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\S 1. Introduction and results.

Let $\Omega$ be adomain of the closed half space $R_{+}^{\overline{n+1}}=\{x;x=(x, x_{n})$ , $d$ $=$

$(x_{0}, \cdots, x_{n-1})$ , $x_{n}\geqq 0\}$ containing aneighborhood of apoint $x^{0’}=(0, x_{1}^{0}, \cdots, x_{n-1}^{0})$

in its lateral boundary $\Gamma=\{x;x\in\Omega, x_{n}=0\}$ and let $P(x, D)$ be adifferential
operator of order 2with $C^{\infty}$ coefficients on $\overline{\Omega}$ , which is normal hyperbolic
with respect to $x_{0}$ .

Now let us consider the mixed problem in $\Omega$ ;for some $\delta>0$

( $1$ . $1$ ) $(P,$ $B)$

’

$P(x, D)u=0$ in $\Omega$ and for $x_{n}<\delta \mathcal{T}$

$B(x, D)u=f$ in $\Gamma,\cdot$

$- u=0$ $x_{0}<0$

where $[0, \delta]\cross\Gamma\subset\Omega$ , the given boundary data $f$ vanishes for $x_{0}<0$ , $B(x, D)$

is adifferential operator of order 1, and $\Gamma$ is non-characteristic with respect
to $B$ .

Reweiting the principal symbol $P_{2}(x, \xi)$ of $P(x, D)$ in the following form:

(1. 2) $P_{2}(x, \xi)=(\xi_{n}-\lambda(x, \xi’))^{2}-\mu(x, \xi’)$ , $\xi=(\xi’, \xi_{n})$ :

we assume that $\Gamma$ is diffractive $i$ . $e.$ , that for $(x, \xi)\in T_{\Gamma}^{*}(\Omega)$

(1. 3) $\{\xi_{n}-\lambda(x, \xi’)$ , $\mu(x, \xi’)\}>0$ when $\xi_{n}=\lambda(x, \xi’)$ and $\mu(x, \xi’)=0$

where $\{f, g\}$ is the Poisson bracket and then such points $(x, \xi’)\in T^{*}(\Gamma)$ with
above properties are called diffractive ([8]).

Near afixed diffractive point $(x^{0}, \xi^{0’})$ , let 2” $(x, \xi’)$ be roots of $P_{2}(x^{0}, \xi’, \xi_{n})$

$=0$ with respect to $\xi_{n}$ such that for $\xi_{0}>0$

$\lambda^{\pm}(x, \xi’)=\lambda(x, \xi’)\mp\sqrt{\zeta}\mu^{\frac{1}{2\}}(x, \xi’)$ ,
$\mu_{3}(x, \xi’)>0$ ,

(1. 4) $\zeta=\xi_{0}-\mu_{2}(x, \xi’)(\xi’=(\xi_{1}, \cdots, \xi_{n-1}))$ ,

$\mu_{2}(x, \xi’)$ is real valued ,

$\sqrt{1}=1$ and $\sqrt{-1}=-i$
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The representation of 2” $(x, \xi’)$ follows from the normal hyperbolicity of $P_{2}$

and non-characteristicity of $\Gamma$ with respect to $P$ . Denoting the principal
symbol of $B$ by $B_{1}(x, \xi)$ and assuming $B_{1}(x^{0}, \xi^{0’}, \lambda(x^{0}, \xi^{0’}))=0$ we can decom-
pose the function $B_{1}(x, \xi’, \lambda^{+}(x, \xi’))$ as follows:

$B_{1}$ ($x$, $\xi’$ , $\lambda^{+}(x, \xi’))=R_{\frac{1}{2}}(x,\sqrt{\zeta}, \xi’)(\sqrt{\zeta}-D(x, \xi’)),\cdot$

$R(x, \sqrt{\zeta}, \xi’)\neq 0$ and $D(x^{0}, \xi^{0’}’)$ $=0$

Now we suppose in this paper that for some real number $\theta(0<\theta<\frac{\pi}{2})$

all of the values of $e^{i\theta}D(x, \xi’)$ lay in aproper cone, with its vertex at the
origin, contained in left $haH$ of the complex plane, $i$ . $e$ .

(1. 5) $\frac{\pi}{2}+\epsilon\leqq\arg(e^{i\theta}D(x, \xi’))\leqq\frac{3\pi}{2}-\epsilon$

for some $\epsilon(0<\epsilon<<1)$ . Then we shall prove the following
THEOREM. Under the conditions described above there exists a para-

metrix for $(P, B)$ near a diffractive point $(x^{0}, \xi^{0’})$ zvhose wave front sets
behave themselves similarly to the case of Dirichlet or Neumann boundary
value problems.

The case of Dirichlet and Neumann boundary conditions were considered
by Ludwing, Melrose, Taylor and Eskin ([7], [8], [11] and [2]). For more
general case, where boundary operator $B$ has real coefficients, it was treated
by Ikawa [6] in somewhat different point of view.

On the other hand we obtained in [10] that the problem $(P, B)$ is $L^{2}$-well
posed only if for $\xi_{0}>0$

$\frac{\pi}{2}\leqq\arg(D(d, \xi’))\leqq\frac{3}{2}\pi$ ,

and from Theorem we have that the above parametrix for $\xi_{0}>0$ is can
structed if

$\frac{\pi}{2}\leqq\arg(D(x’, \xi’))\leqq\frac{3}{2}\pi-\epsilon$

for apositive $\epsilon\ll 1$ and for $(x’, \xi’)$ near $(x^{0}, \xi^{0’})$ . Furtheoremore from
the proof of Theorem we have that the condition (2. 6) described below is
also sufficient to obtain such parametrix. Though the conditions (1. 5) and
(2. 6) are invariant under transformation of space-variables $(x_{1}\cdots x_{n})$ preserv-
ing unit normal to $\Omega$ at $\Gamma$, available relations between $D(x’, \xi’)$ and $c(x’, \xi’)$

defined below are not always clear. Moreover if we want to treat mixed
problems for aequation of higher order or asystem of equations of the
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first order, we may reduce these problems to ones considered here, but op-
erators $P$ and $B$ must be changed into pseud0-differential ones and then
Theorem will be also valid without any change. Here we must emphasize
that even if the coefficients of boundary operators are real, the corresponding
symbol $D(x’, \xi’)$ is not always real and that in general there are essential
gaps between the necessary condition to be $L^{2}$-well posed for the problem
$(P, B)$ and these conditions described in this paper to be able to reduce our
problem to asubelliptic interior problem on $\Gamma$, even if we restrict ourselves
to the case where the Lopatinskii determinant $B_{1}(x, \xi’, \lambda^{+}(x, \xi’))$ does not
vanish for $x’\in\Gamma$ and for $\zeta-i\gamma\neq 0$ with $\gamma\geqq 0$ (see [10]).

To prove Theorem, it seems to be convenient to use phase functions
constructed by Ludwig and Eskin ([7] and [2]). Throughout this paper,
functions in consideration are assumed to be of $C^{\infty}$-class without any con-
fusions, aboundary point $(x’, 0)$ is simply denoted by $x’$ in symbols and
we suppose that $\xi_{0}>0$ .

\S 2. Preliminaries.

(i) First of all, for the sake of completeness of our descriptions, follow-
ing Taylor’s and Eskin’s considerations we construct asolution $\varphi$ of the
eikonal equation in aconic neighborhood in $T^{*}(\Omega)$ of $(x^{0}, \xi^{0})\in T_{\Gamma}^{*}(\Omega)$

(2. 1) $\varphi_{x_{n}}-\lambda(x,$ $\varphi_{x’}))^{2}-\mu(x, \varphi_{x’})=0$

with the following properties :
$\alpha)$ There are real functions $\theta(x, \eta’)$ and $\rho(x, \eta’)$ with new variables

$\eta’=(\eta_{0}, \eta_{1}, \cdots, \eta_{n-1})$ with $\eta’\neq 0$ , homogeneous in $\eta’$ of order 1a$nd$ $\frac{2}{3}$ re-
spectively such that

$\varphi_{\pm}(x, \eta’)=(\theta\pm\frac{2}{3}\rho\frac{3}{2})(x, \eta’)$

satisfies (2. 1) for $\rho\geqq 0$ when $(x, x_{n})$ are contained in some neighborhood
$U(x^{0})$ of $x^{0}$ and $\eta’=(\eta_{0}, \eta’)$ belong to some conic neighborhood of $(\eta_{0}^{0}, \eta^{0’}’)$

with $\eta_{0}^{0}=0$ , $\eta^{0’}=\xi^{0’}$

$\beta)$ $\det||\frac{\partial^{2}\theta}{\partial x_{j}\partial\eta_{k}}||n-1j,k=0\neq 0$ for $x_{n}=0$ , which means that the phase func-
tion $\theta(x, \eta’)-\langle 8/’, \eta’\rangle$ is non-degenerate for fixed $x_{n}$ with $\delta\geqq x_{n}\geqq 0$ for some
$\delta>0$ ,

$\rho=(\alpha+0(\alpha^{\infty}))|\eta’|\tau 2$ for $x_{n}=0$ ,

where $\alpha=\eta_{0}/|\eta’|$ and
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$\frac{\partial\rho}{\partial x_{n}}>0$ when $\rho=0$

Next using $\varphi_{\pm}$ and solving transport equations we can construct functions
$g(x, \eta’)$ and $h(x,$ $\eta\acute{)}$ such that for $\rho\geqq 0$ , in particular $\alpha\geqq 0$ (and $\alpha<\alpha_{0}$ for
some $\alpha_{0}<1$ ) and for $x_{n}<\delta$ :

$g(x, \eta’)\sim\sum_{j=0}^{\infty}g_{-j}(x, \eta’)$ ,

$h(x, \eta’)=0(\alpha^{\infty}|\eta’|^{-_{5}^{1}})$ ,

$ord_{\eta’}g_{-j}=-j$, $g_{0}|_{x_{n}=0}\neq 0’$.
and

(2. 2) $P(x, D) \int_{L}(g-\tau h)e^{i(_{B}^{\tau^{\theta}}-\rho\tau+\theta)}d\tau=0(|\eta’|^{-\infty})$

where $L$ is acomplex contour

$\tau=\int_{1}|t|e^{-\frac{\pi}{2}i}te^{n}v^{i}$ $tarrow-\infty tarrow\infty$

’

which is different from Eskin’s. By using one of Airy functions defined by

$A(x)= \int_{L}e^{i(_{\tau^{-x\tau}}^{\tau^{\}})}d\tau(=(2\pi)e^{\pi}piAi(e^{-_{B}^{2}\pi i}(-x)))$

([9]) the integral in (2. 2) can be written in the following form:

(2. 3) $\int_{L}(g-\tau h)e^{i(_{\tau^{3}}^{\tau}-\rho\tau)}d\tau=gA(\rho)-ihA’(\rho)$

and by the choice of $LA(\rho)$ , $A’(\rho)$ have the same asymptotic behaviors,
(when $\rhoarrow\pm\infty$ ) as in [2], [8]. By applying such asymptotic behaviors and
the fact that $A(\alpha|\eta’|^{2}\tau)$ , $A’(\alpha|\eta’|^{2}\tau)$ do not vanish for real $\alpha$, the relation (2. 2)
can be smoothly extended for negative $\alpha$ such that $-|\eta’|^{-}.<\alpha$, where $0<$

$\epsilon<\frac{1}{3}$ , if we extend $g_{-j}(x, \eta’)$ and $h(x, \eta’)$ smoothly over such $\alpha$ .

Furthermore for negative asuch the $- \frac{1}{2}|\eta’|^{-}’>\alpha$ , it is shown by Eskin
that for $x_{n}=0$ setting

$a_{1}(x’, \eta’)\alpha=\theta_{x_{n}}(x, \eta’)-\lambda(x,$ $\theta_{x’}(x, \eta’))$ ,

$\gamma)$ a2 $(x, \eta’)\alpha=\mu(x,$ $\theta_{x’}(x, \eta’))(a_{2}(x, \eta’)>0)$ and

$\theta_{1}(x, \eta)=ix_{n}((a_{2}(x, \eta’)|\alpha|)^{\frac{1}{2}}-x_{n}a_{1}(x, \eta’)\alpha$ ,
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the function $(\theta+\theta_{1})(_{\backslash }x, \eta’)$ satisfies the eikonal equation, $i$ . $e$ .
$((\theta+\theta_{1})_{x_{n}}-\lambda(x, \theta_{x’}))^{2}-\mu(x, \theta_{x’})=0$

for $x^{n}=0$ .
By using the above facts, it can be constructed aparametrix for $P$ as

follows: choose $\beta_{1}\in C_{0}^{\infty}(R^{1})$ and $\beta_{2}\in C^{\infty}(R^{1})$ such that for some $\alpha_{0}>0\beta_{1}(t)=1$

for $|t|<\alpha_{0}$, $\beta_{1}(t)=0$ for $|t|>2\alpha_{0}$ and for some $t_{0}>0\beta_{2}(t)=1$ for $t>t_{0}\gg 1$ ,

$\beta_{2}(t)=0$ for $t< \frac{1}{2}t_{0}$ . Let $\chi(\eta’)=\beta_{1}(|\frac{\eta’}{|\eta’|}-\frac{\eta^{0’}}{|\eta^{0’}|}|)\beta_{2}(|\eta’|)$ where $\eta^{0’}=(0, \eta^{0}")$

such that $\xi^{0’}=\theta_{x’}(x^{0}, \eta^{0’})$ . Moreover choose $\chi_{1}$ and $\chi_{-1}\in c^{\infty}(R^{1})$ such that
$\chi_{1}(’t)=1$ for $t>2c$ , $\chi_{1}(t)=0$ for $t<c$ ;

$\chi_{-1}(t)=1$ for $t<-2c$ , $\chi_{-1}(t)=0$ for $t>-c$ and

$\chi_{0}(t)=(1-\chi_{1}(t))(1-\chi_{-1}(t))$ , where $c>0$ .
Then we define

$GV(x)= \int\int_{L}(g(x, \eta’)-\tau h(x, \eta’))ei(_{\tau^{3}}^{\tau}-\rho\tau+\theta)d\tau\cross$

(2. 4) $\cross(A(\alpha|\eta’|^{s})^{-1})2(\chi_{1}(\alpha|\eta’|^{\text{\’{e}}})+\chi_{0}(\alpha|\eta’|^{e}))\chi(\eta’)V(\eta’)d\eta’$ ,

$+ \int e^{i(\theta+\theta_{1})(x\eta’)},d(x, \eta’)\chi_{-1}(\alpha|\eta’|^{e})\chi(\eta’)V(\eta’)d\eta’$

which is denoted by

$=G_{1}((\chi_{1}+\chi_{0})\chi V)+G_{2}(\chi_{-1}\chi V)$ ,

where $V\in 6’’(R^{n})$ and $V$ i $s$ aFourier transform of $V$ and where $d(x, \eta’)$

is equal to $g_{0}(x, \eta’)$ for $x_{n}=0$ and $g_{0}(x’, \eta’)$ may be assumed to be real. Tak-
ing account of the asymptotic behaviors, $\beta$) and 7) we may conclude that
$G|_{x_{n}=0}$ is aFourier integral operator with symbol class $S_{\tau}^{0}1,0$ and the phase
function $\varphi_{0}(x, \eta’)$ homogeneous in $\eta’$ of order 1such that

$\varphi_{0}(x, \eta’)=\{$

$\theta(x, \eta’)-\frac{2}{3}\rho(x, \eta’)^{\frac{3}{2}}+\frac{2}{3}\alpha^{\frac{3}{2}}|\eta’|$ for a $\geqq 0_{r}$

$\theta(x, \eta’)$ for $\alpha<0$

(ii) Before we consider boundary conditions with respect to $GV$ , we
shall show the following lemmas which are used in the next section.

LEMMA 2. 1. For real $z$ both of real and imaginary parts of $A’(z)/A(z)$

are negative.

(PROOF) Let $\omega$ be $e^{\frac{2}{3}\pi i}$ , then from the definition of $A$ we see that
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$(2\pi e^{\pi}5^{i})^{-1}A(z)=Ai(\omega^{2}(-z))$ .

Therefore using Miller’s formula ([9]) we obtain that

$(2 \pi e^{\pi}7^{i})^{-1}A(z)=-\frac{1}{2}\omega\{Ai(-z)+iBi(-z)\}$ ,

and then that

$(2 \pi e^{\pi}\tau^{i})^{-1}A’(z)=\frac{1}{2}\omega\{Ai’(-z)+iBi’(-z)\}$ ,

from which it follows that

$A’(z)/A(z)=(-1)\{Ai(-z)^{2}+Bi(-z)^{2}\}^{-1}[\{Ai’(-z)Ai(-z)$

$+Bi’(-z)Bi(-z)\}+i\{Bi’(-z)Ai(-z)-Ai’(-z)Bi(-z)\}.]$ .

Here the derivative of the last term in $[]$ is zero since $Ai$ and $Bi$ are
both Airy functions and in fact

$Bi’(-z)Ai(-z)-Ai’(-z)Bi(.-z)= \frac{1}{\pi}$ ([9]).

On the other hand the first term in $[]$ is the derivative of the function
$(Ai(-z)^{2}+Bi(-z)^{2})/2$ which is an increasing function with respect to $(-z)$

and does not vanish for all $z\in R$ . Thus our assertion holds for such $z$ .
LEMMA 2. 2. Set $z=\alpha|\eta’|^{z}\tau$ , then

$A’( \alpha|\eta’|^{\tau})/A2(\alpha|\eta’|^{\tau})2=-\{|z|^{-1}(\frac{1}{4}+O(|z|^{-3}))+i|z|^{z}1(1+O(|z|^{-3}))\}$

or

$=(-1)|z|^{\frac{1}{2}}(1+O(|z|^{-\frac{3}{2}}))$ ,

when $\alpha|\eta’|^{2}\tau\gg 1$ or $-\alpha|\eta’|\tau\gg 12$ respectively. Here by $O(|z|^{k})$ we means that

$O(|z|^{k})= \sum_{\nu=0}^{\infty}|z|^{k}(c_{\nu}|z|^{-\frac{3}{2}\nu})r$ and

$c_{\nu}$ is real for $p$ $=0,1,2$ , $\cdots$

which are uniformly asymptotic expansions when $|z|arrow\infty$ and cart be dif-
ferentiated term-by-term.

(PROOF) Denoting $t$ by $e^{-_{\tau^{\pi i}}^{2}}(-\alpha|\eta’|\tau)2$ , from the definition of $A$ , we see
that

$A(\alpha|\eta\acute{|}^{\tau})=\pi^{\frac{1}{2}}e^{\tau^{i}}e^{-_{F}\iota^{3}}(2\pi 2\tau a_{0}t^{-}\not\subset+a_{1}t^{-z^{-\frac{3}{2}+\cdots)}}11$

for $|\alpha||\eta’|\tau\gg 12$ , where $a_{0}\neq 0$ and $a_{i}$ are real. Therefore we see that
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$A’( \alpha|\eta’|^{\frac{2}{3}})=\pi^{\frac{1}{2}\tau^{i}}e^{\pi}e^{-\frac{2}{3}t^{\frac{3}{2}}}e^{-_{3}^{2}\pi i}(a_{0}t^{\frac{1}{4}}+(a_{1}+\frac{a_{0}}{4})t^{-\frac{1}{4}-1}+\cdots)$ ,

from which
$A’(\alpha|\eta’|^{2}\tau)/A(\alpha|\eta’|^{\frac{2}{2}})$

$=e^{-_{\tau^{\pi i}}^{2}}(t^{\frac{1}{2}}+ \frac{1}{4}t^{\frac{1}{2}-\frac{3}{2}}+\cdots)$

for $|t|\gg 1$ . Then, since $\arg t=\frac{\pi}{3}$ for $\alpha>0$ and $\arg t=-\frac{2}{3}\pi$ for $\alpha<0$ , we
have that our assertions are valid.

Here we remark that in the case where $\alpha<0$ the imaginary part of
$A’(\alpha|\eta’|^{\tau})2/A(\alpha|\eta’|^{2}\tau)$ is neglected, since it is decreasing exponentially when
$|\alpha||\eta’|^{2}\tauarrow\infty$ . Furthermore we see easily that the asymptotic expansions are
valid for any $z$ such that $|z|>z_{0}>0$ .
But later on we shall use Lemma 2. 1only for small $|z|$ and Lemma 2. 2
for sufficiently large $|z|$ .

Furthermore we remark the following

LEMMA 2. 3. The following three conditions are equivalent:
1) $\alpha=0$ ,
2) Setting $\zeta(x,$ $\eta\acute{)}=\theta_{x_{0}}-\sqrt{\rho}\rho_{x_{0}}-\mu_{2}(x, \theta_{x’}-\sqrt{\rho}\rho_{x}\prime\prime)$ , $\zeta(x, \eta’)=0$ and
3) $\theta_{x_{n}}-\sqrt{\rho}\rho_{x_{n}}$ is a real double root of $P_{2}(x, \theta_{x’}-\sqrt{\rho}\rho_{x’}, \xi_{n})=0$ with

respect to $\xi_{n}$ .
(PROOF) From the method of construction of 0and $\rho([2])$ we see that

for $\alpha=0\theta_{x_{n}}=\lambda(x’, \theta_{x’})$ and $\mu(x, \theta_{x’})=0$ which means 3) is valid. Moreover
from (1. 4) it follows that

$\mu(x, \xi’)=\zeta(x, \xi’)\mu_{3}(x, \xi’)$

and therefore that $\zeta(x, \eta’)=0$ if and only if 3) is true. Finally also the one
of construction of $\rho$ and $\theta$ implies that $\partial\zeta(x’, \eta’)/\partial\alpha\neq 0$ for $(x, \eta’)=(x^{0}, \eta^{0}’)$

when $|\eta’|=1$ . Thus we obtain that if $\zeta(x, \eta’)=0$ , then $\alpha=0$ . The proof
is complete. Here remark that $\mu_{2}(x, \xi’)$ is just the symbol $\theta(x, \xi’)$ in [10].

Finally we show the following
LEMMA 2. 4. Let $B_{1}(x’,\xi)=\xi_{n}-\lambda(x,\xi’)+c(x,\xi’)$ . Then for $\alpha=0c(x,\theta_{x’})$

is rewritten in the folloutirtg form:
$c(x’, \theta_{x’})(x’, 0, \eta’)=\{\mu^{\frac{1}{23}}(x’, \theta_{x’})-R_{\frac{(1}{2}}^{0)}(x’, \theta_{x’})D(d, \theta_{x}\prime\prime)\}\cross$

(2. 5)
$D(x, \theta_{x’})(x, 0, \eta’)$ ,

where $R_{\not\equiv}^{(0)}(x, \theta_{x’})$ is defined below
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(PROOF) Let $\zeta(x’, \xi’)=\zeta_{0}-\mu_{2}(x’, \xi’)$ . Considering $\{x’, \zeta, \xi’\}$ as new vari-
ables, by $a(x’, \zeta, \xi’)$ here we denote the function $a(x’, \xi_{0}, \xi’)$ . Then from
our assumption and (1. 4) it follows that

$B_{1}$ ( $x’$ , $\xi’$ , $\lambda^{+}(x’, \xi’))=R_{\frac{1}{2}}(x’, \sqrt{\zeta}, \xi’)(\sqrt{\zeta}-D(x’, \xi’))$

$=-\sqrt{\zeta}\mu^{\frac{1}{23}}(x’, \xi’)+c(x’, \zeta, \xi’)$ .

Therefore expanding both sides of the above equation with respect to a
and comparing with the first and the second terms in ones, by analiticities
of the above functions in $\sqrt{\zeta}$ we see that

$c(x’, 0, \xi’)=-R_{\frac{1}{2}}(x’, 0, \xi’)D(x, \xi’)$ and

$-\mu^{\frac{1}{23}}(x’, 0, \xi’)=R_{\frac{1}{2}}(x’, 0, \xi’)-R_{\frac{(1}{2}}^{0)}(x’, 0, \xi’)D(x, \xi’)$ .

Thus using Lemma 2. 3and setting $\xi’=\theta_{x’}(x, \eta’)$ we see that our assertion
is valid.

COROLLARY. For the same 0as in (1. 5)

(2. 6) $\frac{\pi}{2}\leqq\arg(e^{i\theta}c(x’, \theta_{x’})(x’, 0, \eta’))\leqq\frac{3\pi}{2}$ .

Since $\mu^{\frac{1}{23}}(x’, \theta_{x’})>0$ and $D(x^{0}, \theta_{x’}(x^{0}, \eta^{0’}))=0$ , we have that our assertion
is true if we restrict ourselves to asmaller conic neighborhood of $(x^{0}, \eta^{0’})$ .
Here we must mention that the term $c(x’, \theta_{x}’)$ $(x, \eta’)-c(x, \theta_{x’})(x’, 0, \eta’)$ does
not play any essential role in the next section (Compare with that in [10]).

\S 3. Proof of Theorem.

(i) We first calculate the symbol of $BG_{1}((\chi_{1}+\chi_{0})\chi V)|_{x_{n}=0}$ :

$B(G_{1}((\chi_{1}+\chi_{0})\chi V)|_{x_{n}=0})(x\acute{)}$

$= \int\int_{L}(B_{1}(x,$ $(\theta_{x}-\tau\rho_{x})_{0})(g_{0}(x, \eta’)-\tau h_{0}(x, \eta’))+$

$+B_{0}(x, \eta’, \tau),)e^{i(_{F}^{\tau^{3}}-\rho++\theta)}d\tau\frac{(\chi_{1}+\chi_{0})(\alpha|\eta’|^{\text{\’{e}}})\chi(\eta’)}{A(\alpha|\eta|^{\tau})2},V(\eta’)d\eta’$

where $(\theta_{x}+\tau\rho_{x})_{0}=(\theta_{x}+\tau\rho_{x})|_{x,=0},$
’ $\rho_{0}=\rho|_{x_{n}=0}$ , $\theta_{0}=\theta|_{x_{n}=0}$ and the last te rm

$B_{0}(x’, \eta’, \tau)$ is asum of symbols homogeneous in $(\eta’, \tau)$ of order $\leqq 0$ .
Here we say that afunction $B(x, \eta’, \tau)$ is homogeneous in $(\eta’, \tau’)$ of

order $m$ if the following holds:

$B(x, k\eta’, k^{1}\tau\tau)=k^{m}B(x, \eta’, \tau)$

for any $k>0$ .
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Furthermore we have

$B_{1}$ ( $x’$ , $(\theta_{x}-\rho_{x}\tau)_{0}$) $(g_{0}-\tau h_{0})$

(3. 1)
$=c_{1}(x’, \eta’)+c_{2}(x’, \eta’)\tau+(\tau^{2}-\rho_{0})b(d, \eta’, \tau)$

and taking $\tau=0$ , $\alpha=0$ ,

$c_{1}(d,$ $\eta\acute{)}=B_{1}(x,$ $(\theta_{x})_{0})g_{0}$ for $\alpha=0$ .

Differentiating (3. 1) with respect to $\tau$ and taking $\tau=0$ , $\alpha=0$ , we obtain

$c_{2}(x’, \eta’)=-(\rho_{x_{n}})_{0}\frac{\partial B_{1}}{\partial\xi_{n}}(x’,$ $(\theta_{x})_{0})g_{0}-B_{1}(x$ , $(\theta_{x})_{0})h_{0}$

for $\alpha=0$ . Because $\partial b/\partial\tau(x, \eta’, \tau)$ is homogeneous in $(\eta’, \tau)$ of order 0, $(\tau^{2}-$

$\rho_{0})b(x, \eta’, \tau)$ is considered as alower order term $\in S_{\tau}^{0}1,0$ . Thus we can
write $BG_{1}((\chi_{1}+\chi_{0})\chi V)|_{x_{n}=0}$ in the following form:

$\int\{d_{1}(x’, \eta’)A(\rho_{0})/A(\alpha|\eta’|\tau)2+id_{2}(x, \eta’)A’(\rho_{0})/A(\alpha|\eta\acute{|}^{2}\tau)\}\cross$

$\cross e^{i\theta_{0}}(\chi_{1}+\chi_{0})(\alpha|\eta’|\epsilon)\chi(\eta’)V(\eta’)d\eta’$

Here

$d_{1}(x, \eta’)=B_{1}(x,$ $(\theta_{x})_{0})g_{0}+O(\alpha|\eta’|)$ $mod (S_{1,0}^{0})$ ,

$d_{2}(x, \eta’)=-((\rho_{x_{\iota}},)_{0}g_{0}+O(\alpha|\eta’|^{2}\tau)$ $mod (S_{1,0}^{0})$ ,

$A(\rho_{0})/A(\alpha|\eta’|^{\tau})=2(1+O(\alpha^{\infty}))e^{i(-_{\tau^{\rho_{0}^{3}+}\tau^{|\alpha|^{\frac{3}{2}}1\eta’|)}}^{22}}2$

if $\alpha|\eta’|\tau 2>c_{1}>0$ , and
$A(\rho_{0})/A(\alpha|\eta’|^{2}\tau)=1+O(\alpha^{\infty})$

if $|\alpha||\eta’|^{2}\tau<2c_{1}$ , the same relations hold for $A’(\rho_{0})/A’(\alpha|\eta’|\tau)2$ and all of which
are of $S_{1,0}$-class. Furthermore the proof of Lemma 2. 3implies that

$B_{1}$ ($d$ , $(\theta_{x})_{0})=(\theta_{x_{n}})_{0}-\lambda(x,$ $(\theta_{x’})_{0})+c(x’$ , $(\theta_{x’})_{0})$

$=c$ ( $x’$ , $(\theta_{x’})_{0})+O(\alpha|\eta’|)$ .
Therefore using $\beta$) $(i)$ in. \S 2 we obtain that the principal symbol of the
amplitude of the above integral is contained in the following symbol:

$c$ ($x$ , $(\theta_{x’})_{0}$) $g_{0}+O(\alpha|\eta’|)$

(3. 2)
$+(-i)((\rho_{x_{n}})_{0}g_{0}+O(\alpha|\eta’|^{p}))2A’(\alpha|\eta’|^{\tau})2/A(\alpha|\eta’|^{\tau})2$

where all of functions except $A’(\alpha|\eta’|\tau)2/A(\alpha|\eta\acute{|}\tau)2$ are of $S_{1,0}$-class.
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Now let 0be an ellptic Fourier integral operator such that

$( \Phi V)(x’)=\int e^{t(\varphi_{0}(x’.\eta’)-\langle y’\eta’\rangle)}\prime a(x’, \eta’)V(\eta’)dy’d\eta’$

where $a(x’, \eta’)\in S_{1,0}^{0}(R^{n}\cross R^{n}\backslash 0)$ and is positive. Then we can define the
inverse elliptic Fourier integral operator $\phi^{-1}$ such that

$\phi\phi^{-1}V\equiv V$ $(mod C^{\infty})$

for any $V\in \mathcal{E}’(\Gamma)$ whose $WF(V)$ belongs to aconic neighborhood of $(x^{0}, \xi^{0’})$ .
Then by the canonical transformation with the generating function $\varphi_{0}(x’, \eta’)$

$-\langle\psi, \eta’\rangle$ aconical neighborhood $\Sigma$ of the point $(x^{0}, \xi^{0’})$ is transformed to
aconic neighborhood $\Sigma’$ of the point $(y^{0}, \eta^{0})$ such that $|\alpha|<2^{-1}\alpha_{0}\ll 1$ for
$(y, \eta’)\in\Sigma’$ and

$\varphi_{ox’}(x^{0}, \eta^{0’})=\xi^{0’}$ and $\varphi_{0\eta’}(x^{0}, \eta^{0’})=y^{0}$ .
Thus we obtain that the pseud0-differential operator

$\phi^{-1}(BG_{1}((\chi_{1}+\chi_{0})\chi V)|_{x_{n}=0})$

has an amplitude with the principal symbol transformed by the canonical
transformation from (3. 2). Let $\{x’(y, \eta’), \xi’(y, \eta’)\}$ be the canonical transform
from $\Sigma’$ to $\Sigma$ , then the principal symbol may be considered as the function
obtained from (3. 2) replacing $\acute{x}$ by $x\acute{(}y$, $\eta’$ ) whose terms we shall denote
by the same notations without confusion.

Furthermore from $\beta$) $(i)$ in \S 2 we see that

$((\rho_{x_{n}})_{0}g_{0}+O(\alpha|\eta’|^{\tau}2))/|\eta’|^{\tau}2$

does not vanish if $|\alpha|\leqq\alpha_{0}\ll 1$ . Therefore extending suitably the above sym-
bol in the whole space $R^{n}\cross R^{n}\backslash 0$ we obtain apseud0-differential operator
$Q$ whose principal symbol is the inverse of the above function. Then
$Q\Phi^{-1}((BG_{1}(\chi_{1}+\chi_{0})\chi V)|_{x_{n}=0})$ has the principal symbol contained in the fol-
lowing

$e_{1}$ ( $x$ , $(\theta_{x’})_{0})+O(\alpha|\eta’|)$

$+(-i)|\eta’|\tau A’2(\alpha|\eta’|\tau)2/A(\alpha|\eta’.|^{\tau})2$ ,

where $e_{1}(d, (\theta_{x’})_{0})$ satisfies also (2. 6). Let $w$ be the function

$( \frac{1}{2\pi})^{n}\int e^{i\langle y\eta’\rangle},(\chi_{1}+\chi_{0})(\alpha|\eta’|^{e})\chi(\eta’)V(\eta’)d\eta’$

where $V\in C_{0}^{\infty}(\pi\Sigma’)$ . Then extending symbols suitably in the whole space
$R^{n}\cross(R^{n}\backslash 0)$ , we have that
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${\rm Re}(-e^{i\theta}Q\Phi^{-1}(BG(w)|_{x_{n}=0}),$ $w)$

(3. 3) $=( \int e^{iy\eta’\rangle(e_{2}(y,\eta’)+O(\alpha|\eta’|)+{\rm Re}(F},ie^{i\theta}|\eta’|^{\frac{2}{3}}A’(\alpha|\eta’|^{2})/A(\alpha|\eta’|^{2}\tau)))$ .

$\hat{w}d\eta’$ , ut$)+O(||w||_{0}^{2})$

where $e_{2}(y, \eta’)\geqq 0$ , $e_{2}(y, \eta’)\in S_{1,0}^{1}$ and the last term is caused by acommutator.
Since by Lemma 2. 1and 2. 2we see that

${\rm Re}\{ie^{i\theta}|\eta’|^{\frac{2}{3}}A’(\alpha|\eta’|^{\tau})/A2(\alpha|\eta’|^{\tau})\}2$

(3. 4)
$\geqq k_{1}|\eta’|^{\tau}(2|\alpha||\eta’|^{\tau})^{\frac{1}{2}}2$ or $k_{2}|\eta’|^{\tau}2$ ,

when $|\alpha||\eta’|^{\tau}\geqq c_{1}2>0$ or $|\alpha||\eta’|^{\frac{2}{3}}<2c_{1}$ respectively. Hence it implies that
${\rm Re}$ $\{\}$ in (3. 4) is larger than $k_{3}|\eta’|^{2}\tau$ for $\alpha\geqq-2c|\eta’|^{-}’$ . Here and hereafter
in this section we denote some positive numbers by $k_{J}$ $(j=1,2, \cdots, 6)$ and $c_{J}$

$(j=1,2, \cdots, 11)$ .
Now we have that (3. 3) $\geqq c_{2}||w||_{\tau}^{2}1$ when we take $t_{0}$ sufficiently large

in the definition $\beta_{2}$ in \S 2. For, we apply first the $G_{a}^{Q}$rding sharp form to
the term containing $e_{2}(y, \eta’)$ . Next to treat the term $O(\alpha|\eta’|)$ , from (3. 4),
taking $\alpha_{0}$ sufficiently small, we see that for $k_{4}\gg 1$

$\frac{k_{3}}{2}(|\eta’|^{\tau}\gamma(2\alpha|\eta’|^{\frac{1}{3}}))+k_{4}|\alpha||\eta’|(1-\gamma(\alpha|\eta’|^{\tau}))1\gg|\alpha||\eta’|$

if $\alpha|\eta’|\epsilon\geqq-2c$ ,
where the left hand side $a(\eta’)$ in the above inequality is of $S_{1-_{F}^{1},0}$ last and
is less than the half of the real part in (3. 4). Here $\gamma$ is afunction such
that $\gamma(t)=1$ if $|t|\leqq\delta_{1}$ and $\gamma(t)=0$ if $|t|\geqq 2\delta_{1}$ , for $\delta_{1}\gg 1$ . Therefore also using
$G[mathring]_{a}$rding sharp form we obtain

${\rm Re}( \int e^{i\langle y\eta’\rangle},(a(\eta’)+O(\alpha|\eta’|))\hat{w}d\eta’,$ $w)$

$\geqq-c_{3}||w||_{\frac{12}{6}}$

Thus we see that desired inequality is valid.
Furthermore from the above inequality it follows that

$||Q\Phi^{-1}(BG_{1}(w)|_{x_{n}=0)||_{-_{B}^{1}}1}\geqq c_{4}||w||_{\pi}$

from which we see by ausual method that

$||Q\Phi^{-1}(BG_{1}(w)|_{x_{n}=0})||0\geqq c_{5}||w||_{2}\tau$

and finally we obtain that for sufficiently large $t_{0}$ and $\alpha_{0}^{-1}$
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(3. 5) $||\phi^{-1}(BG_{1}(w)|_{x_{n}=0})||_{0}\geqq c_{6}||w||_{\tau}2$

(ii) Next we shall treat $BG_{2}(\chi_{-1}xV)$ . Form 7), (i) in \S 2 we see that
the principal symbol of $BG_{2}(w)|_{x_{n}=0}$ has the following form :

$B_{1}$ ( $x’$ , $((\theta+\theta_{1})_{x})_{0})=B_{1}(x’,$ $(\theta_{x’})_{0}$ , $\lambda^{+}(x’,$ $(\theta_{x’})_{0}))$

$=\lambda^{+}(x’$ , $(\theta_{x’})_{0})-\lambda(x,$ $(\theta_{x’})_{0})+c(x’$ , $(\theta_{x’})_{0})$

$=-\sqrt{\zeta}\mu_{3}$ ( $x’$ , $(\theta_{x’})_{0})^{\frac{1}{2}}+c(x’,$ $(\theta_{x’})_{0})$

where

$\mu_{3}$ ( $x’$ , $(\theta_{x’})_{0})>0’$. $\zeta=(\theta_{x_{0}})_{0}-\mu_{2}(x,$ $(\theta_{x}\prime\prime)_{0})$ ,

$c$ ( $x’$ , $(\theta_{x’})_{0})=c(x’,$ $(\theta_{x’})_{0})|_{\alpha=0}+O(\alpha|\eta’|)$ ,

$|\alpha|^{\frac{1}{2}}\in S_{1-\text{\’{e}},0\prime}^{0}$. $\sqrt{\zeta}\in S_{1-\epsilon,e}^{0}$ ,

$\mu^{\frac{1}{32}}$ ( $x$ , $(\theta_{x’})_{0})\in S_{0}^{\frac{1}{12}},$

’ $D(x,$ $(\theta_{x’})_{0})\in S_{0}^{\frac{1}{12}}$

,

and
$|\eta’|^{\frac{1}{2}}\sqrt{\zeta}\sim k_{b}|\alpha|^{\frac{1}{2}}|\eta’|\geqq ck_{b}|\eta’|^{1_{2}^{-i}}$ ,

since $|\alpha||\eta’|.>c$ .
Thus by the same way as in (i) considering ${\rm Re}(-e^{i\theta}\Phi^{-1}(BG_{2}(w)|_{x_{n}=0}), w)$ , we
have that for $w=\chi_{-1}\chi V$ and for sufficiently large $t_{0}$ and $\alpha_{0}^{-1}$

(3. 6) $||\Phi^{-1}(BG_{2}(w)|_{x_{n}=0})||_{0}\geqq c_{7}||w||_{1-_{\overline{2}}}$. $\geqq c_{8}||w||_{\tau}21$

(iii) Take $t_{0}$ and $\alpha_{0}^{-1}$ sufficiently large and add (3. 5) and (3. 6). Then
by modifying $\chi_{j}$ such that $(\chi_{1}+\chi_{0})^{2}+\chi_{-1}^{2}=1$ , we see that

(3. 7)
$||\phi^{-1}(BG(V)|_{x_{n}=0}||_{0}^{2}\geqq c_{9}(||(\chi_{1}+\chi_{0})\chi V||_{2/3}^{2}+||\chi_{-1}\chi V||_{2/3}^{2})$

$-c_{10}||\chi V||_{1/3}^{2}\geqq c_{11}||\chi V||_{2/3}^{2}$

is valid for $V\in c_{0}^{\infty}(\pi\Sigma’)$ , since $\chi_{1}+\chi_{0}$ and $\chi_{-1}\in S_{1-e}^{0},0_{F}\subset S_{2}^{0},0$ . Furthermore it is
easily seen that for the adjoint operator of $\phi^{-1}(BG(\cdot)|_{x_{n}=0})$ the analogous
estimate as above is true, for to derive the estimate (3. 7) the relation (1. 5)
and Lemma 2. 1and 2. 2were essential and therefore we merely consder
to take complex conjugates to the terms appeared in that.

Finally adding an elhptic pseud0-differential operator and acompact one
with symbol $\in S_{1,0}^{-\infty}$ to $\phi^{-1}(BG(\cdot)|_{x_{n}=0})$ and using apriori estimates as above,
we have that the equation for $V\in \mathcal{E}’’(\pi\Sigma’)$
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$\phi^{-1}(BGV|_{x_{n}=0})=\phi^{-1}f$ $(mod C^{\infty})$

is solved for given $f\in 6^{\triangleleft\prime}(\pi\Sigma)$ with $WF(f)\subset\Sigma$ such that $WF(V)\subset WF(\phi^{-1}f)$.
To show the last assertion mentioned above, we remark first that for

some neighborhood of apoint $(y, \eta’)$ with $|\alpha|>0$

$K=(A’(\alpha|\eta’|\tau)/A2(\alpha|\eta’|^{\tau}))2|\eta’|^{\frac{2}{3}}\in S_{1,0}^{1}$

and furthermore from the definition of $e_{2}(y, \eta’)$ and (2. 5) we see that for
apoint $(y, \eta’)$ such that $\alpha=0$ but $B_{1}(x’(y, \eta’),$ $\theta_{x}(x\acute{(}y, \eta’)$ , $\eta’))\neq 0$ , $e_{2}(y, \eta’)>0$

and hence $Q\Phi^{-1}(BG_{i}(\cdot)|_{x_{n}=0})$ ($i=1$ or 2) is elliptic in some neighborhood
of $(y, \eta’)$ . Finally we see that the other point $(y_{1}, \eta^{1’})\in\Sigma 1$ , the symbol of
the commutator of $K$ and afunction $f(y)(\in C_{0}^{\infty}(U(y^{1})))be1ongs$ to $S_{3}^{1}1\tau_{0^{\cdot}}$

, For,

the main symbol of $[K(D), f(y)]$ is $D_{\eta’}K(\eta’)\cdot$ $\frac{\partial}{\partial y}f(y)$ and $K(\eta’)\in S_{\tau}^{2}1\tau_{0}$

, if $|\alpha||\eta’|^{a}I$

$<2c_{1}$ . Furthermore if $|\alpha||\eta’|^{2}\tau>c_{1}$ , the principal symbol of $D_{\eta’}K(\eta’)=(-i)$

$D_{\eta’}(|\alpha|^{\frac{1}{2}}|\eta’|)=(-i)D_{\eta’}(|\eta_{0}|^{1}z|\eta’|^{\frac{1}{2}})$ whose absolute value $\leqq k_{6}|\eta’|^{-\frac{1}{2}\tau^{+\frac{1}{2}}}.1\leqq k_{6}|\eta’|\tau^{1}$ .
Thus applying apriori-estimates as in (3. 7) and using cut off functions, by
astandard method we see that the extension of $\phi^{-1}(BG(\cdot)|_{x_{n}=0})$ mentioned
before is hypoelliptic.

Thus we obtain the desired micr0-local solution of (1. 1) modulo $C^{\infty}-$

functions near the given point $(x^{0}, \xi^{0})$ .
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