array}{cccc}
\phi_{1} & 0 & \cdots & 0 \tag{2}\\
0 & \psi_{2} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & \ddots & \psi_{m} \\
\hline 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right]\right|_{n-m}
$$

where, for each i, ϕ_{i} is a scalar inner function and a divisor of its succesor. Then

$$
S\left(N^{\prime}\right)=S\left(\psi_{1}\right) \oplus \cdots \oplus S\left(\psi_{m}\right) \oplus \underbrace{S \cdots \oplus S}_{n-m}
$$

is called a Jordan operator.
Let θ be an $n \times m(\infty>n \geqq m)$ inner matrix over H^{∞} and N a corresponding normal matrix, i. e., N is the $n \times m$ normal inner matrix of the form (2), where $\psi_{1}, \psi_{2} \cdots, \psi_{m}$ are the "invariant factors" of θ, that is,

$$
\phi_{k}=\frac{d_{k}}{d_{k-1}} \quad \text { for } \quad k=1,2, \cdots, m
$$

where $d_{0}=1$ and d_{k} is the largest common inner divisor of all the minors of order k. In this case, Nordgren [4] has shown that there exist pairs of matrices Δ_{i}, Λ_{i} and $\Delta_{i}^{\prime}, \Lambda_{i}^{\prime}(i=1,2)$ satisfying

$$
\begin{equation*}
\Delta_{i} \theta=N \Lambda_{i} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\theta \Lambda_{i}^{\prime}=\Delta_{i}^{\prime} N, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\operatorname{det} \Lambda_{i}\right)\left(\operatorname{det} \Lambda_{i}^{\prime}\right) \wedge d_{m}=1 \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \left(\operatorname{det} \Delta_{1}\right)\left(\operatorname{det} \Delta_{1}^{\prime}\right) \wedge\left(\operatorname{det} \Delta_{2}\right)\left(\operatorname{det} \Lambda_{2}^{\prime}\right)=1 \tag{5}\\
& \left(\operatorname{det} \Lambda_{1}\right)\left(\operatorname{det} \Lambda_{1}^{\prime}\right) \wedge\left(\operatorname{det} \Lambda_{2}\right)\left(\operatorname{det} \Lambda_{2}^{\prime}\right)=1 \tag{5}
\end{align*}
$$

where $x \wedge y$ denotes the largest common inner divisor of scalar function x and y in H^{∞}. Setting

$$
\begin{align*}
& X_{i}=P_{N} \Delta_{i} \mid H(\theta) \quad \text { and } \tag{6}\\
& Y_{i}=P_{\theta} \Delta_{i}^{\prime} \mid H(N) \quad \text { for } \quad i=1,2 \tag{6}
\end{align*}
$$

$\left\{X_{1}, X_{2}\right\}$ and $\left\{Y_{1}, Y_{2}\right\}$ are complete injective families satisfying the following relations:

$$
\begin{align*}
& X_{i} S(\theta)=S(N) X_{i} \quad \text { and } \tag{7}\\
& S(\theta) Y_{i}=Y_{i} S(N) \quad \text { for } \quad i=1,2 \tag{8}
\end{align*}
$$

This implies $S(\theta) \stackrel{\text { ci }}{\sim} S(N)$ (cf. [6]).
To every subspace \mathbb{Z} of $\mathfrak{G}(\theta)$, invariant for $S(\theta)$, there corresponds an unique factorization $\theta=\theta_{2} \theta_{1}$ of θ such that θ_{1} is an $k \times m$ inner matrix and θ_{2} is an $n \times k$ inner matrix ($n \geqq k \geqq m$) satisfying

$$
\mathfrak{Z}=\theta_{2}\left\{H_{k}^{2} \Theta \theta_{1} H_{m}^{2}\right\}=\theta_{2} H_{k}^{2} \Theta \theta H_{m}^{2}
$$

In this case $S(\theta) \mid \mathfrak{R}$ and $P_{\mathcal{B}^{\perp}} S(\theta) \mid \mathfrak{R}^{\perp}$ are unitarily equivalent to $S\left(\theta_{1}\right)$ and $S\left(\theta_{2}\right)$, respectively. For this discussion see [7].

Let M be an $m \times m$ normal inner matrix over H^{∞}. Then, in [8], we showed that, in order that a factorization $M=M_{2} M_{1}$ corresponds to a subspace hyperinvariant for $S(M)$, it is necessary and sufficient that both M_{1} and M_{2} are $m \times m$ normal inner matrices.

3. Jordan operator

Let $N=\left[\begin{array}{c}M \\ 0\end{array}\right]$ be an $n \times m$ normal inner matrix over H^{∞}, that is, M is an $m \times m$ normal inner matrix over H^{∞}. Then $S(N)$ on $\mathfrak{S}(N)$ are identified with

$$
S(M) \oplus S_{n-m} \quad \text { on } \quad \mathfrak{S}(M) \oplus H_{n-m}^{2}
$$

where $\left(S_{n-m} h\right)(z)=z h(z)$ for h in H_{n-m}^{2}.
Let \mathfrak{N} be a hyperinvariant subspace for $S(N)$. Then it is clear that \mathfrak{R} is decomposed to the direct sum,

$$
\mathfrak{R}=\mathfrak{N}_{1} \oplus \mathfrak{R}_{2},
$$

where \mathfrak{R}_{1} is a subspace of $\mathfrak{G}(M)$, hyperinvariant for $S(M)$, and \mathfrak{R}_{2} is a subspace of H_{n-m}^{2}, hyperinvariant for S_{n-m}. In this case we have the fol-
lowing lemma.
Lemma 1. For \mathfrak{R}_{1} and \mathfrak{N}_{2} which are hyperinvariant for $S(M)$ and S_{n-m}, respectively, in order that the direct sum $\mathfrak{N}=\mathfrak{N}_{1} \oplus \mathfrak{R}_{2}$ is hyperinvariant for $S(N)$, it is necessary and sufficient that $\mathfrak{R}_{2}=\{0\}$ or there exists an inner function ϕ such that $\mathfrak{R}_{2}=\phi H_{n-m}^{2}$ and $\mathfrak{R}_{1} \supseteq \phi(S(M)) \mathfrak{g}(M)$.

Proof. An operator $X=\left[\begin{array}{ll}Y_{11} & Y_{12} \\ Y_{21} & Y_{22}\end{array}\right]$ commutes with $S(N)$, if and only if $Y_{i j}$ satisfy the following conditions:

$$
\begin{aligned}
& Y_{11} S(M)=S(M) Y_{11}, \quad Y_{12} S_{n-m}=S(M) Y_{12} \\
& Y_{21} S(M)=S_{n-m} Y_{21} \quad \text { and } \quad Y_{22} S_{n-m}=S_{n-m} Y_{22}
\end{aligned}
$$

Since $S(M)^{n} \longrightarrow 0$ as $n \longrightarrow \infty$ and S_{n-m} is isometry, we have $Y_{21}=0$. Thus if $\mathfrak{R}_{2}=\{0\}$, then it follows that $X \mathfrak{N} \subseteq \mathfrak{N}$ for every X commuting $S(N)$. By the lifting theorem (cf. [5], [7]), a bounded operator Y_{12} from H_{n-m}^{2} to $H(M)$ intertwines S_{n-m} and $S(M)$, if and only if there is an $m \times(n-m)$ matrix Ω over H^{∞} such that $Y_{12}=P_{M} \Omega$. Thus, if $\mathfrak{R}_{2}=\phi H_{n-m}^{2}$ and $\mathfrak{R}_{1} \supseteqq \phi$ $(S(M)) \mathfrak{S}(M)$ for some inner function ϕ, then we have

$$
\begin{aligned}
X \mathfrak{N} & =\left(Y_{11} \mathfrak{R}_{1}+Y_{12} \phi H_{n-m}^{2}\right) \oplus Y_{22} \phi H_{n-m}^{2} \\
& \subseteq\left(\mathfrak{N}_{1}+P_{M} \Omega \phi H_{n-m}^{2}\right) \oplus \phi H_{n-m}^{2} \\
& \subseteq\left(\mathfrak{N}_{1}+P_{M} \phi H_{m}^{2}\right) \oplus \phi H_{n-m}^{2} \\
& =\left(\mathfrak{R}_{1}+\phi(S(M)) \mathfrak{S}(M)\right) \oplus \phi H_{n-m}^{2} \\
& \subseteq \mathfrak{N}_{1} \oplus \phi H_{n-m}^{2}=\mathfrak{R}
\end{aligned}
$$

for every X commuting with $S(N)$.
Conversely suppose $\mathfrak{n}=\mathfrak{N}_{1} \oplus \mathfrak{N}_{2}$ is hyperinvariant for $S(N)$, and $\mathfrak{R}_{2} \neq\{0\}$. Then by [2] there exists an inner function ϕ such that $\mathfrak{R}_{2}=\phi H_{n-m}^{2}$. Let $\Omega_{i}(i=1,2, \cdots, m)$ be the $m \times(n-m)$ matrix such that the (j, k)-th entry of Ω_{i} is 1 for $(j, k)=(i, 1)$ and 0 for $(j, k) \neq(i, 1)$. Setting

$$
X_{i}=\left[\begin{array}{cc}
0 & Y_{i} \\
0 & 0
\end{array}\right] \quad \text { and } \quad Y_{i}=P_{M} \Omega_{i},
$$

each X_{i} commutes with $S(N)$, hence we have $\mathfrak{N}_{1} \supseteq \sum_{i=1}^{n} Y_{i} \phi H_{n-m}^{2}=P_{M} \phi H_{m}^{2}=$ $\phi(S(M)) \mathfrak{S}(M)$. This completes the proof.

ThEOREM 1. In order that a factorization $N=N_{2} N_{1}$ of N into the product of an $n \times k$ inner matrix N_{2} and an $k \times m$ inner matrix $N_{1}(n \geqq k$ $\geqq m$) corresponds to a hyperinvariant subspace \mathfrak{N} for $S(N)$, it is necessary and sufficient that N_{1} and N_{2} are normal matrices satisfying (i) or (ii):
(i) $k=m$,
(ii) $k=n$ and N_{2} has the form $\left[\begin{array}{c:c}M_{2} & 0 \\ \hdashline 0 & \phi 1_{n-m}\end{array}\right]$

Proof. First, assume that $k=m$, and both N_{1} and N_{2} are normal inner matrices. Then, setting $N_{2}=\left[\begin{array}{c}M_{2}^{\prime} \\ 0\end{array}\right]$, it follows that $N_{2}\left\{H_{m}^{2} \ominus N_{1} H_{m}^{2}\right\}=M_{2}^{\prime}\left\{H_{m}^{2}\right.$ $\left.\Theta N_{1} H_{m}^{2}\right\}$ is hyperinvariant for $S(M)$ (see [8]]. Therefore, by Lemma 1, it is hyperinvariant for $S(N)$. Next, assume that N_{1} and N_{2} are normal matrices satisfying (ii). Set $N_{1}=\left[\begin{array}{c}M_{1} \\ 0\end{array}\right]$. Then we have

$$
\mathfrak{R}=N_{2}\left\{H_{n}^{2} \ominus N_{1} H_{m}^{2}\right\}=M_{2}\left\{H_{m}^{2} \ominus M_{1} H_{m}^{2}\right\} \oplus \phi H_{n-m}^{2} .
$$

Normality of M_{1} and M_{2} implies that $M_{2}\left\{H_{m}^{2} \ominus M_{1} H_{m}^{2}\right\}$ is hyperinvariant for $S(M)$. On the other hand, normality of N_{2} implies $M_{2} H_{m}^{2} \supseteq \phi H_{m}^{2}$, and hence we have

$$
M_{2} H_{m}^{2} \ominus M H_{m}^{2} \supseteq \phi(S(M) \mathfrak{S}(M) .
$$

Thus from Lemma 1 we deduce that \mathfrak{R} is hyperinvariant for $S(N)$.
Conversely, first, assume that $\mathfrak{R}=\mathfrak{M}_{1} \oplus\{0\}$ is hyperinvariant for $S(N)$, and $N=N_{2} N_{1}$ is the factorization corresponding to \mathfrak{R}. Since $S(N) \mid \mathfrak{\Re}=$ $S(M) \mid \Re_{1}$ is of class $C_{0}, S\left(N_{1}\right)$ is of class C_{0} (cf. 2). This implies that N_{1} is an $m \times m$ inner matrix, that is, $k=m$. Setting $N_{2}=\left[\begin{array}{c}M_{2} \\ \Gamma\end{array}\right]$, where M_{2} is an $m \times m$ matrix and Γ an $(n-m) \times m$ matrix, we have

$$
M=M_{2} N_{1}, \mathfrak{R}_{1}=M_{2}\left\{H_{m}^{2} \ominus N_{1} H_{m}^{2}\right\} \quad \text { and } \quad \Gamma H_{m}^{2}=\{0\} .
$$

Since $\Gamma=0$ and N_{2} is inner, it follows that M_{2} is inner. Thus the hyperinvariance of $\mathfrak{\Re}_{1}$ corresponding to $M=M_{2} N_{1}$ implies that M_{2} and N_{1} are m $\times m$ normal inner matrices. Next assume that $\mathfrak{R}=\mathfrak{R}_{1} \oplus \phi H_{n-m}^{2}$ and $\mathfrak{R}_{1} \supseteq$ $\phi(S(M)) \mathfrak{S}(M)$. Clearly we have

$$
P_{s \perp} S(N)\left|\mathfrak{R}^{\perp}=P_{\Re_{1}^{1}} S(M)\right| \mathfrak{R}_{1}^{\perp} \oplus S\left(\phi 1_{n-m}\right),
$$

where $\mathfrak{\Re}_{1}^{\perp}$ denotes the orthogonal complement of \mathfrak{R}_{1} in $\mathfrak{g}(M)$. Since the right-hand operator is of class C_{0} (page 129 of [7]), $S\left(N_{2}\right)$ is of class C_{0}. This implies that N_{2} is an $n \times n$ matrix; i. e., $k=n$. To the hyperinvariant subspace \Re_{1} for $S(M)$ there corresponds a factorization $M=M_{2} M_{1}$, where M_{1} and M_{2} are $m \times m$ normal inner matrices. Thus setting $N_{2}^{\prime}=\left[\begin{array}{cc}M_{2} & 0 \\ 0 & \phi 1_{n-m}\end{array}\right]$ and $N_{1}^{\prime}=\left[\begin{array}{c}M_{1} \\ 0\end{array}\right]$, it is clear that $N=N_{2}^{\prime} N_{1}^{\prime}$ and $\mathfrak{R}=N_{2}^{\prime}\left\{H_{n}^{2} \ominus N_{1}^{\prime} H_{m}^{2}\right\}$. From
the uniqueness of the factorization of N into product of two inner matrices corresponding to (hyper) invariant subspace \mathfrak{N}, only this factorization $N=N_{2}^{\prime} N_{1}^{\prime}$ corresponds to \mathfrak{R}, that is, $N_{2}=N_{2}^{\prime}$ and $N_{1}=N_{1}^{\prime}$. Since

$$
M_{2}\left\{H_{m}^{2} \ominus M_{1} H_{m}^{2}\right\}=\mathfrak{R}_{1} \supseteqq \phi(S(M)) \mathfrak{R}(M)=P_{M} \phi H_{m}^{2}
$$

we have $M_{2} H_{m}^{2} \supseteqq \phi H_{m}^{2}$; this implies that every entry of M_{2} is a divisor of ϕ. Therefore N_{2} is an $n \times n$ normal inner matrix. Hence N_{1} and N_{2} are normal inner matrices satisfying (ii).

4. Lattice isomorphism

Let θ be an $n \times m$ inner matrix and N be the corresponding normal inner matrix. Set

$$
\begin{equation*}
\alpha(\mathfrak{Z})=\underset{Z}{\bigvee}\{Z \mathfrak{R}: Z S(\theta)=S(N) Z\} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta(\mathfrak{R})=\underset{W}{\vee}\{W \mathfrak{N}: W S(N)=S(\theta) W\} \tag{10}
\end{equation*}
$$

for each subspace \mathfrak{Z} and \mathfrak{N} hyperinvariant for $S(\theta)$ and $S(N)$, respectively, where $\vee \mathfrak{R}_{i}$ denotes the minimum subspace including all \mathfrak{R}_{i}. Since $S(\theta) \stackrel{\text { ci }}{\sim}$ $S(N)$, it is clear that $\alpha(\mathbb{R})$ is the non trivial hyperinvarinat subspace for $S(N)$, if \mathfrak{R} is non trivial.

Lemma 2. If $\theta=\theta_{2} \theta_{1}$ is the factorization corresponding to a non trivial hyperinvariant subspace \mathfrak{Z} for $S(\theta)$, then θ_{1} is an $m \times m$ inner matrix, or θ_{2} is an $n \times n$ inner matrix.

Proof. Let $S(\theta)=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ and $S(N)=\left[\begin{array}{cc}S_{1} & * \\ 0 & S_{2}\end{array}\right]$ be the triangulations corresponding to $\mathfrak{K}(\theta)=\Omega \oplus \mathbb{Z}^{\perp}$ and $\mathfrak{K}(N)=\alpha(\mathfrak{R}) \oplus \alpha(\mathfrak{Z})^{\perp}$, respectively. Theorem 1 implies that S_{1} or S_{2} is of class C_{0}. First, suppose $u\left(S_{1}\right)=0$ for some u in H^{∞}. For the bounded operator X_{1} given by (6) and every f in \mathcal{S}, in virtue of (3), it follows that

$$
\begin{aligned}
X_{1} u\left(T_{1}\right) f & =X_{1} u(S(\theta)) f=P_{N} \Delta_{1} P_{\theta} u f=P_{N} \Delta_{1} u f \\
& =P_{N} u \Delta_{1} f=u(S(N)) X_{1} f=0
\end{aligned}
$$

Since X_{1} is an injection, we have $u\left(T_{1}\right) f=0$, which implies that T_{1} is of class C_{0}, that is, θ_{1} is an $m \times m$ inner matrix. Next suppose S_{2} is of class C_{0}, hence so is S_{2}^{*}. For Y_{i} given by (6) and every Z such that $Z S(\theta)=$ $S(N) Z$, in virtue of (8), $Y_{i} Z$ commutes with $S(\theta)$; this implies $Y_{i} Z \mathbb{G} \subseteq \mathbb{Z}$ and hence $Y_{i} \alpha(\mathfrak{R}) \subseteq \mathbb{R}$. Thus we have $Y_{i}^{*} \mathbb{R}^{\perp} \subseteq \alpha(\mathbb{Z})^{\perp}$. From this and (8), for each
h in \mathbb{R}^{\perp}, it follows that

$$
Y_{i}^{*} T_{2}^{*} h=S_{2}^{*} Y_{i}^{*} h \quad \text { for } \quad i=1,2 .
$$

From this we can deduce that

$$
Y_{i}^{*} u\left(T_{2}^{*}\right) h=u\left(S_{2}^{*}\right) Y_{i}^{*} h \text { for every } u \text { in } H^{\infty},
$$

(see [7] chap 3). Since $Y_{1} \mathfrak{G}(N) \vee Y_{2} \mathfrak{G}(N)=\mathfrak{G}(\theta)$, we have $u\left(T_{2}^{*}\right)=0$ for u satisfying $u\left(S_{2}^{*}\right)=0$. Therefore θ_{2} is an $n \times n$ inner matrix. This completes the proof.

The following theorem implies that the mapping $\alpha: \Omega \longrightarrow \alpha(\Omega)$ is isomorphism from the lattice of hyperinvariant subspaces for $S(\theta)$ onto that for $S(N)$, and its inverse is given by $\beta: \mathfrak{R} \longrightarrow \beta(\mathfrak{Y})$.

Theorem 2. For X_{i} and $Y_{i}(i=1,2)$ given by (6) and (6)',

$$
\begin{aligned}
& \alpha(\mathfrak{R})=X_{1} \mathfrak{R} \vee X_{2} \mathfrak{R}, \quad \text { and } \quad \beta \cdot \alpha(\mathfrak{R})=\mathfrak{R}, \\
& \beta(\mathfrak{R})=Y_{1} \mathfrak{P} \vee Y_{2} \mathfrak{M} \text { and } \quad \alpha \cdot \beta(\mathfrak{R})=\mathfrak{R},
\end{aligned}
$$

where \mathfrak{Z} and \mathfrak{R} are arbitrary hyperinvariant subspaces for $S(\theta)$ and $S(N)$, respectively.

Proof. Let $\theta=\theta_{2} \theta_{1}$ and $N=N_{2} N_{1}$ be the factorizations of θ and N corresponding to \mathbb{Z} and $\alpha(\Omega)$, respectively. Then the proof of Lemma 2 implies that both θ_{1} and N_{1} are $k \times m$ matrices and both θ_{2} and N_{2} are $n \times$ k matrices, where $k=n$ or $k=m$. Since $X_{i} \mathfrak{R} \subseteq \alpha(\mathfrak{Z})$ and $Y_{i} \alpha(\mathfrak{Z}) \subseteq \mathfrak{R}$, it clearly follows that

$$
\Delta_{i} \theta_{2} H_{k}^{2} \subseteq N_{2} H_{k}^{2} \quad \text { and } \quad \Delta_{i}^{\prime} N_{2} H_{k}^{2} \subseteq \theta_{2} H_{k}^{2},
$$

which guarantee the existence of $k \times k$ matirces A_{i} and B_{i} over H^{∞} satisfying

$$
\begin{equation*}
\Delta_{i} \theta_{2}=N_{2} A_{i} \quad \text { and } \quad \Delta_{i}^{\prime} N_{2}=\theta_{2} B_{i} . \tag{13}
\end{equation*}
$$

This and (3) implies that

$$
\begin{equation*}
A_{i} \theta_{1}=N_{1} \Lambda_{i} \quad \text { and } \quad B_{i} N_{1}=\theta_{1} \Lambda_{i}^{\prime} . \tag{13}
\end{equation*}
$$

By (13) we have

$$
\begin{equation*}
\Delta_{i}^{\prime} \Delta_{i} \theta_{2}=\theta_{2} B_{i} A_{i}, \tag{14}
\end{equation*}
$$

and by (13)'

$$
\begin{equation*}
B_{i} A_{i} \theta_{1}=\theta_{1} \Lambda_{i}^{\prime} \Lambda_{i} . \tag{1}
\end{equation*}
$$

Thus, if $k=n$, then $\operatorname{det} A_{i}$ is a divisor of $\left(\operatorname{det} \Delta_{i}\right)\left(\operatorname{det} \Delta_{i}^{\prime}\right)$, and if $k=m$ then $\operatorname{det} A_{i}$ is a divisor of $\left(\operatorname{det} \Lambda_{i}\right)\left(\operatorname{det} \Lambda_{i}^{\prime}\right)$. To prove the first relation of (11), suppose that

$$
f \in \alpha(\mathbb{R}) \ominus\left\{X_{1} \mathfrak{Z} \vee X_{2} \mathbb{Z}\right\}
$$

Then f is orthogonal to $\Delta_{1} \theta_{2} H_{k}^{2} \vee \Delta_{2} \theta_{2} H_{k}^{2}$. On the other hand $f \in \alpha(\mathbb{Z})$ implies the existence of g belonging to $H_{k}^{2} \ominus N_{1} H_{m}^{2}$ such that $f=N_{2} g$. Thus for every h in H_{k}^{2}, we have for $i=1,2$

$$
\begin{equation*}
0=\left(f, \Delta_{i} \theta_{2} h\right)=\left(N_{2} g, N_{2} A_{i} h\right)=\left(g, A_{i} h\right) . \tag{15}
\end{equation*}
$$

If $k=n$, then, by (5) and Beurling's theorem

$$
A_{i} H_{n}^{2} \supseteq\left(\operatorname{det} A_{i}\right) H_{m}^{2} \supseteq\left(\operatorname{det} \Delta_{i}\right)\left(\operatorname{det} \Delta_{i}^{\prime}\right) H_{n}^{2}
$$

induce $A_{1} H_{n}^{2} \vee A_{2} H_{n}^{2}=H_{n}^{2}$ and hence $g=0$. If $k=m$, then it follows that from (13) and (4) det N_{1} is a divisor of d_{m}, and that $A_{i} H_{m}^{2} \supseteq\left(\operatorname{det} \Lambda_{i}\right)$ (det $\left.\Lambda_{i}^{\prime}\right) H_{m}^{2}$; this implies, by (4), $N_{1} H_{m}^{2} \vee A_{i} H_{m}^{2}=H_{m}^{2}$. Consequently we have $g=$ 0 . Thus we showed that if $k=n$, then $\alpha(\mathfrak{R})=X_{1} \mathbb{R} \vee X_{2} \mathbb{R}$, and if $k=m$, then $\alpha(\mathfrak{R})=\overline{X_{1} \mathfrak{R}}=\overline{X_{2} \mathbb{Z}}$. The rest is proved in a similar way. Thus we can conclude the proof.

Corollary 1. Let θ be an $n \times m(n>m)$ inner matrix over H^{∞}. Then for any non constant scalar inner function $\phi, \overline{\phi(S(\theta)) \mathfrak{S}(\theta)}$ is a non trivial hyperinvariant subspace for $S(\theta)$.

Proof. Since $\left\{X_{1}, X_{2}\right\}$ is a complete injective family, it is clear that

$$
\overline{\alpha(\phi(S(\theta)) \mathfrak{S}(\theta))}=\overline{\phi(S(N)) \mathfrak{K}(N)}
$$

The following relation:

$$
\mathfrak{S}(M) \oplus \phi H_{n-m}^{2} \supseteqq \phi(S(N)) \mathscr{N}(N) \supseteqq\{0\} \oplus \phi H_{n-m}^{2}
$$

implies that $\overline{\phi(S(N)) \mathfrak{K}(N)}$ is trivial and hence so $\overline{\phi(S(\theta)) \mathfrak{K}(\theta)}$ is by Theorem 2.

Corollary 2. $K \phi(S(\theta))=\{h \in \mathfrak{S}(\theta): \phi(S(\theta)) h=0\}$ is a non trivial $h y$ perinvariant subspace for $S(\theta)$ if and only if $\phi \wedge d_{m} \neq 1$.

Proof. It is clear that $K \phi(S(\theta))$ is hyperinvariant for $S(\theta)$ and

$$
\alpha(K \phi(S(\theta)))=K \phi(S(N))=K \phi(S(M)) \oplus\{0\}
$$

Since, by the definition, we have $d_{m}=\operatorname{det} M$, we must show that

$$
K \phi(S(M))=\{0\} \quad \text { if and only if } \quad \phi \wedge(\operatorname{det} M)=1
$$

But this results have already been proved in [3].

5. Restricted operators

For an arbitrary subspace \mathfrak{Z} of $\mathfrak{K}(\theta)$ we define the subspace $\alpha^{\prime}(\mathfrak{Z})$ of
$\mathfrak{S}(N)$ by

$$
\begin{equation*}
\alpha^{\prime}(\mathfrak{Z})=X_{1} \mathfrak{Z} \vee X_{2} \mathfrak{Z} \tag{15}
\end{equation*}
$$

Similarly define the subspace $\beta^{\prime}(\mathfrak{N})$ of $\mathfrak{F}(\theta)$ by

$$
\begin{equation*}
\beta^{\prime}(\mathfrak{R})=Y_{1} \mathfrak{N} \vee Y_{2} \mathfrak{N} \quad \text { for a subspace } \mathfrak{N} \text { of } \mathfrak{S}(N) \tag{16}
\end{equation*}
$$

Then by Theorem $2 \alpha^{\prime}(\mathfrak{Z})=\alpha(\mathfrak{R})$ if \mathfrak{R} is hyperinvariant for $S(\theta)$.
THEOREM 3. Let \mathbb{R} be a hyperinvariant subspace for $S(\theta)$. If \mathbb{Z}^{\prime} is a subspace of \mathfrak{R}, hyperinvariant for $S(\theta) \mid \mathbb{Z}$, then $\alpha^{\prime}\left(\mathfrak{R}^{\prime}\right)$ is a subspace of $\alpha^{\prime}(\mathfrak{Z})$, hyperinvariant for $S(N) \mid \alpha^{\prime}(\mathfrak{Z})$ and $\beta^{\prime}\left(\alpha^{\prime}\left(\mathfrak{Z}^{\prime}\right)\right)=\mathfrak{Z}^{\prime}$.

Proof. Let $\theta=\theta_{2} \theta_{1}$ and $N=N_{2} N_{1}$ be the factorization of θ and N corresponding to \mathfrak{R} and $\alpha^{\prime}(\mathbb{R})=\alpha(\mathbb{Z})$, respectively.

$$
\mathfrak{Z}=\theta_{2}\left\{H_{k}^{2} \Theta \theta_{1} H_{m}^{2}\right\}
$$

implies that $\theta_{2} \mid \mathfrak{S}\left(\theta_{1}\right)$ is unitary from $\mathfrak{S}\left(\theta_{1}\right)$ onto \mathfrak{L}. Hence, in virtue of

$$
(S(\theta) \mid \mathfrak{Z})\left(\theta_{2} \mid \mathfrak{S}\left(\theta_{1}\right)\right)=\left(\theta_{2} \mid \mathfrak{S}\left(\theta_{1}\right)\right)\left(S\left(\theta_{1}\right)\right)
$$

it follows that $\left(\theta_{2} \mid \mathfrak{S}\left(\theta_{1}\right)\right)^{-1} \mathbb{Z}^{\prime}$ is hyperinvariant for $S\left(\theta_{1}\right)$. Now for A_{i} and B_{i} given by (13), from (14) or $(14)^{\prime} .\left(\operatorname{det} A_{i}\right)\left(\operatorname{det} B_{i}\right)$ is a divisor of $\left(\operatorname{det} \Delta_{i}\right)$ $\left(\operatorname{det} \Delta_{i}^{\prime}\right)$ or $\left(\operatorname{det} \Lambda_{i}\right)\left(\operatorname{det} \Lambda_{i}^{\prime}\right)$. Thus by (5) or $(5)^{\prime}$ we have

$$
\begin{equation*}
\left(\operatorname{det} A_{1}\right)\left(\operatorname{det} B_{1}\right) \wedge\left(\operatorname{det} A_{2}\right)\left(\operatorname{det} B_{2}\right)=1 \tag{17}
\end{equation*}
$$

It is easy to show that for $X_{i}^{\prime}=P_{N_{1}} A_{i} \mid \mathfrak{S}\left(\theta_{1}\right)$,

$$
X_{1}^{\prime}\left(\theta_{2} \mid \mathfrak{K}\left(\theta_{1}\right)\right)^{-1} \mathfrak{Z}^{\prime} \vee X_{2}^{\prime}\left(\theta_{2} \mid \mathfrak{H}\left(\theta_{1}\right)\right)^{-1} \mathfrak{Z}^{\prime}
$$

is hyperinvariant for $S\left(N_{1}\right)$, by making use of (13)', (4) and (17), as we have shown Theorem 2 by making use of (3), (4), (5) and (6). Since $N_{2} \mid \mathfrak{H}$ $\left(N_{1}\right)$ is unitary from $\mathfrak{S}\left(N_{1}\right)$ onto $\alpha^{\prime}(\mathfrak{Z})=\alpha(\mathfrak{Z})$,

$$
(S(N) \mid \alpha(\mathfrak{Z}))\left(N_{2} \mid \mathfrak{G}\left(N_{1}\right)\right)=\left(N_{2} \mid \mathfrak{S}\left(N_{1}\right)\right) S\left(N_{1}\right)
$$

implies that

$$
\begin{aligned}
& N_{2}\left(X_{1}^{\prime}\left(\theta_{2} \mid \mathfrak{S}\left(\theta_{1}\right)\right)^{-1} \mathbb{Z}^{\prime} \vee X_{2}^{\prime}\left(\theta_{2} \mid \mathfrak{K}\left(\theta_{1}\right)\right)^{-1} \mathbb{Z}^{\prime}\right) \\
& =N_{2}\left(P_{N_{1}} A_{1}\left(\theta_{2} \mid \mathfrak{G}\left(\theta_{1}\right)\right)^{-1} \mathfrak{Q}^{\prime} \vee P_{N_{1}} A_{2}\left(\theta_{2} \mid \mathfrak{L}\left(\theta_{1}\right)\right)^{-1} \mathfrak{Z}^{\prime}\right) \\
& =P_{N} N_{2} A_{1}\left(\theta_{2} \mid \mathfrak{K}\left(\theta_{1}\right)\right)^{-1} \mathfrak{Z}^{\prime} \vee P_{N} N_{2} A_{2}\left(\theta_{2} \mid \mathfrak{G}\left(\theta_{1}\right)\right)^{-1} \mathfrak{Z}^{\prime} \\
& =P_{N} \Delta_{1} \theta_{2}\left(\theta_{2} \mid \mathfrak{K}\left(\theta_{1}\right)\right)^{-1} \mathbb{R}^{\prime} \vee P_{N} \Delta_{2} \theta_{2}\left(\theta_{2} \mid \mathfrak{S}\left(\theta_{1}\right)\right)^{-1} \mathbb{R}^{\prime} \\
& =P_{N} \Delta_{1} \mathfrak{B}^{\prime} \vee P_{N} \Delta_{2} \mathfrak{L}^{\prime}=X_{1} \mathfrak{Z}^{\prime} \vee X_{2} \mathfrak{Z}^{\prime}=\alpha^{\prime}\left(\mathfrak{Z}^{\prime}\right)
\end{aligned}
$$

is hyperinvariant for $S(N) \mid \alpha^{\prime}(\mathfrak{Z}) . \quad \beta^{\prime}\left(\alpha^{\prime}\left(\mathfrak{Z}^{\prime}\right)\right)=\mathfrak{Z}^{\prime}$ is proved by the same way
as Theorem 2. Thus we complete the proof.
The same argument as the proof of Theorem 3 yields.
Theorem 3'. Let \mathfrak{R} be a hyperinvariant subspace for $S(N)$. If \mathfrak{M}^{Y} is a subspace of \mathfrak{R}, hyperinvariant for $S(N) \mid \mathfrak{R}$, then $\beta^{\prime}(\mathfrak{Y})$ is a subspace of $\beta^{\prime}(\mathfrak{\Re})$, hyperinvariant for $S(\theta) \mid \beta^{\prime}(\mathfrak{R})$, and $\alpha^{\prime}\left(\beta^{\prime}(\mathfrak{Y})\right)=\mathfrak{\Re}^{\prime}$.

Theorem 4. Let $\mathfrak{\&}$ be a subspace hyperinvariant for $S(\theta)$. Then \mathfrak{Z}^{\prime} is a subspace of $\mathfrak{S}(\theta)$, hyperinvariant for $S(\theta)$, if it is a subspace of \mathfrak{R}, hyperinvariant for $S(\theta) \mid$.

Proof. Set $\alpha^{\prime}\left(\mathfrak{Z}^{\prime}\right)=\mathfrak{M}^{\prime}$ and $\alpha^{\prime}(\mathfrak{Z})=\alpha(\mathfrak{Z})=\mathfrak{R}$. Theorem 3 implies that \mathfrak{Y} is hyperinvariant for $S(N) \mid \mathfrak{R}$. Let $N=N_{2} N_{1}$ be the factorization of N corresponding to \mathfrak{M}. Then $\left(N_{2} \mid \mathfrak{G}\left(N_{1}\right)\right)^{-1} \mathfrak{Y}$ is a subspace of $\mathfrak{g}\left(N_{1}\right)$, hyperinvariant for $S\left(N_{1}\right)$. Since N_{1} is a $k \times m(k=n$ or $k=m)$ normal inner matrix over H^{∞}, by Theorem 1 there is an $l \times m$ normal inner matrix N_{1}^{\prime} and an $k \times l$ normal inner matrix N_{2}^{\prime} such that

$$
N_{1}=N_{2}^{\prime} N_{1}^{\prime} \quad \text { and } \quad\left(N_{2} \mid \mathfrak{S}\left(N_{1}\right)\right)^{-1} \mathfrak{M ^ { \prime }}=N_{2}^{\prime}\left\{H_{l}^{2} \ominus N_{1}^{\prime} H_{m}^{2}\right\},
$$

where $n \geqq k \geqq l \geqq m$, and $l=m$ or $l=n$. It is easy to show that $N_{2} N_{2}^{\prime}$ and N_{1}^{\prime} satisfy the condition (i) or the condition (ii) of Theorem 1; this implies that

$$
\mathfrak{Y}^{\prime}=N_{2} N_{2}^{\prime}\left\{H_{\rho}^{2} \ominus N_{1}^{\prime} H_{m}^{2}\right\}
$$

is hyperinvariant for $S(N)$. Thus

$$
\beta\left(\mathfrak{M}^{\prime}\right)=\beta^{\prime}\left(\mathfrak{Y}^{\prime}\right)=\beta^{\prime}\left(\alpha^{\prime}\left(\mathfrak{Z}^{\prime}\right)\right)=\mathfrak{Z}^{\prime}
$$

is hyperinvariant for $S(\theta)$. Thus we conclude the proof.
Now, we determine a particular hyperinvariant subspace \AA_{*} for $S(\theta)$ by the following relation:

$$
\mathfrak{R}_{*}=\left\{h \in \mathfrak{G}(\theta): S(\theta)^{n} h \longrightarrow 0 \text { as } n \longrightarrow \infty\right\} \text { ([7] P. 73). }
$$

Then, from $\alpha\left(\mathfrak{Z}_{*}\right) \subseteq \mathfrak{G}(M)$ and $\beta(\mathfrak{G}(M)) \subseteq \mathfrak{R}^{*}$, it follows that $\alpha\left(\mathfrak{R}_{*}\right)=\mathfrak{G}(M)$.
Theorem 5. Let \& be a subspace hyperinvariant for $S(\theta)$. In order that if \mathfrak{R}^{\prime} is a subspace of \mathfrak{R}, hyperinvariant for $S(\theta)$, then \mathfrak{Z}^{\prime} is hyperinvariant for $S(\theta) \mid \mathfrak{R}$, it is necessary and sufficient that there is a function ϕ in H^{∞} such that

$$
\mathfrak{Z}=\overline{\phi(S(\theta)) \mathfrak{K}(\theta)} \text { or } \quad \mathfrak{Z}=\overline{\phi(S(\theta)) \mathfrak{K}(\theta) \cap \mathfrak{Z}_{*} .}
$$

Proof. Sufficiency. Case a : suppose $\mathcal{R}=\bar{\phi}(S(\theta)) \mathfrak{g}(\theta)$ and hence $\alpha(\mathfrak{Z})=\overline{\phi(S(N))} \mathfrak{\mathcal { E } (N)}$. Let $N=N_{2} N_{1}$ be the factorization corresponding to $\alpha(\mathfrak{Z})$. Then $N_{2}=\operatorname{diag}\left(\phi_{1}, \cdots, \phi_{m}, \phi, \cdots, \phi\right)$, where $\phi_{i}=\phi \wedge \phi_{i}$ for $i=1,2, \cdots, m$. Set $\phi=\phi_{i} u_{i}$ and $\psi_{i}=\phi_{i} v_{i}$ for $i=1,2, \cdots, m$. Then it follows that for $i=$
$1,2, \cdots, m-1$,

$$
\phi_{i+1}=\phi \wedge \phi_{i+1}=\phi_{i} u_{i} \wedge \phi_{i} v_{i} \frac{\psi_{i+1}}{\psi_{i}}=\phi_{i}\left(u_{i} \wedge v_{i} \frac{\phi_{i+1}}{\phi_{i}}\right)
$$

Since $u_{i} \wedge v_{i}=1$, this implies that

$$
\begin{equation*}
\frac{\phi_{i+1}}{\phi_{i}} \wedge v_{i}=1 \tag{18}
\end{equation*}
$$

Let \mathfrak{Z}^{\prime} be a subspace of \mathfrak{Z}, hyperinvariant for $S(\theta)$. Then there is the factorization $N_{1}=N_{2}^{\prime} N_{1}^{\prime}$, where N_{1}^{\prime} is a $k \times m$ inner matrix and N_{2}^{\prime} is an $n \times k$ inner matrix, such that $\alpha\left(\mathbb{Z}^{\prime}\right)=N_{2} N_{2}^{\prime}\left\{H_{k}^{2} \Theta N_{1}^{\prime} H_{n}^{2}\right\}$ (see [7] P. 291). The hyperinvariance of $\alpha\left(\mathbb{Z}^{\prime}\right)$ implies that $N_{2} N_{2}^{\prime}$ and N_{1}^{\prime} are normal inner matrices satisfying (i) or (ii) of Theorem 1. First, assume (i). Then N_{1}^{\prime} is an $m \times m$ normal inner matrix and hence N_{2}^{\prime} is an $n \times m$ inner matrix. From the normalities of $N_{2} N_{2}^{\prime}$ and N_{2}, we can deduce that N_{2}^{\prime} has the form $\left[\begin{array}{c}M^{\prime} \\ 0\end{array}\right]$, where $M^{\prime}=\operatorname{diag}\left(t_{1}, t_{2}, \cdots, t_{m}\right)$. Since $\phi_{i} t_{i}$ is a divisor of ϕ_{i}, it follows that t_{i} is a divisor of v_{i} and, by (18), $\frac{\phi_{i+1}}{\phi_{i}} \wedge t_{i}=1$. Then normality of $N_{2} N_{2}^{\prime}$ implies that there is an inner function w_{i} such that $w_{i}=\frac{\phi_{i+1} t_{i+1}}{\phi_{i} t_{i}}$. From $t_{i} w_{i}=\frac{\phi_{i+1}}{\phi_{i}}$ t_{i+1}, it follows that t_{i} is a divisor of t_{i+1}. Thus N_{2}^{\prime} is normal. Hence N_{2}^{-1} $\alpha\left(\mathbb{Z}^{\prime}\right)=N_{2}^{\prime}\left\{H_{m}^{2} \ominus N_{1}^{\prime} H_{m}^{2}\right\}$ is hyperinvariant for $S\left(N_{1}\right)$. Therefore $\alpha\left(\mathbb{Z}^{\prime}\right)$ is hyperinvariant for $S(N) \mid \alpha(\mathfrak{Z})$. Consequently $\beta^{\prime}\left(\alpha\left(\mathfrak{Z}^{\prime}\right)\right)=\beta\left(\alpha\left(\mathfrak{Z}^{\prime}\right)\right)=\mathfrak{Z}^{\prime}$ is hyperinvariant for $S(\theta) \mid \mathcal{R}$. Next assume that $N_{2} N_{2}^{\prime}$ and N_{1}^{\prime} satisfy (ii). Then we have $N_{2}^{\prime}=\operatorname{diag}\left(t_{1}, \cdots, t_{m}, t, \cdots, t\right)$, for inner functions $t_{1}, t_{2}, \cdots, t_{m}$ and t. It is proved as above that t_{i} is a divisor of t_{i+1} for $i=1,2, \cdots, m-1$. Since ϕ_{m} t_{m} is a divisor of $\phi t, t_{m}$ is a divisor of $u_{m} t$. On the other hand since t_{m} is a divisor of v_{m} and $v_{m} \wedge u_{m}=1, t_{m}$ is a divisor of t. Thus it follows that N_{2}^{\prime} is normal. Consequently in the same way as above we can deduce that \mathfrak{Z}^{\prime} is hyperinvariant for $S(\theta) \mid \mathfrak{Z}$.

Case b : suppose $\mathfrak{Z}=\overline{\phi(S(\theta)) \mathfrak{S}(\theta)} \cap \mathfrak{Z}_{*}$. Then by Corollary 1 and $\alpha\left(\mathfrak{Z}_{*}\right)$ $=\mathfrak{F}(M)$ we have

$$
\alpha(\mathfrak{Z})=\overline{\phi(S(N)) \mathfrak{S}(N)} \cap \mathfrak{K}(M)=\overline{\phi(S(M)) \mathfrak{K}(M)},
$$

because α is a lattice isomorphism. Let $N=N_{2} N_{1}$ be the factorization corresponding to $\alpha(\mathbb{Z})$. Then it follows that

$$
N_{2}=\left[\begin{array}{c}
M_{2} \\
0
\end{array}\right] \quad \text { with } \quad M_{2}=\operatorname{diag}\left(\phi_{1}, \phi_{2}, \cdots, \phi_{m}\right),
$$

where $\phi_{i}=\phi \wedge \psi_{i}$ for $i=1,2, \cdots, m$. Let \mathfrak{L}^{\prime} be a subspace of \mathbb{R}, hyperinvariant for $S(\theta)$, and $N_{1}=N_{2}^{\prime} N_{1}^{\prime}$ be the factorization of N_{1} such that $N=$
$\left(N_{2} N_{2}^{\prime}\right) N_{1}^{\prime}$ is the factorization of N corresponding to $\alpha^{\prime}\left(\mathbb{Z}^{\prime}\right)=\alpha\left(\mathbb{Z}^{\prime}\right)$. The hyperinvariance of $\alpha\left(\mathfrak{L}^{\prime}\right)$ for $S(N)$ implies that $N_{2} N_{2}^{\prime}$ and N_{1}^{\prime} are normal inner matrices satidfying (i). In the same way as Case a it follows that N_{2}^{\prime} is an $m \times m$ normal inner matrix. Therefore it is simple to show that \mathfrak{Z}^{\prime} is hyperinvariant for $S(\theta) \mid \mathbb{R}$.

Necessity. Let \mathbb{Z} be the hyperinvariant subspace for $S(\theta)$ such that \mathfrak{Z}^{\prime} is hyperinvariant for $S(\theta) \mid \mathcal{Z}$, if \mathfrak{Z}^{\prime} is a subspace of \mathfrak{R}, hyperinvariant for $S(\theta)$. Then, for every subspace \mathfrak{N}^{\prime} of $\alpha(\mathfrak{R})$ such that \mathfrak{K}^{\prime} is hyperinvariant for $S(N)$, it follows from Theorem 3 that $\beta\left(\mathfrak{N}^{\prime}\right)=\beta^{\prime}\left(\Re^{\prime}\right)$ is hyperinvariant for $S(\theta) \mid \mathfrak{Q}$. Hence, by Theorem 3, $\mathfrak{K}^{\prime}=\alpha^{\prime}\left(\beta^{\prime}\left(\mathfrak{K}^{\prime}\right)\right)$ is hyperinvariant for S $(N) \mid \alpha(\mathbb{Z})$. Let $N=N_{2} N_{1}$ be the factorization corresponding to $\alpha(\mathbb{Z})$. Then N_{2} and N_{1} are normal inner matrices.

Case a^{\prime} : assume that N_{1} and N_{2} have the form :
$N_{1}=\operatorname{diag}\left(\xi_{1}, \xi_{2}, \cdots, \xi_{m}\right) \quad$ and
$N_{2}=\left[\begin{array}{c}M_{2} \\ 0\end{array}\right] \quad$ with $\quad M_{2}=\operatorname{diag}\left(\eta_{1}, \eta_{2}, \cdots, \eta_{m}\right)$.
Then it follows that η_{i} and ξ_{i} satisfy (18), that is $\frac{\eta_{i+1}}{\eta_{i}}$ and ξ_{i} are relatively prime. In fact, if it were not true, then we have

$$
\omega \equiv \frac{\eta_{i+1}}{\eta_{i}} \wedge \frac{\xi_{j}}{\xi_{j-1}} \neq 1 \quad \text { for some } \quad j: 1 \leqq j \leqq i, \xi_{0}=1
$$

Set

$$
\begin{aligned}
& M_{2}^{\prime}=\operatorname{diag}\left(\eta_{1}, \cdots, \eta_{j-1}, \eta_{j} \omega, \eta_{j+1} \omega, \cdots, \eta_{i} \omega, \eta_{i+1}, \cdots, \eta_{m}\right) \\
& N_{1}^{\prime}=\operatorname{dag}\left(\xi_{1}, \cdots, \xi_{j-1}, \frac{\xi_{j}}{\omega}, \frac{\xi_{j+1}}{\omega}, \cdots, \frac{\xi_{i}}{\omega}, \xi_{i+1}, \cdots, \xi_{m}\right)
\end{aligned}
$$

and $N_{2}^{\prime}=\left[\begin{array}{c}M_{2}^{\prime} \\ 0\end{array}\right]$. It is clear that $\mathfrak{Y}^{\prime} \equiv N_{2}^{\prime}\left\{H_{m}^{2} \ominus N_{1}^{\prime} H_{m}^{2}\right\}$ is a subspace of $\alpha(\mathbb{Z})$. Since N_{1}^{\prime} and N_{2}^{\prime} are normal inner matrices, by Lemma 1 is hyperinvariant for $S(N)$. However,

$$
\left(N_{2} \mid \mathfrak{S}\left(N_{1}\right)\right)^{-1} N_{2}^{\prime} \mathfrak{S}\left(N_{1}^{\prime}\right)=\operatorname{diag}(1, \cdots, 1, \omega, \cdots, \omega, 1, \cdots 1) \mathfrak{K}\left(N_{1}^{\prime}\right)
$$

implies that \mathfrak{R}^{\prime} is not hyperinvariant for $S(N) \mid \alpha(\mathbb{R})$. Thus we have $\frac{\eta_{i+1}}{\eta_{i}}<$ $\xi_{i}=1$. Since ξ_{i} is a divisor of ξ_{i+1}, it follows that

$$
\eta_{m} \wedge \psi_{i}=\eta_{m} \wedge\left(\eta_{i} \xi_{i}\right)=\eta_{i}\left(\frac{\eta_{m}}{\eta_{i}} \wedge \xi_{i}\right)=\eta_{i}
$$

Thus we have

$$
\alpha(\mathfrak{Z})=\overline{\eta_{m}(S(M)) \mathfrak{G}(M)}=\overline{\eta_{m}(S(N)) \mathfrak{S}(N)} \cap \mathfrak{S}(M) .
$$

Consequently $\mathfrak{Z}=\overline{\eta_{m}(S(\theta)) \mathscr{S}(\theta)} \cap \mathfrak{Z}_{*}$.

Case b^{\prime} : assume that N_{1} and N_{2} are normal inner matrices satisfying (ii). In this case, we can show

$$
\mathfrak{Z}=\overline{\phi(S(\theta)) \mathfrak{g}(\theta)} \text { for some } \phi \text { in } H^{\infty}
$$

in the same way as Case a^{\prime}. Thus we complete the proof of Theorem 5,

References

[1] R. G. Douglas: On the hyperinvariant subspaces for isometries, Math. Z., 107 (1968), 297-300.
[2] R. G. Douglas and C. Pearcy: On a topology for invariant subspaces, J. Func. Anal., 2 (1968), 323-341.
[3] P. A. FUHRMANN: On the Corona Theorem and its application to spectral problems in Hilbert space, Trans. Amer. Math. Soc., 132 (1968), 55-66.
[4] E. A. Nordgren : On quasi-equivalence of matrices over H^{∞}, Acta Sci. Math., 34 (1973), 301-310.
[5] D. SARASON: Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc., 127 (1967), 179-203.
[6] B. Sz.-NAGY and C. FoIAȘ: Jordan model for contractions of class C.0, Acta Sci. Math. 36 (1974), 305-322.
[7] B. Sz.-NAGY and C. FoIAş: Harmonic analysis of operators on Hilbert space, North-Holland, Akadémiai Kiadó, 1970.
[8] M. UchiYama: Hyperinvariant subspaces for operators of class $C_{0}(N)$, Acta Sci. Math., to appear.
M. Uchiyama

Division of Applied Mathematics
Research Institute of Applied Electricity Hokkaido University

Sapporo, Japan
M. Uchiyama

The Department of Education Fukuoka University of Education Fukuoka, Japan

