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Codominant dimensions and Morita equivalences
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Introduction

Let {}_{R}P be a projective left R-module with endomorphism ring S. Let
A be a left R-module. We say that P-codominant dimension of A is\geqq n ,
denoted by P-codom. dim. A\geqq n, if there exists an exact sequence:

X_{n}arrow X_{n-1}arrow\cdotsarrow X_{2}arrow X_{1}arrow Aarrow 0

where X_{i}’s are isomorphic to direct sums of P’s .
It is clear that P-codom. dim. A\geqq 1 iff P generates A. It is also equiv-

alent with the condition TA=A, where T is the trace ideal of RP. In
this paper it is shown that P-codom. dim. A\geqq 2 iff P \bigotimes_{S}Hom_{R}(P, A) and

A are canonically isomorphic. Another some equivalent conditions for this
are also obtained in \S 2. On the other hand, let sB be a left S-module.
Then it is shown that B and Hom_{R}(P, P\bigotimes_{S}B) are canonically isomorphic

iff Hom_{R}(P, Q)- dom . dim. B\geqq 2 , where RQ is an injective cogenerator in
R\mathfrak{M} . Thus we see that the categories \mathscr{C}_{1}= { X\in_{R}\mathfrak{M}|P-codom. dim. X\geqq 2} and
\mathscr{C}_{2}=\{Y\in_{S}\mathfrak{M}|Hom_{R}(P, Q)- dom. dim. Y\geqq 2\} are (canonically) equivalent. In
case where {}_{R}P is a progenerator in R\mathfrak{M} , we have \mathscr{C}_{1}=_{R}\mathfrak{M} and, since {}_{S}Hom_{R}

(P, Q) is an injective cogenerator in S\mathfrak{M}, \mathscr{C}_{2}g=_{S}\mathfrak{M} . Thus our result affords
a generalization of Morita equivalence. Another variations of an equivalence
of this type are also discussed in \S 1 and \S 4.

Since the trace ideal T of a projective module {}_{R}P is an idempotent
tw0-sided ideal of R, T induce a torsion theory (\mathscr{T}, \mathscr{F}) in the category of
left R-modules : *\Psi= {X\in_{R}\mathfrak{M}|TX=X, or equivalently, P-codom. dim. X\geqq 1},
\mathscr{F}=\{X’\in_{R}\mathfrak{M}|TX’=0\} . The condition under which (\mathscr{T}, \mathscr{F}) is hereditary,
that is, \mathscr{T} is closed under submodules were studied recently by some authors
([1], [6]). Here we add some other conditions for this in \S 3. Some of
them are the followings :

(1) The class { X\in_{R}\mathfrak{M}|P-codom. dim. X\geqq 1} coincides with the class
{ X’\in_{R}\mathfrak{M}|P-codom. dim. X’\geqq 2}.

(2) P \bigotimes_{S}Hom_{R}(P, X) and TX are canonically isomorphic for every left
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R-module X.
(3) The functor T:R\mathfrak{M}arrow_{R}\mathfrak{M} (the subfunctor of the identity functor

on R\mathfrak{M}) is exact.

Finally, in \S 5, we shall give some equivalent conditions under which
the class \{X\in_{R}\mathfrak{M}|TX=X\} is closed under submodules, direct products and
injective envelopes.

In what follows we assume that all rings have an identity element and
all modules are unital.

\S 1. Some generalizations of Morita equivalences

Let R, S be rings with an identity element. Let RA and RB be two
left R-modules. We say that A-codominant dimension of B is \geqq n , denoted
by A-codom. dim . B\geqq n , if there exists an exact sequence:

X_{n}arrow X_{n-1}arrow\cdotsarrow X_{1}arrow Barrow 0 ,

where X_{i}’s are isomorphic to direct sums of A’s . Dually we say that A-
dominant dimension of B is \geqq n^{1)} , denoted by A-dom. dim. B\geqq n , if there
exists an exact sequence :

0arrow Barrow Y_{1}arrow\cdotsarrow Y_{n-1}arrow Y_{n} ,

where Y_{f}’s are isomorphic to direct products of A’s . Dominant diemsion
was introduced by K. Morita and H. Tachikawa and studied by them and
some other authors.

In case RAS is a tw0-sided R-S-module, there is a canonical homomor-
phism \epsilon_{A,B} of A \bigotimes_{S}Hom_{R}(A, B) into RB defined by

\epsilon_{A,B}(a\otimes f)=f(a) , a\in A , f\in Hom_{R}(A, B) .

Let {}_{S}C be a left S-module. There is a canonical homomorphism \eta_{A,C} of {}_{S}C

into Hom_{R}(A, A\bigotimes_{S}C) defined by

\{\eta_{A,C}(c)\}(a)=a\otimes c, c\in C, a\in A .

As is easily verified we have the following

Lemma 1. It holds the following relations:
(1) Hom (1_{A}, \epsilon_{A,B})\eta_{A,Hom_{R}(A,B)}=1_{Hom_{R}(A,B)}

(2) \epsilon_{A,A\bigotimes_{S}C}(1_{A}\otimes\eta_{A,C})=1_{A\bigotimes_{S}C}

Lemma 2. \epsilon_{A,B} is an isomorphism iff A-codom. dim. B\geqq 2 and Hom

1) cf. [8].
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(1_{A}, \epsilon_{A,B}) is an isomorphism.
PROOF. Assume that \epsilon_{A,B} is an isomorphism. Then clearly Hom (1_{A},

\epsilon_{A,B}) is an isomorphism. Let \oplus Sarrow\oplus Sarrow Hom_{R}(A, B)arrow 0 be an exact se-
quence of left S-modules, where \oplus S’s are free left S-modules. Then, by
tensoring with A_{S} , we see that A-codom. dim. A \bigotimes_{S}Hom_{R}(A,

B_{/}^{\backslash }=A -codom.
dim. B\geqq 2 .

Assume, conversely, that A-codom. dim. B\geqq 2 and Hom (1_{A}, \epsilon_{A,B}) is an
isomorphism. Let \oplus Aarrow\oplus Aarrow Barrow 0 be an exact sequence of left R-modules.
Applying to this the functors Hom_{R} (^{B)}, and Hom_{R} ( , ^{A\bigotimes_{S}Hom_{R}}(A, B)) ,

we have the following commutative diagram with exact rows:

0-Hom_{R}(B, B)-Hom’(A, B)-Hom_{R}(A, B)
Hom ( 1_{B}, \epsilon_{A,B},1| \prod Hom (1_{A}, \epsilon_{A,B})|\wedge \prod Hom (1_{A}, \epsilon_{A,B})|

0arrow Hom_{R}(B, A \bigotimes_{S} arrow Hom_{R}(A, A \bigotimes_{S} arrow Hom_{R}(A, A \bigotimes_{S}

Hom_{R}(A, B)) Hom_{R}(A, B)) Hom_{R}(A, B)) .
Since \prod Hom (1_{A}, \epsilon_{A,B}) ’s are isomorphisms, so is Hom (1_{B}, \epsilon_{A,B}) . Let h\in

Hom_{R}(B, A\bigotimes_{S}Hom_{R}(A, B)) be such that \epsilon_{A,B}h=1_{B} . Then \epsilon_{A,B} is an epimor-

phism and A \bigotimes_{S}Hom_{R}(A, B)=h(B)\oplus Ker . \epsilon_{A,B} . It follows that Hom_{R}(A, A \bigotimes_{s}

Hom (A, B))=Hom_{R}(A, h(B))\oplus Hom_{R}(A, Ker. \epsilon_{A,B}) . Since Hom (1_{A}, \epsilon_{A,B}) is
an isomorphism and Hom (1_{A}, \epsilon_{A,B})\{Hom_{R}(A, Ker. \epsilon_{A,B})\}=0 , we have Hom_{R}

(A, Ker. \epsilon_{A,B})=0 . If follows that Ker . \epsilon_{A,B}=0 , because Ker. \epsilon_{A,B} is generated
by RA. Thus \epsilon_{A,B} is an isomorphism.

Let RQ be an injective cogenerator in R\mathfrak{M} . We denote the left S-module
Hom_{R}(A, Q) by A^{*} .

Lemma 3. \eta_{A,C} is an isomorphism iff A^{*}- dom . dim. C\geqq 2 and 1_{A}\otimes\eta_{A,C}

is an isomorphism.
PROOF. Suppose \eta_{A,C} is an isomorphism. Then clearly 1_{A}\otimes\eta_{A,C} is an

isomorphism. Let 0 arrow A\bigotimes_{S}Carrow\prod Qarrow\prod Q be an exact sequence of left R-

modules where \prod Q’ s are direct products of Q’s . Then, by applying functors
Hom_{R} (A, ) , we have the following exact sequence of left S-modules:

0– Hom_{R}(A, A\bigotimes_{s}C)arrow\prod A^{*-}\prod A^{*} ,

which means in turn that A^{*}- dom . dim. C\geqq 2 .
Suppose, conversely, A^{*}- dom . dim. C\geqq 2 and 1_{A}\otimes\eta_{A,C} is an isomor-

phism. At first we note that Hom (\eta_{A,C}, 1_{A^{*}}) is an isomorphism because it
is the composition of the following isomorphisms: Hom_{S}(Hom_{R}(A, A\bigotimes_{S}C) ,
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A^{*})^{\frac{can}{arrow}}

.
Hom_{R}(A\bigotimes_{S}Hom_{R}(A, A\bigotimes_{S}C),

Q) Hom_{R}(A\bigotimes_{S}C, Q)Hom\underline{\underline{(1_{A}\otimes^{\gamma/A}},}c

,1_{Q})\underline{\underline{can.}}

Hom_{S}(C, A^{*}) . Let Oarrow Carrow\prod A^{*}arrow\prod A^{*} be an exact sequence of left S-
modules. By applying to this the functors Hom_{S} (C, ) and Hom_{S}(Hom_{R}(A,

A \bigotimes_{S}C) , ) we have the following commutative diagram with exact rows:

0-Hom_{S}(C, C)-Hom_{S}(C, A^{*})-Hom_{S}(C, A^{*})

Hom (\eta_{A,C}, 1_{C})\uparrow \prod Hom (\eta_{A,C}, 1_{A^{*}})\uparrow \prod Hom (\eta_{A,C}, 1_{A}*)\uparrow

Hom_{S}(Hom_{R}(A, arrow\prod Hom_{S}(Hom_{R}(A, \prod Hom_{S}(Hom_{R}(A ,
0arrow

A \bigotimes_{S}C) , C) A \bigotimes_{S}C) , A^{*})arrow
A \bigotimes_{S}C) , A^{*})1

Since \prod Hom (\eta_{A,C}, 1_{A^{*}}) ’s are isomorphisms, so is Hom (\eta_{A,C}, 1_{C}) . Let h\in Hom_{S}

( Hom_{R}(A, A\bigotimes_{S}C) , C) be such that h\eta_{A,C}=1_{C} . Then \eta_{A,C} is a monomor-
phism and we have Hom_{R}(A, A\bigotimes_{S}C)=\eta_{A,C}(C)\oplus Ker . h . It follows that

Hom_{S} ( Hom_{R}(A, A\bigotimes_{S}C) , A^{*})=Hom_{S}(\eta_{A,C}(C), A^{*})\oplus Hom_{S}(Ker. h, A^{*}) . Since

Hom (\eta_{A,C}, 1_{A^{*}}) is an isomorphism and Hom (\eta_{A,C}, 1_{A^{*}})\{Hom_{S}(Ker. h, A^{*})\}=0 ,
Hom_{S}(Ker. h, A^{*})=0 . This implies that Ker . h=0 because Ker. h is c0-

generated by A^{*} . Thus \eta_{A,C} is an epimorphism, whence an isomorphism.

From Lemma 2 and Lemma 3 we have the following

THEOREM 1. Let RA_{s} be a twO-sided R-S-module. Then there is a
category isomorphism between the class \mathscr{C}=\{X\in_{R}\mathfrak{M}|A -codom. dim. X\geqq 2

and Hom (1_{A}, \epsilon_{A,X}) is an isomorphism) and the class \mathscr{D}=\{Y\in_{S}\mathfrak{M}|A^{*}- dom .
dim. Y\geqq 2 and 1_{A}\otimes\eta_{A,Y} is an isomorphism) which is induced from the
equivalent functors :

F : \mathscr{C}\exists Xarrow F(X)=Hom_{R}(A, X)\in \mathscr{D}

G : \mathscr{D}\ni Yarrow G(Y)=A\bigotimes_{S}Y\in \mathscr{C}

Lemma 4. Let RA be a left R-module with the endomorphism ring
S. Let T be the trace ideal of RA : T= \sum_{g\in Hom_{R}(A,R)}g(A) . Then TKer. \epsilon_{A,X}

=0 for every X\in_{R}\mathfrak{M} .
PROOF. Let \sum_{i}a_{i}\otimes f_{i}\in A\bigotimes_{S}Hom_{R}(A, X) be in Ker . \epsilon_{A,X} . Then for

every g\in Hom_{R}(A, R) and for every a\in A , we have g(a) \sum_{i}a_{i}\otimes f_{i}=\sum_{i}

a[g, a_{i}] \otimes f_{i}=a\otimes\sum_{i}[g, a_{i}].f_{i}=0 , where [g, a_{i}] ’s denote the endomorphisms of

RA defined by x[g, a_{i}]=g(x)a_{i} , x\in A . Thus we have TKer. \epsilon_{A,X}=0 , as
asserted.

COROLLARY. If TA=A, then Ker. \epsilon_{A,X} is small in A \bigotimes_{S}Hom_{R}(A, X)
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for every X\in_{R}\mathfrak{M} .
PROOF. Let Ker . \epsilon_{A,X}+\mathfrak{u}=A\bigotimes_{S}Hom_{R}(A, X) , where \mathfrak{u} is a submodule

of AC\cross Hom_{R}S(A, X) . Then we have \mathfrak{u}\supseteq T\mathfrak{u}=TKer . \epsilon_{A,X}+T\mathfrak{u}=A\bigotimes_{S}Hom_{R}

(A, X) . It follows that \mathfrak{u}=A\bigotimes_{S}Hom_{R}(A, X) . This proves the corollary.

THEOREM 2. Let RA be a left R-module with the endomorphism ring
S, such that TA=A. Then the class \mathscr{C}= { X\in_{R}\mathfrak{M}|A -codom. dim. X\geqq 2}
and the class \mathscr{D}=\{Y\in_{S}\mathfrak{M}|A^{*}- dom. dim. Y\geqq 2\} are category equivalent in
the way described in Theorem 1.

PROOF. By Theorem 1, it suffices to show that Hom (1_{A}, \epsilon_{A,X}) and 1_{A}

\otimes\eta_{A,Y} are isomorphisms for every X\in_{R}\mathfrak{M} and for every Y\in_{S}\mathfrak{M} . By Lem-
ma 1, Hom (1_{A}, \epsilon_{A,X}) is an epimorphism. Let \varphi\in Hom_{R}(A, A \bigotimes_{S}Hom_{R}(A ,

X)) be in Ker . Hom (1_{A}, \epsilon_{A,X}) . Then \varphi(A)\subseteq Ker . \epsilon_{A,X} , and, from which we
have \varphi(A)=T\varphi(A)\subseteq TKer . \epsilon_{A,X}=0 . It follows that \varphi=0 . Thus Hom
(1_{A}, \epsilon_{A,X}) is a monomorphism, whence an isomorphism. Next, by Lemma 1,
\epsilon_{A,A\bigotimes_{S}Y}

is an epimorphism. Since TA=A, and Ker .
\epsilon_{A,A\bigotimes_{S}Y}

is a direct sum-

mand of A \bigotimes_{S}Hom_{R}(A, A\bigotimes_{S}Y) we have 0=TKer. \epsilon_{A,A\bigotimes_{S}Y}=Ker .
\epsilon_{A,A\bigotimes_{S}Y}

. Thus

\epsilon_{A,A\bigotimes_{S}Y}
, or equivalency, 1_{A}\otimes\eta_{A,Y} is an isomorphism. This proves the theorem.

REMARK. The condition TA=A holds, for example, when RA is a
projective module.

THEOREM 3. Let RA be a finitely generated quasi-projective module
with the endomorphism ring S. Then the class { X\in_{R}\mathfrak{M}|A -codom. dim. X
\geqq 2\} and S\mathfrak{M} are equivalent in the way described in Theorem 1.

PROOF. Let RX be a left R-module such that A-codom. dim. X\geqq 2 .
We want to show that \epsilon_{A,X} is an isomorphism. For this purpose, let \oplus A

arrow\oplus Aarrow Xarrow 0 be an exact sequence of left R-modules. Applying to this
Hom_{R} (A, ) we have the following exact sequence of left S-modules: \oplus Sarrow

\oplus Sarrow Hom_{R}(A, X)arrow 0 , because RA is finitely generated and quasiprojetive.
Then, by applying to this A \bigotimes_{S} -, we have the following commutative dia-

gram with exact rows :

\oplus Aarrow\oplus Aarrow Xarrow 0

\alpha\uparrow \beta|\epsilon_{A,X}|

\oplus Aarrow\oplus Aarrow A\bigotimes_{S}Hom_{R}(A, X)arrow 0 ,

where \alpha, \beta are the canonical isomorphisms. It follows that \epsilon_{A,X} is an is0-
morphism.
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Next, let sY be a left S-module and \oplus Sarrow\oplus Sarrow Yarrow 0 be an exact se-
quence of left S-modules. Then, as above, applying A \bigotimes_{s}

- and then Hom_{R}

(A, ) we see that \eta_{A,Y} is an isomorphism. Our theorem is thus proved.
COROLLARY 1. Let RA be as in Theorem 3 and RQ be an injective

cogenerator in R^{J}\mathfrak{M} . Then A^{*}=Hom_{R}(A, Q) is a cogenerator in S\mathfrak{M} .
PROOF. By Theorem 1 and Theorem 3, A^{*}- dom . dim. Y\geqq 2 for every

Y\in_{S}\mathfrak{M} . But this implies that A^{*} is a cogenerator in s\mathfrak{M} .
COROLLARY 2. For a left R-modules X, A-codom. dim. X\geqq 2 iff \epsilon_{A,X}

is an isomorphism.
PROOF. This follows also directly from Theorem 1 and Theorem 3.
COROLLARY 3 (K. Morita). Let RA be a progenerator ( =finitely gen-

erated projective and generator) with the endomorphism ring S. Then R\mathfrak{M}

and s\mathfrak{M} are category equivalent in the way described in Theorem 1.

\S 2. Modules whose codominant dimensions are \geqq 2

Let {}_{R}P be a projective module with the endomorphism ring S. Let
T be the trace ideal of {}_{R}P. For a left R-module X, it is clear that P-
codom. dim. X\geqq 1 , that is, X generated by P iff TX=X.

THEOREM 4. For a left R-module X, the following statements are
equivalent:

(1) P-codom. dim. X\geqq 2

(2) TX=X, and, for every left R-module Y such that TY=Y and
for every epimorphism f of Y onto X, TKer.f=Ker.f

(3) For every exact sequence 0arrow Aarrow Barrow Carrow 0g of left R-modules such
that TA=0 and for every homomorphism h of X into C, there
exists a unique homomorphism j of X into B such that gj=h,
or equivalently, Hom (1_{X}, g) : Hom_{R}(X, B)arrow Hom_{R}(X, C) is an
isomorphism

(4) \epsilon_{P,X} : P \bigotimes_{S}Hom_{R}(P, X)arrow X is an isomorphism

PROOF. (1)\Rightarrow(2) . Let P-codom. dim. X\geqq 2 . Then clearly TX=X.
Let \oplus Parrow\oplus Parrow Xarrow 0 be an exact sequence. Combining this with the exact

sequence 0 arrow\frac{Ker.f}{TKer.f}arrow\frac{Y}{TKer.f}arrow\frac{Ker.f}{Y}arrow 0i\nu , where i and \nu denote the

natural injection and epimorphism, respectively, we have the following com-
mutative diagram with exact rows and columns:
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0 arrow\prod Hom_{R}(P, \frac{Ker.f}{TKer.f})arrow\prod Hom_{R}(P, \frac{Y}{TKer.f})arrow\prod Hom_{R}(P, \frac{Y}{Ker.f})arrow 0

0 arrow\prod Hom_{R}(P\uparrow\uparrow, \frac{Ker.f}{TKer.f})arrow\prod Hom_{R}(P\uparrow|, \frac{Y}{TKer.f})arrow\prod Hom_{R}(PHom(1x, \nu)\uparrow|
’

\frac{Y}{Ker.f})arrow 0

0 arrow Hom_{R}(X,\frac{Ker.f}{TKer.f})arrow Hom_{R}(X,\frac{Y}{TKer.f})arrow Hom_{R}(X, \frac{Y}{Ker.f})

0\uparrow 0\uparrow 0|

Since TP=P and TX=X we have Hom_{R} (P, \frac{Ker.f}{TKer.f})=Hom_{R}(X, \frac{Ker.f}{TKer.f})

=0. It follows that Hom (1_{X}, \nu) : Hom_{R}(X, \frac{Y}{TKer.f})arrow Hom_{R}(X,\frac{Y}{Ker.f}) is

an isomorphism. Let \overline{f} be the induced isomorphism of \frac{Y}{Ker.f} to X and let

g\in Hom_{R} (X, \frac{Y}{TKer.f}) be such that \nu\cdot g=.\overline{f^{-1}.} . Then we have \frac{Y}{TKer.f}=

g(X) \oplus\frac{Ker.f}{TKer.f} . But since TY=Y this implies that Ker- f=TKer_{-} f.

(2)\Rightarrow(1) . Assume (2). Then since TX=X there exists an epimorphism

f of \oplus P onto X, and, again by assumption, the kernel of f is generated
by P. Thus there exists an exact sequence \oplus Parrow\oplus Parrow Xarrow 0 , that is P-
codom. dim. X\geqq 2 .

(1)\Rightarrow(3) . Assume (1) and let 0arrow Aarrow Barrow Carrow 0g be an exact sequence
such that TA=0, or equivalently, Hom_{R}(P, A)=0 . Then, just as in the
proof for (1)\Rightarrow(2) , we see that Hom (1_{X}, g):Hom_{R}(X, B)arrow Hom_{R}(X, C) is an
isomorphism. Thus (3) holds.

(3)\Rightarrow(1) . Assume (3). Then from the trivial exact sequence 0 arrow\frac{X}{TX}

arrow\frac{X}{TX}arrow 0arrow 0 , we have that Hom (1_{X}, 0) : Hom_{R}(X, \frac{X}{TX})arrow Hom_{R}(X, 0) (=0)

is an isomorphism. It follows that X=TX. Let f:\oplus Parrow X be an epimor-

phism and let 0 arrow\frac{Ker.f}{TKer.f}arrow\frac{\oplus P}{TKer.f}arrow\frac{\oplus P}{Ker.f}arrow 0\iota\nu be the canonical exact

sequence. Let h be an isomorphism of X onto \frac{\oplus P}{Ker.f} . Then, by assump-

tion, there is a homomorphism g of X into \frac{\oplus P}{TKer.f} such that \nu g=h . It
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follows that \frac{\oplus P}{TKer.f}=g(X)\oplus\frac{Ker.f}{TKer.f} , and, from which we have Ker.

f=TKer.f because TP=P. Thus we see that P-codom. dim. X\geqq 2 .
(1)\Leftrightarrow(4) . This follows directly from Theorem 1 and Theorem 2.

COROLLARY. If X has a projective cover P_{0}arrow Xarrow 0\epsilon , then P-codom.
dim. X\geqq 2 iff TX=X and TKer. \epsilon=Ker . \epsilon .

PROOF. Assume that TX=X and TKer. \epsilon=Ker . \epsilon . Let \oplus P>Xarrow 0\underline{f}

be an exact sequence. Then there is a homomorphism g:\oplus Parrow P_{0} such that
\epsilon g=f. Since Ker . \epsilon is small in P_{0} , it follows that g is an epimorphism and,
since P_{0} is projective, there is a monomorphism h:P_{0}arrow\oplus P such that gh=
1_{P_{0}} . Thus we have \oplus P=h(P_{0})\oplus Ker . g . Since, as is easily verified, Ker. g

\subseteq Ker.f and h(Ker. \epsilon)=h(P_{0})\subset Ker.f, h(P_{0})^{f_{\underline{h(P_{0}})}}X-0 is also a projective
cover for X. Now we have TKer.f=T((h(P_{0})\cap Ker.f)\oplus Ker. g)=T(h\{Ker .
\epsilon)\oplus Ker . q) =h(Ker. \epsilon)\oplus Ker . Ker./. It follows that P-codom. dim. X\geqq 2 .
The converse part of the proof follows direct from Theorem 4.

\S 3. On projective self-generators

A module is called self-generator if it generates all its subm0dules2).
Let {}_{R}P be a projective left R module with the trace ideal T. Since

T is an idempotent tw0-sided ideal of R, it induces the torsion theory (\mathscr{T}’ ,
\mathscr{F}\sim) , where \mathscr{T}=\{X\in_{R}\mathfrak{M}|TX=X\} and c\mathscr{F}=\{Y\in_{R}\mathfrak{M}|TY=0\} . Further, let
S be the endomorphism ring of {}_{R}P. Following characterizations for {}_{R}P to
be a self-generator are due to [1], [2], [6].

THEOREM 5. For a projective module {}_{R}P the following statements
are equivalent :

(1) {}_{R}P is a self-generator
(2) The class { X\in_{R}\mathfrak{M}|P-codom. dim. X\geqq 1} is closed under submO-

dules, that is, the torsion theorey (_{-}.K, \swarrow^{_{r}}) is hereditary

(3) The right R module ( \frac{R}{T})_{R} is f or

(4) Tp\ni p for every element p\in P

(4)’ Ann_{R}(p)+T=R for every element p\in P, where Ann_{R}(p)=\{r\in

R|rp=0^{1}, , the annihilator left ideal of p in R.
(4)” \cap Ann_{R}n(p_{i})+T=R for every finite set of elements p_{1} , p_{2}, \cdots,p_{n}

i=1
\in P.

2) Cf. [10].



Codominant dimensions and Morita equivalences 177

In this section we shall add some other characterizations of projective
self-generators.

THEOREM 5 (continued). The following statements are equivalent to
the statements (1)\sim(4)’ in the theorem above:

(5) The class { X\in_{R}\mathfrak{M}|P-codom. dim. X\geqq 1 } coincides with the class
{ Y\in_{R}\mathfrak{M}|P-codom. dim. Y\geqq 2}.

(6) \epsilon_{P,X} : P \bigotimes_{S}Hom_{R}(P, X)arrow TX is an isomorphism for every X\in_{R}\mathfrak{M} .

(7) Hom_{R}(P, \frac{\mathfrak{v}}{\mathfrak{u}})\neq 0 for every submodules \mathfrak{v} , \mathfrak{u} of P such that 0\subseteq \mathfrak{u}

<\subset \mathfrak{v}\subseteq P.
(8) TE(\mathfrak{m})=0 for every simple left R-module nt such that T\mathfrak{m}=0 .

Here E(\mathfrak{m}) denotes, as usual, the injective envelope of \mathfrak{m} .
(9) Every homomorphic image of P is Q-torsionless, where Q=E(\oplus

\mathfrak{m}_{\alpha}) , \mathfrak{m}_{\alpha} ranging over all (non-isomorphic) simple left R-modules
such that T\mathfrak{m}_{\alpha}=\mathfrak{m}_{\alpha} .

(10) Every left R-module X such that TX=X is Q-torsionless.
(11) The functor T : R\mathfrak{M}\ni Xarrow TX\in_{R}\mathfrak{R}l, Tf=f_{TX} {the restriction of f

to TX), where X, Y\in_{R}\mathfrak{M}, .f\in Hom_{R}(X, Y) , is exact^{3)}.
PROOF. (2)\Rightarrow(5) . Assume (2) and let X be a left R-module such that

P-codom. dim. X\geqq 1 . Then, since every submodule of a direct sum of P’s
is generated by P, we see that P-codom. dim. X\geqq 2 . Thus (5) holds.

(5)\Rightarrow(1) . Assume (5) and let \mathfrak{u} be a submodule of P. Then, by as-

sumption, P-codom. dim. \frac{P}{\mathfrak{u}}\geqq 2 . Consider the following exact sequence:

0 arrow\frac{\mathfrak{u}}{T\mathfrak{u}}arrow\frac{P}{T\mathfrak{u}}arrow\frac{P}{\mathfrak{u}}arrow 0\iota\nu .

where \iota and \nu are the canonical injection and epimorphism, respectively.

Then, by Theorem 4, there is a homomorphism f\in Hom_{R} ( \frac{P}{\mathfrak{u}} , \frac{P}{T\mathfrak{u}}) such

that \nu f=1_{\frac{P}{u}} . It follows that \frac{P}{T\mathfrak{u}}=f(\frac{P}{\mathfrak{u}})\oplus\frac{\mathfrak{u}}{T\mathfrak{u}} , and from which we can

easily deduce \frac{\mathfrak{u}}{T\mathfrak{u}}=0 , that is \mathfrak{u}=T\mathfrak{u} . Thus P is a self-generator.
(5)\Rightarrow(6) . Assume (5) and let X be an arbitrary left R-module. Then,

since TX is generated by P, P-codom. dim. TX\geqq 2 . It follows that 0=Ker.
\epsilon_{P,TX}=Ker . \epsilon_{P,X} by Theorem 4. Thus (6) holds.

3) In Theorem 5, the equivalences (1)\Leftrightarrow(2)\Leftrightarrow(5) hold also for quasiprojective modules
(Cf. [2], Lemma 2.2).
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(6)\Rightarrow(-0) . This follows direct from the fact that P-codom. dim. P \bigotimes_{S}

Y\geqq 2 for every Y\in_{S}\mathfrak{M} .
(1)\Rightarrow(7) . Assume (1). Then, since P generates \mathfrak{v} , there exists a h0-

momorphism f\in Hom_{R}(P, \mathfrak{v}) such that f(P)\not\in \mathfrak{u} . Then \nu f is a non-zero h0-

momorphism of P into \frac{\mathfrak{v}}{\mathfrak{u}} , where \nu is the canonical epimorphism of onto

\frac{\mathfrak{v}}{\mathfrak{u}} . Thus Hom_{R} (P, \frac{\mathfrak{v}}{\mathfrak{u}})\neq 0 .
(7)\Rightarrow(1) . Assume (7). Suppose there is a submodule \mathfrak{v} of P such that

T\mathfrak{v}>\subset \mathfrak{v} . Then there exists a non-zero homomorphism f\in Hom_{R} (P, \frac{\mathfrak{v}}{Tb}).
But then we have f(P)=f(TP)=Tf(P)=0, a contradiction. It follows that
P is a self-generator.

(2)\Rightarrow(8) . Assume (2) and let nt be a simple left R-module such that
T\mathfrak{m}=0 . Suppose TE(\mathfrak{m})=0 . Then since TE(\mathfrak{m}) is generated by P and
contains \mathfrak{m} , nt is generated by P. It follows that T\mathfrak{m}=\mathfrak{m} , a contradiction.
Thus (8) holds.

(8)\Rightarrow(1) . Assume (8). Suppose there is a submodule \mathfrak{u} of P such that
T\mathfrak{u}_{\propto}\mathfrak{u}\subset . Let \mathfrak{u}’ , \mathfrak{u}’ be submodules of P such that T\mathfrak{u}\subseteq \mathfrak{u}’\overline{\overline{\propto}}\mathfrak{u}’\subseteq \mathfrak{u} and \frac{\mathfrak{u}’}{\mathfrak{u}’}

is simple. Then since T\mathfrak{u}’\subseteq T\mathfrak{u}\subseteq \mathfrak{u}’ we have T \frac{\mathfrak{u}’}{u}, =0. It follows that

TE( \frac{\mathfrak{u}’}{\mathfrak{u}’})=0 . On the other hand, since E( \frac{\mathfrak{u}’}{\mathfrak{u}},) is injective, the natural

epimorphism \nu(\neq 0):\mathfrak{u}’arrow\frac{\mathfrak{u}’}{\mathfrak{u}}, is extended to a homomorphism \tilde{\nu}:Parrow E(\frac{\mathfrak{u}’}{\mathfrak{u}’}) .
This is a contradiction. Thus P is a self-generator.

(1)\Rightarrow(9) . Assume that P is a seH-generator. Let \mathfrak{u} be a submodule of
P and p be an element of P such that p\not\in \mathfrak{u} . Let nt be a simple epimorphic

image of \frac{u+Rp}{\mathfrak{u}} . Then since T(\mathfrak{u}+Rp)=\mathfrak{u}+Rp we see that T\mathfrak{m}=\mathfrak{m} . It

follows that there exists a homomorphism f of \frac{P}{\mathfrak{u}} into Q such that f(p+\mathfrak{u})

\neq 0 . This implies that \frac{P}{\mathfrak{u}} is Q-torsionless.

(9)\Rightarrow(1) . Assume (9). Suppose there exists a submodule \mathfrak{u} of P such
that T\mathfrak{u}\neq \mathfrak{u} . Let x\in \mathfrak{u} be such that x\not\in T\mathfrak{u} . Then there is a homomorp-

hism f\in Hom_{R} (\frac{P}{T\mathfrak{u}} , Q) such that f(x+T\mathfrak{u})=0 . Since Rf(x+T\mathfrak{u}) con-

tains a simple submodule of Q, Tf(x+T\mathfrak{u})\neq 0 . On the other hand, we
have Tf(x+T\mathfrak{u})=0 because x\in \mathfrak{u} . This is a contradiction. Thus P is a
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seH-generator.
(9)\Rightarrow(10) . Assume (9) and let X be a left R-module such that TX=X.

Let x be a non-zero element of X and nt be a simple epimorphic image of
Rx. Then, by (2), we have T\mathfrak{m}=\mathfrak{m} . It follows that there exists a hom0-
morphism f of X to Q such that f(x)\neq 0 . Thus X is Q-torsionless.

(11)\Rightarrow (9). This is trivial.

f g
(6)\Rightarrow(11) . Assume (6) and let 0- Xarrow Yarrow Zarrow 0 be an exact sequence

of left R-modules. Then since {}_{R}P is projective and P_{S} is f1at^{4)} we have the
following commutative diagram with exact rows:

0arrow P\otimes Hom_{R}(P, X)P\otimes Hom_{R}P\underline{\otimes Hom(P},f)(P,Y)P\otimes Hom_{R}(P, Z)arrow 0P\otimes Hom(P,q)

\epsilon_{P,X}|TX Tf-TY\epsilon_{P,Y}| Tg-TZ\epsilon_{P,Z}|

,

where \epsilon_{P,X}, \epsilon_{P,Y} and \epsilon_{P,Z} are all isomorphism. It follows that the sequence:

0arrow TXarrow TYarrow TZarrow 0TfTg

is exact. Thus T is exact.
(11)\Rightarrow (1). Assume T is exact. Let \mathfrak{u} be a submodule of P and consider

the following canonical exact sequence:

0 arrow\frac{\mathfrak{u}}{7^{\tau}\mathfrak{u}}arrow\frac{P}{7’ \mathfrak{u}}arrow\frac{P}{\mathfrak{u}}arrow 0\iota\nu .

Then we have the exact sequence:

0 arrow 0arrow\frac{P}{T\mathfrak{u}}arrow\frac{P}{\mathfrak{u}}arrow 0T\nu .

But this implies that T\mathfrak{u}=\mathfrak{u} . It follows that P is a self-generator.
Thus we have completed all of our proofs.
If R is a commutative ring or regular ring, then every projective R-

module is necessarily a self-generat0r5).
A ring R is called left V-ring if every simple left R-module is injective,

or equivalently, if every left R-module has a zero (Jacobson-) radical. By
Corollary to Lemma 4 and Theorem 5 we have the following

PROPOSITION 1. Let R be a left V-ring. Then every projective left
R-module is a self-generator.

4) Cf. [2], Lemma 2.1.
5) Cf. [10], THEOREM 3.1.
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\S 4. Further variations of Morita equivalences

From Theorem 3 and Theorem 5 we can deduce direct the following

THEOREM 6 (K. Fuller).6) Let {}_{R}P be a finitely generated quasi-projective
self-generator with the endomorphism ring S, and let \mathscr{C} be the class \{X

\in_{R}\mathfrak{M}|P-codom. dim. X\geqq 1}. Then we have the following category is0-
morphism between \mathscr{C} and S\mathfrak{M} :

\mathscr{C}’ s\mathfrak{M}\underline{\underline{Hom}}_{\frac{R(P}{P\bigotimes_{S}-}}) .

An example (G. Azumaya): Let S be a ring and P_{S} be a projective
generator in \mathfrak{M}_{S} . Set R=End(P_{S}) . Then the left R-module {}_{R}P is finitely
generated projective and End (_{R}P)=S. Further {}_{R}P is a self-generat0r70. Thus
we have the category isomorphism between { X\in_{R}\mathfrak{M}|P-codom. dim. X\geqq 1}
and s\mathfrak{M} in the way described in Theorem 6.

Let {}_{R}P be a finitely generated projective left R-module with the end0-
morphism ring S. Let T be the trace ideal of {}_{R}P . Let further Q be the
injective envelope of \oplus \mathfrak{m}_{\alpha} , where \mathfrak{m}_{\alpha} ranges over the class of all (non-is0-
morphic) simple left R-modules such that T\mathfrak{m}_{\alpha}=\mathfrak{m}_{\alpha} . Then {}_{S}Hom_{R}(P, Q)

is an injective cogenerator in S\mathfrak{M} . and we have the following category is0-
morphism between the class { X\in_{R}\mathfrak{M}| Q-dom. dim. X\geqq 2} and S\mathfrak{M} :

Hom_{R}(P, )

{ X\in_{R}\mathfrak{M}| Q-dom. dim. X\geqq 2} arrow—-S\mathfrak{M}\iota ,
Hom_{S}(P^{*}, )

where P^{*} is the R-dual of {}_{R}P:P^{*}=Hom_{R}(P, R) .
Combining this with our Theorem 3 we have the following

THEOREM 7. In the setting above we have the following category
isomorphism :

{ X\in_{R}\mathfrak{M}|P-codom. dim.X\geqq 2} Hom_{S}(P^{*},Hom_{R}\underline{(P,))}\overline{\overline{P\bigotimes_{S}}Hom_{R}(\underline{P}},)

\{Y\in_{R}\mathfrak{M}|Q- dom. dim. Y\geqq 2\}

\S 5. Supplementaries

Let {}_{R}P be a projective left R-module with the trace ideal T_{1} Let I

6) Cf. [2], Theorem 2.6.
7) Cf. [9], Satz 4.
8) Cf. [4], Theorem 2, Theorem 4.
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be the annihilator ideal of {}_{R}P.
Lemma 5. The class \mathscr{C}=\{X\in_{R}\mathfrak{M}|TX=X\} is closed under submodules

and direct products iff T+I=R.
PROOF. Suppose \mathscr{C} is closed under submodules and direct products.

Consider the direct product \prod_{m\in M}A_{m} , where A_{m}=M for each m\in M. Let x

= \prod m , m\in A_{m} . Then by assumption Rx, where \frac{R}{I} , is generated by P. It

follows that T+I=R.
Conversely, suppose T+I=R. Then, since IT=0, for a left R-module

X we see that TX=X iff IX=0. Thus it is easy to see that \mathscr{C} is closed
under submodules and direct products.

PROPOSITION 2. If R is a semi-perfect ring, then {}_{R}P is a self-generator

ifff T+I=R. Further, in this case, I is the smallest left ideal of R with
respect to this property.

PROOF. By Theorem 5 it suffices to show that if {}_{R}P is a seH-genera-
tor then T+I=R. Suppose {}_{R}P is a seH-generator. Let \mathfrak{l}_{0} be a left ideal
of R such that \mathfrak{l}_{0}+T=R and \mathfrak{l}_{0} is minimal with respect to this property^{9)} .
Then we have I\mathfrak{l}_{0}=I\subseteq \mathfrak{l}_{0} . Let p be an element of P. Then by Theorem 5

we see that \frac{R}{Ann_{R}(p)\cap \mathfrak{l}_{0}} is generated by P. It follows that T+Ann_{R}(p)\cap

\mathfrak{l}_{0}=R . Then by the minimality of \mathfrak{l}_{0} we have \mathfrak{l}_{0}\subseteq Ann_{R}(p) . Since this is
true for every element p of P, we see that \mathfrak{l}_{0}\subseteq I. Thus we have \mathfrak{l}_{0}=I,

whence T+I=R. The last assertion follows from the fact that if \mathfrak{l}+T=R ,
\mathfrak{l} a left ideal of R, then I\mathfrak{l}=I\subseteq \mathfrak{l} .

Let Q be an injective envelope of \oplus \mathfrak{m}_{\alpha} where \mathfrak{m}_{\alpha} ranges over the class
of all (non-isomorphic) simple left R-modules such that T\mathfrak{m}_{\alpha}=\mathfrak{m}_{\alpha} .

PROPOSITION 3. The following statements are equivalent:
(1) The class \mathscr{C} is closed under submodules, direct products and in-

jective envelopes.
(2) I\oplus T=R {direct sum).
(3) The class \mathscr{C} coincides with the class \acute{\{}Y\in_{R}\mathfrak{M}| Q-dom. dim. Y\geqq 1 }.

PROOF. (1)\Rightarrow(2) . Assume (1). Then by the lemma above we have
T+I=R. It follows that I is an idempotent tw0-sided ideal of R and \mathscr{C}

coincides with the class \{Y\in_{R}\mathfrak{M}|IY=0\} , the torsionfree class corresponding

to I. Because \mathscr{C} is closed under injective envelope, ( \frac{R}{I})_{R} is flat as a right
R- module.1\zeta 1) It follows that I\subset T=IT=0 . Thus we have I\oplus T=R .

9) Cf. [3], Satz.
10) Cf. [1], Theorem 6.
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(2)\Rightarrow(3) . Suppose I\oplus T=R. \cdot Then by Theorem 5 we see that \mathscr{C}\subseteq

{ Y\in_{R}\mathfrak{M}| Q-dom. dim. Y\geqq 1}. On the other hand we have IQ=0. For,
if IQ\neq 0 then IQ contains a simple submodule nt such that T\mathfrak{m}=0 . But
this is a contradiction. It follows that we have IY=0, that is TY=Y, for
every Y such that Q-dom. dim. Y\geqq 1 . Thus \mathscr{C}=\{Y\in_{R}\mathfrak{M}| Q-dom. dim. Y
\geqq 1\} .

(3)\Rightarrow(1) . This is almost clear.
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