Codominant dimensions and Morita equivalences

By Takeshi Onodera

(Received April 9, 1976)

Introduction

Let ${ }_{R} P$ be a projective left R-module with endomorphism ring S. Let A be a left R-module. We say that P-codominant dimension of A is $\geqq n$, denoted by P-codom. $\operatorname{dim} . A \geqq n$, if there exists an exact sequence :

$$
X_{n} \longrightarrow X_{n-1} \longrightarrow \cdots \longrightarrow X_{2} \longrightarrow X_{1} \longrightarrow A \longrightarrow 0
$$

where X_{i} 's are isomorphic to direct sums of P 's.
It is clear that P-codom. dim. $A \geqq 1$ iff P generates A. It is also equivalent with the condition $T A=A$, where T is the trace ideal of ${ }_{R} P$. In this paper it is shown that P-codom. dim. $A \geqq 2$ iff $P \otimes \otimes \operatorname{Hom}_{R}(P, A)$ and A are canonically isomorphic. Another some equivalent conditions for this are also obtained in $\S 2$. On the other hand, let ${ }_{s} B$ be a left S-module. Then it is shown that B and $\operatorname{Hom}_{R}(P, P \otimes B)$ are canonically isomorphic iff $\operatorname{Hom}_{R}(P, Q)$-dom. dim. $B \geqq 2$, where ${ }_{R} Q^{S}$ is an injective cogenerator in ${ }_{R} \mathfrak{M}$. Thus we see that the categories $\mathscr{C}_{1}=\left\{X \in_{R} \mathfrak{M} \mid P\right.$-codom. dim. $\left.X \geqq 2\right\}$ and $\mathscr{C}_{2}=\left\{Y \in_{s} \mathfrak{M} \mid \operatorname{Hom}_{R}(P, Q)\right.$-dom. dim. $\left.Y \geqq 2\right\}$ are (canonically) equivalent. In case where ${ }_{R} P$ is a progenerator in ${ }_{R} \mathfrak{M}$, we have $\mathscr{C}_{1}={ }_{R} \mathfrak{M}$ and, since ${ }_{S} \mathrm{Hom}_{R}$ (P, Q) is an injective cogenerator in $s \mathfrak{M}, \mathscr{C}_{2}=s \mathfrak{M}$. Thus our result affords a generalization of Morita equivalence. Another variations of an equivalence of this type are also discussed in $\S 1$ and $\S 4$.

Since the trace ideal T of a projective module ${ }_{R} P$ is an idempotent two-sided ideal of R, T induce a torsion theory $(\mathscr{T}, \mathscr{F})$ in the category of left R-modules : $\mathscr{T}=\left\{X \in_{R} \mathfrak{M} \mid T X=X\right.$, or equivalently, P-codom. dim. $\left.X \geqq 1\right\}$, $\mathscr{F}=\left\{X^{\prime} \in_{R} \mathfrak{M} \mid T X^{\prime}=0\right\}$. The condition under which $(\mathscr{T}, \mathscr{F})$ is hereditary, that is, \mathscr{T} is closed under submodules were studied recently by some authors ([1], [6]]. Here we add some other conditions for this in §3. Some of them are the followings:
(1) The class $\left\{X \in_{R} \mathfrak{M} \mid P\right.$-codom. dim. $\left.X \geqq 1\right\}$ coincides with the class $\left\{X^{\prime} \in_{R} \mathfrak{M} \mid P\right.$-codom. dim. $\left.X^{\prime} \geqq 2\right\}$.
(2) $P \otimes \underset{S}{\otimes} \operatorname{Hom}_{R}(P, X)$ and $T X$ are canonically isomorphic for every left

R-module X.

(3) The functor $T:{ }_{R} \mathfrak{M} \rightarrow_{R} \mathfrak{M}$ (the subfunctor of the identity functor on ${ }_{R} \mathfrak{M}$) is exact.
Finally, in $\S 5$, we shall give some equivalent conditions under which the class $\left\{X \in \in_{R} \mathfrak{M} \mid T X=X\right\}$ is closed under submodules, direct products and injective envelopes.

In what follows we assume that all rings have an identity element and all modules are unital.

§ 1. Some generalizations of Morita equivalences

Let R, S be rings with an identity element. Let ${ }_{R} A$ and ${ }_{R} B$ be two left R-modules. We say that A-codominant dimension of B is $\geqq n$, denoted by A-codom. $\operatorname{dim} . B \geqq n$, if there exists an exact sequence :

$$
X_{n} \longrightarrow X_{n-1} \longrightarrow \cdots \longrightarrow X_{1} \longrightarrow B \longrightarrow 0,
$$

where X_{i}^{\prime} s are isomorphic to direct sums of A 's. Dually we say that A dominant dimension of B is $\geqq n^{1)}$, denoted by A-dom. $\operatorname{dim} . B \geqq n$, if there exists an exact sequence :

$$
0 \longrightarrow B \longrightarrow Y_{1} \longrightarrow \cdots \longrightarrow Y_{n-1} \longrightarrow Y_{n},
$$

where $Y_{j}^{\prime} s$ are isomorphic to direct products of A 's. Dominant diemsion was introduced by K. Morita and H. Tachikawa and studied by them and some other authors.

In case ${ }_{R} A_{S}$ is a two-sided R - S-module, there is a canonical homomorphism $\varepsilon_{A, B}$ of $A \otimes \underset{S}{\otimes} \operatorname{Hom}_{R}(A, B)$ into ${ }_{R} B$ defined by

$$
\varepsilon_{A, B}(a \otimes f)=f(a), a \in A, f \in \operatorname{Hom}_{R}(A, B)
$$

Let ${ }_{S} C$ be a left S-module. There is a canonical homomorphism $\eta_{A, C}$ of ${ }_{S} C$ into $\operatorname{Hom}_{R}(A, A \otimes \underset{S}{\otimes} C)$ defined by

$$
\left\{\eta_{A, C}(c)\right\}(a)=a \otimes c, c \in C, a \in A
$$

As is easily verified we have the following
Lemma 1. It holds the following relations:
(1) $\operatorname{Hom}\left(1_{A}, \varepsilon_{A, B}\right) \eta_{A}, \operatorname{Hom}_{R}(A, B)=1_{\operatorname{Hom}_{R}(A, B)}$
(2) $\varepsilon_{A, A \otimes C}\left(1_{A} \otimes \eta_{A, C}\right)=1_{S \otimes C}$

Lemma 2. $\varepsilon_{A, B}$ is an isomorphism iff A-codom. dim. $B \geqq 2$ and Hom

1) Cf. [8].
$\left(1_{A}, \varepsilon_{A, B}\right)$ is an isomorphism.
Proof. Assume that $\varepsilon_{A, B}$ is an isomorphism. Then clearly $\operatorname{Hom}\left(1_{A}\right.$, $\left.\varepsilon_{A, B}\right)$ is an isomorphism. Let $\oplus S \rightarrow \oplus S \rightarrow \operatorname{Hom}_{R}(A, B) \rightarrow 0$ be an exact sequence of left S-modules, where $\oplus S$'s are free left S-modules. Then, by tensoring with A_{S}, we see that A-codom. $\operatorname{dim} . ~ A \underset{S}{\otimes} \operatorname{Hom}_{R}(A, B)=A$-codom. dim. $B \geqq 2$.

Assume, conversely, that A-codom. $\operatorname{dim} . B \geqq 2$ and $\operatorname{Hom}\left(1_{A}, \varepsilon_{A, B}\right)$ is an isomorphism. Let $\oplus A \rightarrow \oplus A \rightarrow B \rightarrow 0$ be an exact sequence of left R-modules. Applying to this the functors $\operatorname{Hom}_{R}(, B)$ and $\operatorname{Hom}_{R}\left(, A \otimes \underset{S}{ } \operatorname{Hom}_{R}(A, B)\right)$, we have the following commutative diagram with exact rows:

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{R}(B, B) \longrightarrow \operatorname{Hom}_{R}(A, B) \longrightarrow \operatorname{Hom}_{R}(A, B) \\
& \operatorname{Hom}\left(1_{B}, \varepsilon_{A, B}\right) \uparrow \quad \Pi \operatorname{Hom}\left(1_{A}, \varepsilon_{A, B}\right)\left\lceil\quad \Pi \operatorname{Hom}\left(1_{A}, \varepsilon_{A, B}\right) \uparrow\right. \\
& 0 \longrightarrow \begin{array}{c}
\operatorname{Hom}_{R}(B, A \stackrel{\otimes}{S} \\
\left.\operatorname{Hom}_{R}(A, B)\right)
\end{array} \longrightarrow \begin{array}{c}
\operatorname{Hom}_{R}(A, A \stackrel{\otimes}{\otimes} \\
\left.\operatorname{Hom}_{R}(A, \stackrel{S}{B})\right)
\end{array} \longrightarrow \operatorname{Hom}_{R}(A, A \otimes \underset{S}{\otimes}
\end{aligned}
$$

Since $\prod \operatorname{Hom}\left(1_{A}, \varepsilon_{A, B}\right)$'s are isomorphisms, so is $\operatorname{Hom}\left(1_{B}, \varepsilon_{A, B}\right)$. Let $h \in$ $\operatorname{Hom}_{R}\left(B, A \otimes \operatorname{Hom}_{R}(A, B)\right)$ be such that $\varepsilon_{A, B} h=1_{B}$. Then $\varepsilon_{A, B}$ is an epimorphism and $A \underset{S}{\otimes} \operatorname{Hom}_{R}(A, B)=h(B) \oplus$ Ker. $\varepsilon_{A, B}$. It follows that $\operatorname{Hom}_{R}(A, A \otimes \underset{S}{\otimes}$ $\operatorname{Hom}(A, B))=\operatorname{Hom}_{R}(A, h(B)) \oplus \operatorname{Hom}_{R}\left(A, \operatorname{Ker} . \varepsilon_{A, B}\right)$. Since $\operatorname{Hom}\left(1_{A}, \varepsilon_{A, B}\right)$ is an isomorphism and $\operatorname{Hom}\left(1_{A}, \varepsilon_{A, B}\right)\left\{\operatorname{Hom}_{R}\left(A\right.\right.$, Ker. $\left.\left.\varepsilon_{A, B}\right)\right\}=0$, we have Hom_{R} $\left(A\right.$, Ker. $\left.\varepsilon_{A, B}\right)=0$. If follows that Ker. $\varepsilon_{A, B}=0$, because Ker. $\varepsilon_{A, B}$ is generated by ${ }_{R} A$. Thus $\varepsilon_{A, B}$ is an isomorphism.

Let ${ }_{R} Q$ be an injective cogenerator in ${ }_{R} \mathfrak{M}$. We denote the left S-module $\operatorname{Hom}_{R}(A, Q)$ by A^{*}.

Lemma 3. $\quad \eta_{A, C}$ is an isomorphism iff A^{*}-dom.dim. $C \geqq 2$ and $1_{A} \otimes \eta_{A, C}$ is an isomorphism.

Proof. Suppose $\eta_{A, C}$ is an isomorphism. Then clearly $1_{A} \otimes \eta_{A, C}$ is an isomorphism. Let $0 \rightarrow A \otimes \underset{S}{\otimes} C \Pi Q \rightarrow \Pi Q$ be an exact sequence of left R modules where ΠQ 's are direct products of Q 's. Then, by applying functors $\operatorname{Hom}_{R}(A$,$) , we have the following exact sequence of left S$-modules :

$$
0 \longrightarrow \operatorname{Hom}_{R}(A, A \underset{S}{\otimes} C) \longrightarrow \prod A^{*} \longrightarrow \prod A^{*}
$$

which means in turn that A^{*}-dom. dim. $C \geqq 2$.
Suppose, conversely, A^{*}-dom. dim. $C \geqq 2$ and $1_{A} \otimes \eta_{A, C}$ is an isomorphism. At first we note that $\operatorname{Hom}\left(\eta_{A, C}, 1_{A}{ }^{*}\right)$ is an isomorphism because it is the composition of the following isomorphisms: $\operatorname{Hom}_{S}\left(\operatorname{Hom}_{R}(A, A \otimes \underset{S}{\otimes} C)\right.$,
$\left.A^{*}\right) \stackrel{\text { can. }}{\longrightarrow} \operatorname{Hom}_{R}\left(A \underset{S}{\otimes} \operatorname{Hom}_{R}(A, A \underset{S}{\otimes} C), Q\right) \xrightarrow{\operatorname{Hom}\left(1_{A} \otimes \otimes_{A}, c, 1_{Q}\right)} \operatorname{Hom}_{R}\left(A \otimes_{S} C, Q\right) \xrightarrow{\text { can. }}$ $\operatorname{Hom}_{S}\left(C, A^{*}\right)$. Let $0 \rightarrow C \rightarrow \prod A^{*} \rightarrow \prod A^{*}$ be an exact sequence of left S modules. By applying to this the functors $\operatorname{Hom}_{S}(C$,$) and \operatorname{Hom}_{S}\left(\operatorname{Hom}_{R}(A\right.$, $A \otimes \underset{S}{\otimes} C)$,) we have the following commutative diagram with exact rows :

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{s}(C, C) \longrightarrow \operatorname{Hom}_{S}\left(C, A^{*}\right) \longrightarrow \operatorname{Hom}_{s}\left(C, A^{*}\right) \\
& \left.\operatorname{Hom}\left(\eta_{\Lambda_{A}, c}, 1_{\sigma}\right) \uparrow \quad \Pi \operatorname{Hom}\left(\eta_{\Lambda_{A}, c}, 1_{A^{*}}\right)\right\rceil \quad \Pi \operatorname{Hom}\left(\eta_{\lambda_{A}, c}, 1_{A^{*}}\right) \uparrow
\end{aligned}
$$

Since $\Pi \operatorname{Hom}\left(\eta_{\boldsymbol{A}, C}, 1_{A^{*}}\right)$'s are isomorphisms, so is $\operatorname{Hom}\left(\eta_{\boldsymbol{A}^{\prime}, c}, 1_{C}\right)$. Let $h \in \operatorname{Hom}_{s}$ $\left(\operatorname{Hom}_{R}(A, A \underset{S}{\otimes} C), C\right)$ be such that $h \eta_{A, C}=1_{C}$. Then $\eta_{A, C}$ is a monomorphism and we have $\operatorname{Hom}_{R}(A, A \otimes \underset{S}{\otimes} C)=\eta_{A, C}(C) \oplus$ Ker. h. It follows that $\operatorname{Hom}_{S}\left(\operatorname{Hom}_{R}(A, A \underset{S}{\otimes} C), A^{*}\right)=\operatorname{Hom}_{S}\left(\eta_{A, C}(C), A^{*}\right) \oplus \operatorname{Hom}_{S}\left(\right.$ Ker. $\left.h, A^{*}\right)$. Since $\operatorname{Hom}\left(\eta_{A, C}, 1_{A^{*}}\right)$ is an isomorphism and $\operatorname{Hom}\left(\eta_{A, C}, 1_{A^{*}}\right)\left\{\operatorname{Hom}_{S}\left(\operatorname{Ker} . h, A^{*}\right)\right\}=0$, $\operatorname{Hom}_{S}\left(\operatorname{Ker} . h, A^{*}\right)=0$. This implies that Ker. $h=0$ because Ker. h is cogenerated by A^{*}. Thus $\eta_{A, C}$ is an epimorphism, whence an isomorphism.

From Lemma 2 and Lemma 3 we have the following
Theorem 1. Let ${ }_{R} A_{S}$ be a two-sided R - S-module. Then there is a category isomorphism between the class $\mathscr{C}=\left\{X \in_{R} \mathfrak{M} \mid A\right.$-codom. dim. $X \geqq 2$ and $\operatorname{Hom}\left(1_{A}, \varepsilon_{A, X}\right)$ is an isomorphism $\}$ and the class $\mathscr{V}=\left\{Y \in_{s} \mathfrak{M} \mid A^{*}\right.$-dom. dim. $Y \geqq 2$ and $1_{A} \otimes \eta_{A, Y}$ is an isomorphism $\}$ which is induced from the equivalent functors:

$$
\begin{aligned}
F: & \mathscr{C} \ni X \longrightarrow F(X)=\operatorname{Hom}_{R}(A, X) \in \mathscr{C} \\
G: & \mathscr{Q} \ni Y \longrightarrow G(Y)=A \underset{S}{\otimes Y \in \mathscr{C} .}
\end{aligned}
$$

Lemma 4. Let ${ }_{R} A$ be a left R-module with the endomorphism ring S. Let T be the trace ideal of ${ }_{R} A: \quad T=\sum_{g \in \operatorname{Hom}_{R_{R}}(, R)} g(A)$. Then TKer. $\varepsilon_{A, X}$ $=0$ for every $X \in \in_{R} \mathfrak{M}$.

Proof. Let $\sum_{i} a_{i} \otimes f_{i} \in A \underset{S}{\otimes} \operatorname{Hom}_{R}(A, X)$ be in Ker. $\varepsilon_{A, X}$. Then for every $g \in \operatorname{Hom}_{R}(A, R)$ and for every $a \in A$, we have $g(a) \sum_{i} a_{i} \otimes f_{i}=\sum_{i}$ $a\left[g, a_{i}\right] \otimes f_{i}=a \otimes \sum_{i}\left[g, a_{i}\right] \cdot f_{i}=0$, where $\left[g, a_{i}\right]$'s denote the endomorphisms of ${ }_{R} A$ defined by $x\left[g, a_{i}\right]=g(x) a_{i}, x \in A$. Thus we have T Ker. $\varepsilon_{A, X}=0$, as asserted.

Corollary. If $T A=A$, then Ker. $\varepsilon_{A, X}$ is small in $A \otimes \underset{S}{\otimes} \operatorname{Hom}_{R}(A, X)$
for every $X \in{ }_{R} \mathfrak{M}$.
Proof. Let Ker. $\varepsilon_{A, X}+\mathfrak{u}=A \underset{S}{\otimes} \operatorname{Hom}_{R}(A, X)$, where \mathfrak{u} is a submodule of $A \otimes \underset{S}{\otimes} \operatorname{Hom}_{R}(A, X)$. Then we have $\mathfrak{u} \supseteq T \mathfrak{u}=T$ Ker. $\varepsilon_{A, X}+T \mathfrak{u}=A \otimes \underset{⺀}{\otimes} \operatorname{Hom}_{R}$ (A, X). It follows that $\mathfrak{u}=A \otimes \operatorname{Hom}_{R}(A, X)$. This proves the corollary.

Theorem 2. Let ${ }_{R} A$ be a left R-module with the endomorphism ring S, such that $T A=A$. Then the class $\mathscr{C}=\left\{X \in_{R} \mathfrak{M} \mid A\right.$-codom.dim. $\left.X \geqq 2\right\}$ and the class $\mathscr{U}=\left\{Y \in_{s \mathfrak{M}} \mid A^{*}\right.$-dom. dim. $\left.Y \geqq 2\right\}$ are category equivalent in the way described in Theorem 1.

Proof. By Theorem 1, it suffices to show that $\operatorname{Hom}\left(1_{A}, \varepsilon_{A, X}\right)$ and 1_{A} $\otimes \eta_{A, Y}$ are isomorphisms for every $X \in_{R} \mathfrak{M}$ and for every $Y \in_{S} \mathfrak{M}$. By Lemma 1, $\operatorname{Hom}\left(1_{A}, \varepsilon_{A, X}\right)$ is an epimorphism. Let $\varphi \in \operatorname{Hom}_{R}\left(A, A \otimes \underset{S}{\otimes} \operatorname{Hom}_{R}(A\right.$, $X)$) be in Ker. Hom $\left(1_{A}, \varepsilon_{A, X}\right)$. Then $\varphi(A) \subseteq$ Ker. $\varepsilon_{A, X}$, and, from which we have $\varphi(A)=T \varphi(A) \subseteq T$ Ker. $\varepsilon_{A, X}=0$. It follows that $\varphi=0$. Thus Hom $\left(1_{A}, \varepsilon_{A, X}\right)$ is a monomorphism, whence an isomorphism. Next, by Lemma 1, $\varepsilon_{A, A \notin Y}$ is an epimorphism. Since $T A=A$, and Ker. $\varepsilon_{A, A \otimes Y}$ is a direct sum-
 $\varepsilon_{A, A \otimes Y}$, or equivalent $\left[y, 1_{A} \otimes \eta_{A, Y}\right.$ is an isomorphism. This proves the theorem.

Remark. The condition $T A=A$ holds, for example, when ${ }_{R} A$ is a projective module.

Theorem 3. Let ${ }_{R} A$ be a finitely generated quasi-projective module with the endomorphism ring S. Then the class $\left\{X \in_{R} \mathfrak{M} \mid A\right.$-codom.dim. X $\geqq 2\}$ and $s \mathbb{M}$ are equivalent in the way described in Theorem 1.

Proof. Let ${ }_{R} X$ be a left R-module such that A-codom. dim. $X \geqq 2$. We want to show that $\varepsilon_{A, X}$ is an isomorphism. For this purpose. let $\oplus A$ $\rightarrow \oplus A \rightarrow X \rightarrow 0$ be an exact sequence of left R-modules. Applying to this $\operatorname{Hom}_{R}(A$,) we have the following exact sequence of left S-modules: $\oplus S \rightarrow$ $\oplus S \rightarrow \operatorname{Hom}_{R}(A, X) \rightarrow 0$, because ${ }_{R} A$ is finitely generated and quasiprojetive. Then, by applying to this $A \otimes_{S}-$, we have the following commutative diagram with exact rows:

where α, β are the canonical isomorphisms. It follows that $\varepsilon_{A, X}$ is an isomorphism.

Next, let ${ }_{S} Y$ be a left S-module and $\oplus S \rightarrow \oplus S \rightarrow Y \rightarrow 0$ be an exact sequence of left S-modules. Then, as above, applying $A \otimes_{S}-$ and then Hom_{R} $(A$,$) we see that \eta_{A, Y}$ is an isomorphism. Our theorem is thus proved.

Corollary 1. Let ${ }_{R} A$ be as in Theorem 3 and ${ }_{R} Q$ be an injective cogenerator in ${ }_{R} \mathfrak{M}$. Then $A^{*}=\operatorname{Hom}_{R}(A, Q)$ is a cogenerator in S^{M}.

Proof. By Theorem 1 and Theorem 3, $A *$-dom. dim. $Y \geqq 2$ for every $Y \in{ }_{s} \mathbb{M}$. But this implies that A^{*} is a cogenerator in ${ }_{s} \mathbb{M}$.

Corollary 2. For a left R-modules X, A-codom. dim. $X \geqq 2$ iff $\varepsilon_{A, X}$ is an isomorphism.

Proof. This follows also directly from Theorem 1 and Theorem 3.
Corollary 3 (K. Morita). Let ${ }_{R} A$ be a progenerator (=finitely generated projective and generator) with the endomorphism ring S. Then ${ }_{R} \mathfrak{M}$ and $s \mathfrak{M}$ are category equivalent in the way described in Theorem 1.

§2. Modules whose codominant dimensions are $\geqq 2$

Let ${ }_{R} P$ be a projective module with the endomorphism ring S. Let T be the trace ideal of ${ }_{R} P$. For a left R-module X, it is clear that P codom. dim. $X \geqq 1$, that is, X generated by P iff $T X=X$.

Theorem 4. For a left R-module X, the following statements are equivalent:
(1) P-codom. dim. $X \geqq 2$
(2) $T X=X$, and, for every left R-module Y such that $T Y=Y$ and for every epimorphism f of Y onto X, T Ker. $f=$ Ker. f
(3) For every exact sequence $0 \rightarrow A \rightarrow B \xrightarrow{g} C \rightarrow 0$ of left R-modules such that $T A=0$ and for every homomorphism h of X into C, there exists a unique homomorphism j of X into B such that $g j=h$, or equivalently, $\operatorname{Hom}\left(1_{X}, g\right): \operatorname{Hom}_{R}(X, B) \rightarrow \operatorname{Hom}_{R}(X, C)$ is an isomorphism
(4) $\varepsilon_{P, X}: \quad P \otimes_{S}^{\otimes} \operatorname{Hom}_{R}(P, X) \rightarrow X$ is an isomorphism

Proof. (1) $\Rightarrow(2)$. Let P-codom. dim. $X \geqq 2$. Then clearly $T X=X$. Let $\oplus P \rightarrow \oplus P \rightarrow X \rightarrow 0$ be an exact sequence. Combining this with the exact sequence $0 \rightarrow \frac{\text { Ker. } f}{T \text { Ker. } f} \xrightarrow{i} \frac{Y}{T \text { Ker. } f} \xrightarrow{\nu} \frac{\text { Ker. } f}{Y} \rightarrow 0$, where i and ν denote the natural injection and epimorphism, respectively, we have the following commutative diagram with exact rows and columns:

Since $T P=P$ and $T X=X$ we have $\operatorname{Hom}_{R}\left(P, \frac{\text { Ker. } f}{T \text { Ker. } f}\right)=\operatorname{Hom}_{R}\left(X, \frac{\text { Ker. } f}{T \text { Ker. } f}\right)$ $=0$. It follows that $\operatorname{Hom}\left(1_{X}, \nu\right): \operatorname{Hom}_{R}\left(X, \frac{Y}{T \text { Ker. } f}\right) \rightarrow \operatorname{Hom}_{R}\left(X, \frac{Y}{\text { Ker.f }}\right)$ is an isomorphism. Let \bar{f} be the induced isomorphism of $\frac{Y}{\text { Ker. } f}$ to X and let $g \in \operatorname{Hom}_{R}\left(X, \frac{Y}{T \text { Ker. } f}\right)$ be such that $\nu \cdot g=\bar{f}^{-1}$. Then we have $\frac{Y}{T \text { Ker. } f}=$ $g(X) \oplus \frac{\text { Ker. } f}{T \text { Ker. } f}$. But since $T Y=Y$ this implies that Ker. $f=T$ Ker. f.
$(2) \Rightarrow(1)$. Assume (2). Then since $T X=X$ there exists an epimorphism f of $\oplus P$ onto X, and, again by assumption, the kernel of f is generated by P. Thus there exists an exact sequence $\oplus P \rightarrow \oplus P \rightarrow X \rightarrow 0$, that is P codom. dim. $X \geqq 2$.
$(1) \Rightarrow(3)$. Assume (1) and let $0 \rightarrow A \rightarrow B \xrightarrow{g} C \rightarrow 0$ be an exact sequence such that $T A=0$, or equivalently, $\operatorname{Hom}_{R}(P, A)=0$. Then, just as in the proof for $(1) \Rightarrow(2)$, we see that $\operatorname{Hom}\left(1_{X}, g\right): \operatorname{Hom}_{R}(X, B) \rightarrow \operatorname{Hom}_{R}(X, C)$ is an isomorphism. Thus (3) holds.
$(3) \Rightarrow(1)$. Assume (3). Then from the trivial exact sequence $0 \rightarrow \frac{X}{T X}$ $\rightarrow \frac{X}{T X} \rightarrow 0 \rightarrow 0$, we have that $\operatorname{Hom}\left(1_{X}, 0\right): \operatorname{Hom}_{R}\left(X, \frac{X}{T X}\right) \rightarrow \operatorname{Hom}_{R}(X, 0)(=0)$ is an isomorphism. It follows that $X=T X$. Let $f: \oplus P \rightarrow X$ be an epimorphism and let $0 \rightarrow \frac{\text { Ker. } f}{T \text { Ker. } f} \xrightarrow{\iota} \frac{\oplus P}{T \text { Ker. } f} \xrightarrow{\nu} \frac{\oplus P}{\text { Ker. } f} \rightarrow 0$ be the canonical exact sequence. Let h be an isomorphism of X onto $\frac{\oplus P}{\text { Ker. } f}$. Then, by assumption, there is a homomorphism g of X into $\frac{\oplus P}{T \text { Ker. } f}$ such that $\nu g=h$. It
follows that $\frac{\oplus P}{T \text { Ker. } f}=g(X) \oplus \frac{\text { Ker. } f}{T \text { Ker. } f}$, and, from which we have Ker. $f=T$ Ker. f because $T P=P$. Thus we see that P-codom. dim. $X \geqq 2$.
$(1) \Leftrightarrow(4)$. This follows directly from Theorem 1 and Theorem 2.
Corollary. If X has a projective cover $P_{0} \xrightarrow{\varepsilon} X \rightarrow 0$, then P-codom. $\operatorname{dim} . X \geqq 2$ iff $T X=X$ and T Ker. $\varepsilon=$ Ker. ε.

Proof. Assume that $T X=X$ and T Ker. $\varepsilon=$ Ker. ε. Let $\oplus P \xrightarrow{f} X \rightarrow 0$ be an exact sequence. Then there is a homomorphism $g: \oplus P \rightarrow P_{0}$ such that $\varepsilon g=f$. Since Ker. ε is small in P_{0}, it follows that g is an epimorphism and, since P_{0} is projective, there is a monomorphism $h: P_{0} \rightarrow \oplus P$ such that $g h=$ $1_{P_{0}}$. Thus we have $\oplus P=h\left(P_{0}\right) \oplus$ Ker. g. Since, as is easily verified, Ker. g \subseteq Ker. f and $h($ Ker. $\varepsilon)=h\left(P_{0}\right) \subset$ Ker. $f, h\left(P_{0}\right)^{f_{h\left(P_{0}\right)}} X \rightarrow 0$ is also a projective cover for X. Now we have T Ker. $f=T\left(\left(h\left(P_{0}\right) \cap\right.\right.$ Ker. $\left.f\right) \oplus$ Ker. $\left.g\right)=T(h($ Ker. $\varepsilon) \oplus$ Ker. $g)=h($ Ker. $\varepsilon) \oplus$ Ker. $g=$ Ker. f. It follows that P-codom. dim. $X \geqq 2$. The converse part of the proof follows direct from Theorem 4.

§ 3. On projective self-generators

A module is called self-generator if it generates all its submodules ${ }^{22}$.
Let ${ }_{R} P$ be a projective left R-module with the trace ideal T. Since T is an idempotent two-sided ideal of R, it induces the torsion theory (\mathscr{T}, $\mathscr{F})$, where $\mathscr{T}=\left\{X \in_{R} \mathfrak{M} \mid T X=X\right\}$ and $\mathscr{F}=\left\{Y \in_{R} \mathfrak{M} \mid T Y=0\right\}$. Further, let S be the endomorphism ring of ${ }_{R} P$. Following characterizations for ${ }_{R} P$ to be a self-generator are due to [1], [2], [6].

ThEOREM 5. For a projective module ${ }_{R} P$ the following statements are equivalent:
(1) ${ }_{R} P$ is a self-generator
(2) The class $\left\{X \in_{R} \mathfrak{M} \mid P\right.$-codom. dim. $\left.X \geqq 1\right\}$ is closed under submodules, that is, the torsion theorey $(\mathscr{T}, \mathscr{F})$ is hereditary
(3) The right R-module $\left(\frac{R}{T}\right)_{R}$ is flat
(4) $T p \ni p$ for every element $p \in P$
(4)' $A n n_{R}(p)+T=R$ for every element $p \in P$, where $A n n_{R}(p)=\{r \in$ $R \mid r p=0\}$, the annihilator left ideal of p in R.
$\begin{aligned} &(4)^{\prime \prime} \bigcap_{i=1}^{n} A n n_{R}\left(p_{i}\right)+T=R \text { for every finite set of elements } p_{1}, p_{2}, \cdots, p_{n} \\ & \in P .\end{aligned}$
2) Cf. [10].

In this section we shall add some other characterizations of projective self-generators.

Theorem 5 (continued). The following statements are equivalent to the statements $(1) \sim(4)^{\prime \prime}$ in the theorem above:
(5) The class $\left\{X \in_{R} \mathfrak{M} \mid P\right.$-codom. dim. $\left.X \geqq 1\right\}$ coincides with the class $\left\{Y \in_{R} \mathfrak{M} \mid P\right.$-codom. dim. $\left.Y \geqq 2\right\}$.
(6) $\varepsilon_{P, X}: P \otimes \operatorname{Hom}_{R}(P, X) \rightarrow T X$ is an isomorphism for every $X \in \in_{R} \mathfrak{M}$.
(7) $\operatorname{Hom}_{R}\left(P, \frac{\mathfrak{b}}{\mathfrak{t}}\right) \neq 0$ for every submodules \mathfrak{v}, \mathfrak{u} of P such that $0 \subseteq \mathfrak{u}$ $\subsetneq \mathfrak{v} \subseteq P$.
(8) $T E(\mathfrak{m})=0$ for every simple left R-module \mathfrak{m} such that $T \mathfrak{m}=0$. Here $E(\mathfrak{m})$ denotes, as usual, the injective envelope of m.
(9) Every homomorphic image of P is Q-torsionless, where $Q=E(\oplus$ \mathfrak{m}_{α}), \mathfrak{m}_{α} ranging over all (non-isomorphic) simple left R-modules such that $\mathrm{Tm}_{\alpha}=\mathfrak{m}_{\alpha}$.
(10) Every left R-module X such that $T X=X$ is Q-torsionless.
(11) The functor $T:{ }_{R} \mathfrak{M} \ni X \rightarrow T X \in_{R} \mathbb{M}$, $T f=f_{T X}$ (the restriction of f to $T X)$, where $X, Y \in_{R} \mathfrak{M}, f \in \operatorname{Hom}_{R}(X, Y)$, is exact.3)
Proof. (2) $\Rightarrow(5)$. Assume (2) and let X be a left R-module such that P-codom. dim. $X \geqq 1$. Then, since every submodule of a direct sum of P 's is generated by P, we see that P-codom. dim. $X \geqq 2$. Thus (5) holds.
$(5) \Rightarrow(1)$. Assume (5) and let $\mathfrak{u t}$ be a submodule of P. Then, by assumption, P-codom. dim. $\frac{P}{\mathfrak{u}} \geqq 2$. Consider the following exact sequence:

$$
0 \longrightarrow-\frac{\mathfrak{u}}{T \mathfrak{u}} \xrightarrow{\iota}-\frac{P}{T \mathfrak{u}} \xrightarrow{\nu} \frac{P}{\mathfrak{u}} \longrightarrow 0 .
$$

where c and ν are the canonical injection and epimorphism, respectively. Then, by Theorem 4, there is a homomorphism $f \in \operatorname{Hom}_{R}\left(\frac{P}{\mathfrak{u}}, \frac{P}{T \mathfrak{i t}}\right)$ such that $\nu f=1_{\frac{P}{\mathfrak{u}}}$. It follows that $\frac{P}{T \mathfrak{u t}}=f\left(\frac{P}{\mathfrak{u}}\right) \oplus-\frac{\mathfrak{u}}{T \mathfrak{u t}}$, and from which we can easily deduce $\frac{\mathfrak{u}}{T \mathfrak{u}}=0$, that is $\mathfrak{u}=T \mathfrak{H t}$. Thus P is a self-generator.
$(5) \Rightarrow(6)$. Assume (5) and let X be an arbitrary left R-module. Then, since $T X$ is generated by P, P-codom. dim. $T X \geqq 2$. It follows that $0=\mathrm{Ker}$. $\varepsilon_{P, T X}=$ Ker. $\varepsilon_{P, X}$ by Theorem 4. Thus (6) holds.
3) In Theorem 5, the equivalences $(1) \Leftrightarrow(2) \Leftrightarrow(5)$ hold also for quasiprojective modules (Cf. [2], Lemma 2.2).
$(6) \Rightarrow(5)$. This follows direct from the fact that P-codom. $\operatorname{dim} . P \underset{S}{\otimes}$ $Y \geqq 2$ for every $Y \in{ }_{s} \mathfrak{M}$.
$(1) \Rightarrow(7)$. Assume (1). Then, since P generates \mathfrak{v}, there exists a homomorphism $f \in \operatorname{Hom}_{R}(P, \mathfrak{v})$ such that $f(P) \nsubseteq \mathfrak{u}$. Then νf is a non-zero homomorphism of P into $\frac{\mathfrak{v}}{\mathfrak{t}}$, where ν is the canonical epimorphism of onto $\frac{\mathfrak{v}}{\mathfrak{u}}$. Thus $\operatorname{Hom}_{R}\left(P, \frac{\mathfrak{v}}{\mathfrak{u}}\right) \neq 0$.
$(7) \Rightarrow(1)$. Assume (7). Suppose there is a submodule \mathfrak{v} of P such that $T \mathfrak{v} \in \mathfrak{v}$. Then there exists a non-zero homomorphism $f \in \operatorname{Hom}_{\boldsymbol{R}}\left(P, \frac{\mathfrak{v}}{T \mathfrak{v}}\right)$. But then we have $f(P)=f(T P)=T f(P)=0$, a contradiction. It follows that P is a self-generator.
$(2) \Rightarrow(8)$. Assume (2) and let \mathfrak{m} be a simple left R-module such that $T \mathfrak{m}=0$. Suppose $T E(\mathfrak{m})=0$. Then since $T E(\mathfrak{m})$ is generated by P and contains $\mathfrak{m}, \mathfrak{m}$ is generated by P. It follows that $T \mathfrak{m}=\mathfrak{m}$, a contradiction. Thus (8) holds.
$(8) \Rightarrow(1) . \quad$ Assume (8). Suppose there is a submodule \mathfrak{u} of P such that $T \mathfrak{u} \subseteq \mathfrak{u}$. Let $\mathfrak{u}^{\prime}, \mathfrak{u}^{\prime \prime}$ be submodules of P such that $T \mathfrak{u} \subseteq \mathfrak{u}^{\prime} \subseteq \mathfrak{u}^{\prime \prime} \subseteq \mathfrak{u}$ and $\frac{\mathfrak{u}^{\prime \prime}}{\mathfrak{u}^{\prime}}$ is simple. Then since $T \mathfrak{u}^{\prime \prime} \subseteq T \mathfrak{u} \subseteq \mathfrak{u}^{\prime}$ we have $T \frac{\mathfrak{u}^{\prime \prime}}{\mathfrak{u}^{\prime}}=0$. It follows that $T E\left(\frac{\mathfrak{u}^{\prime \prime}}{\mathfrak{u}^{\prime}}\right)=0$. On the other hand, since $E\left(\frac{\mathfrak{u}^{\prime \prime}}{\mathfrak{u}^{\prime}}\right)$ is injective, the natural epimorphism $\nu(\neq 0): \mathfrak{u}^{\prime \prime} \rightarrow \frac{\mathfrak{u}^{\prime \prime}}{\mathfrak{u}^{\prime}}$ is extended to a homomorphism $\tilde{\nu}: P \rightarrow E\left(\frac{\mathfrak{u}^{\prime \prime}}{\mathfrak{u}^{\prime}}\right)$. This is a contradiction. Thus P is a self-generator.
$(1) \Rightarrow(9)$. Assume that P is a self-generator. Let \mathfrak{u} be a submodule of P and p be an element of P such that $p \notin \mathfrak{u}$. Let \mathfrak{m} be a simple epimorphic image of $\frac{\mathfrak{u}+R p}{\mathfrak{u}}$. Then since $T(\mathfrak{u}+R p)=\mathfrak{u}+R p$ we see that $T \mathfrak{m}=\mathfrak{m}$. It follows that there exists a homomorphism f of $\frac{P}{\mathfrak{u}}$ into Q such that $f(p+\mathfrak{u})$ $\neq 0$. This implies that $\frac{P}{\mathfrak{t}}$ is Q-torsionless.
$(9) \Rightarrow(1)$. Assume (9). Suppose there exists a submodule \mathfrak{u} of P such that $T \mathfrak{u} \neq \mathfrak{u}$. Let $x \in \mathfrak{u}$ be such that $x \notin T \mathfrak{u}$. Then there is a homomorphism $f \in \operatorname{Hom}_{R}\left(\frac{P}{T \mathfrak{t}}, Q\right)$ such that $f(x+T \mathfrak{u})=0$. Since $\operatorname{Rf}(x+T \mathfrak{u})$ contains a simple submodule of $Q, T f(x+T \mathfrak{t}) \neq 0$. On the other hand, we have $T f(x+T \mathfrak{u})=0$ because $x \in \mathfrak{u}$. This is a contradiction. Thus P is a
self-generator.
$(9) \Rightarrow(10)$. Assume (9) and let X be a left R-module such that $T X=X$. Let x be a non-zero element of X and m be a simple epimorphic image of $R x$. Then, by (2), we have $T \mathfrak{m}=\mathfrak{m}$. It follows that there exists a homomorphism f of X to Q such that $f(x) \neq 0$. Thus X is Q-torsionless.
$(10) \Rightarrow(9)$. This is trivial.
$(6) \Rightarrow(11)$. Assume (6) and let $0 \rightarrow X \xrightarrow{f} Y \stackrel{g}{\rightarrow} Z \rightarrow 0$ be an exact sequence of left R-modules. Then since ${ }_{R} P$ is projective and P_{S} is flat ${ }^{4)}$ we have the following commutative diagram with exact rows:

where $\varepsilon_{P, X}, \varepsilon_{P, Y}$ and $\varepsilon_{P, Z}$ are all isomorphism. It follows that the sequence :

$$
0 \longrightarrow T X \xrightarrow{T f} T Y \xrightarrow{T g} T Z \longrightarrow 0
$$

is exact. Thus T is exact.
$(11) \Rightarrow(1)$. Assume T is exact. Let \mathfrak{u} be a submodule of P and consider the following canonical exact sequence:

$$
0 \longrightarrow \frac{\mathfrak{u}}{T \mathfrak{u}} \xrightarrow{\iota} \frac{P}{T \mathfrak{t}} \xrightarrow{\nu} \frac{P}{\mathfrak{t}} \longrightarrow 0 .
$$

Then we have the exact sequence :

$$
0 \longrightarrow 0 \longrightarrow \frac{P}{T \mathfrak{t}} \xrightarrow{T \nu} \frac{P}{\mathfrak{u}} \longrightarrow 0
$$

But this implies that $T \mathfrak{u}=\mathfrak{u}$. It follows that P is a self-generator.
Thus we have completed all of our proofs.
If R is a commutative ring or regular ring, then every projective R module is necessarily a self-generator ${ }^{5)}$.

A ring R is called left V-ring if every simple left R-module is injective, or equivalently, if every left R-module has a zero (Jacobson-) radical. By Corollary to Lemma 4 and Theorem 5 we have the following

Proposition 1. Let R be a left V-ring. Then every projective left R-module is a self-generator.
4) Cf. [2], Lemma 2.1.
5) Cf. [10], THEOREM 3.1.

§ 4, Further variations of Morita equivalences

From Theorem 3 and Theorem 5 we can deduce direct the following
Theorem 6 (K. Fuller). ${ }^{6)} \quad$ Let ${ }_{R} P$ be a finitely generated quasi-projective self-generator with the endomorphism ring S, and let \mathscr{C} be the class $\{X$ $\in_{R} \mathbb{M} \mid P$-codom. dim. $\left.X \geqq 1\right\}$. Then we have the following category isomorphism between \mathscr{C} and $s \mathbb{M}$:

$$
\mathscr{C} \underset{P \underset{S}{*}}{\underset{\operatorname{Hom}_{R}(P,)}{\rightleftarrows}} s \mathbb{M} .
$$

An example (G. Azumaya): Let S be a ring and P_{S} be a projective generator in \mathfrak{M}_{S}. Set $R=\operatorname{End}\left(P_{S}\right)$. Then the left R-module ${ }_{R} P$ is finitely generated projective and $\operatorname{End}\left({ }_{R} P\right)=S$. Further ${ }_{R} P$ is a self-generator ${ }^{7}$. Thus we have the category isomorphism between $\left\{X \in_{R} \mathfrak{M} \mid P\right.$-codom. dim. $\left.X \geqq 1\right\}$ and $s \mathfrak{M}$ in the way described in Theorem 6.

Let ${ }_{R} P$ be a finitely generated projective left R-module with the endomorphism ring S. Let T be the trace ideal of ${ }_{R} P$. Let further Q be the injective envelope of $\oplus \mathfrak{m}_{\alpha}$, where \mathfrak{m}_{α} ranges over the class of all (non-isomorphic) simple left R-modules such that $T \mathrm{~m}_{\alpha}=\mathfrak{m}_{\alpha}$. Then ${ }_{s} \operatorname{Hom}_{R}(P, Q)$. is an injective cogenerator in $s \mathbb{M}$, and we have the following category isomorphism between the class $\left\{X \in_{R} \mathfrak{M} \mid Q\right.$-dom. dim. $\left.X \geqq 2\right\}$ and $s^{m} \mathfrak{M}:{ }^{8}$

$$
\left\{X \in_{R} \mathfrak{M} \mid Q \text {-dom. dim. } X \geqq 2\right\} \underset{\operatorname{Hom}_{S}\left(P^{*},\right)}{\stackrel{\operatorname{Hom}_{R}(P,)}{\leftrightarrows}} s \mathbb{M},
$$

where P^{*} is the R-dual of ${ }_{R} P: P^{*}=\operatorname{Hom}_{R}(P, R)$.
Combining this with our Theorem 3 we have the following
Theorem 7. In the setting above we have the following category isomorphism:

$$
\begin{aligned}
& \left\{X \in_{R} \mathfrak{M} \mid P \text {-codom.dim. } X \geqq 2\right\} \stackrel{\operatorname{Hom}_{S}\left(P^{*}, \operatorname{Hom}_{R}(P,)\right)}{\rightleftarrows} \\
& \quad\left\{Y \bigotimes_{S} \operatorname{Hom}_{R}(P,)\right.
\end{aligned}
$$

§ 5. Supplementaries

Let ${ }_{R} P$ be a projective left R-module with the trace ideal T. Let I
6) Cf. [2], Theorem 2.6 .
7) Cf. [99], Satz 4.
8) Cf. [4], Theorem 2, Theorem 4,
be the annihilator ideal of ${ }_{R} P$.
Lemma 5. The class $\mathscr{C}=\left\{X \in{ }_{R} \mathfrak{M} \mid T X=X\right\}$ is closed under submodules and direct products iff $T+I=R$.

Proof. Suppose \mathscr{C} is closed under submodules and direct products. Consider the direct product $\prod_{m \in M} A_{m}$, where $A_{m}=M$ for each $m \in M$. Let x $=\Pi m, m \in A_{m}$. Then by assumption $R x$, where $\frac{R}{I}$, is generated by P. It follows that $T+I=R$.

Conversely, suppose $T+I=R$. Then, since $I T=0$, for a left R-module X we see that $T X=X$ iff $I X=0$. Thus it is easy to see that \mathscr{C} is closed under submodules and direct products.

Proposition 2. If R is a semi-perfect ring, then ${ }_{R} P$ is a self-generator iff $T+I=R$. Further, in this case, I is the smallest left ideal of R with respect to this property.

Proof. By Theorem 5 it suffices to show that if ${ }_{R} P$ is a self-generator then $T+I=R$. Suppose ${ }_{R} P$ is a self-generator. Let \mathfrak{l}_{0} be a left ideal of R such that $\mathfrak{I}_{0}+T=R$ and \mathfrak{I}_{0} is minimal with respect to this property ${ }^{9}$. Then we have $I \mathfrak{I}_{0}=I \subseteq \mathfrak{Y}_{0}$. Let p be an element of P. Then by Theorem 5 we see that $\frac{R}{\operatorname{Ann}_{R}(p) \cap \mathfrak{I}_{0}}$ is generated by P. It follows that $T+\operatorname{Ann}_{R}(p) \cap$ $\mathfrak{I}_{0}=R$. Then by the minimality of \mathfrak{I}_{0} we have $\mathfrak{I}_{0} \subseteq \operatorname{Ann}_{R}(p)$. Since this is true for every element p of P, we see that $\mathfrak{l}_{0} \subseteq I$. Thus we have $\mathfrak{l}_{0}=I$, whence $T+I=R$. The last assertion follows from the fact that if $\mathfrak{l}+T=R$, \mathfrak{l} a left ideal of R, then $I \mathfrak{I}=I \subseteq \mathfrak{l}$.

Let Q be an injective envelope of $\oplus \mathfrak{m}_{\alpha}$ where \mathfrak{m}_{α} ranges over the class of all (non-isomorphic) simple left R-modules such that $T \mathfrak{m}_{\alpha}=\mathfrak{m}_{\alpha}$.

Proposition 3. The following statements are equivalent:
(1) The class \mathscr{C} is closed under submodules, direct products and injective envelopes.
(2) $I \oplus T=R$ (direct sum).
(3) The class \mathscr{C} coincides with the class $\left\{Y \in_{R} \mathfrak{M} \mid Q\right.$-dom. dim. $\left.Y \geqq 1\right\}$.

Proof. (1) $\Rightarrow(2)$. Assume (1). Then by the lemma above we have $T+I=R$. It follows that I is an idempotent two-sided ideal of R and \mathscr{C} coincides with the class $\left\{Y \in_{R} \mathfrak{M} \mid I Y=0\right\}$, the torsionfree class corresponding to I. Because \mathscr{C} is closed under injective envelope, $\left(\frac{R}{I}\right)_{R}$ is flat as a right R-module. ${ }^{10)}$ It follows that $I \subset T=I T=0$. Thus we have $I \oplus T=R$.
9) Cf. [3], Satz.
10) Cf. [1], Theorem 6.
$(2) \Rightarrow(3) . \quad$ Suppose $I \oplus T=R$. Then by Theorem 5 we see that $\mathscr{C} \subseteq$ $\left\{Y \in_{R} \mathfrak{M} \mid Q\right.$-dom. dim. $\left.Y \geqq 1\right\}$. On the other hand we have $I Q=0$. For, if $I Q \neq 0$ then $I Q$ contains a simple submodule \mathfrak{m} such that $T \mathfrak{m}=0$. But this is a contradiction. It follows that we have $I Y=0$, that is $T Y=Y$, for every Y such that Q-dom. dim. $Y \geqq 1$. Thus $\mathscr{C}=\left\{Y \in_{R} \mathfrak{M} \mid Q\right.$-dom. dim. Y $\geqq 1\}$.
$(3) \Rightarrow(1) . \quad$ This is almost clear.

References

[1] G. Azumaya: Some properties of TTF-classes, in Proceedings of the conference on orders, group rings, and related topics, Lecture Notes in Mathematics 353, Springer-Verlag, Berlin, 1973.
[2] K. R. Fuller: Density and equivalence, J. Algebra 29, 528-550 (1974).
[3] Fr. Kasch, E. A. Mares: Eine Kennzeichnung semi-perfecter Moduln, Nagoya Math. J. Vol. 27-2, 525-529 (1966).
[4] T. Kato: U-distinguished modules, J. Algebra 25, 15-24 (1973).
[5] T. Kato: Duality between colocalization and localization (preprint).
[6] R. J. McMaster: Cotorsion theories and colocalizations, Can. J. Math., Vol. 27, No. 3, 618-628 (1975).
[7] R. W. Miller: TTF classes and quasi-generators, Pacific J. Math., Vol. 51, No. 2, 499-507 (1974).
[8] K. Morita: Quotient rings, Ring Theory, Academic Press, 257-285, 1972.
[9] T. Onodera: Koendlich erzeugte Moduln und Kogeneratoren, Hokkaido Math. J. Vol. 2, No. 1, 69-83 (1973).
[10] B. Zimmermann : Endomorphism rings of self generators, Algebra-Bericht Nr. 27, Math. Inst. Univ. München, 1975.

