On the Hall-Higman and Shult theorems

By Tomoyuki Yoshida

(Received December 16, 1977)

The purpose of this paper is to improve the proof of the wellknown Hall-Higman and Shult theorems. See also [3, Satz 5.17.13] and [5] for alternate proofs of these theorems.

THEOREM 1. ([4, Theorem 3.1] and [2, Theorem B]). Assume that the following hold:

(a) G=PQ is a finite group, $Q=O_{p'}(G)$, $P=\langle x \rangle$ is a cyclic Sylow **p**-subgroup of G of order $p^n \neq 1$, and $O_p(G)=1$;

(b) k is a field of characteristic r and V is a faithful kG-module;

(c) V_P contains no kP-submodule isomorphic to kP, where V_P denotes the module V viewed as a kP-module.

Let d be the degree of the minimal polynomial of x on V. Then there is a prime $q \neq p$ such that a Sylow q-subgroup of G is nonabelian and either

(1) q=2, p is a Fermat prime, and $p^n-p^{n-1} \le d < p^n$, or

(2) p=2, q is a Mersenne prime $<2^n$, and $2^nq/(q+1) \le d < 2^n$.

We shall prove this theorem. By the induction argument ([1, Theorem 11. 1. 4] and [4, pp. 703-705]), the proof is reducted to the case where the following hypothesis is satisfied.

HYPOTHESIS 1. (1) The assumption of Theorem 1 holds;

(2) Q is an extraspecial q-group of order q^{2t+1} , q a prime, and P acts irreducibly on Q/Q' and trivially on Q';

(3) k is algebraic closed and Q acts irreducibly on V.

We shall prove the following theorem which is the main object in this paper. What it implies Theorem 1 is shown by an easy calculation.

THEOREM 2. Assume that Hypothesis 1 holds. The V_P is isomorphic to the quotient module of a free kP-module by an irreducible submodule.

To prove this theorem, we need two lemmas which are both wellknown.

LEMMA 3. Let G=PQ be a Frobenius group whose kernel Q is an elementary abelian minimal normal subgroup of G and complement P is

The author is partially supported by Yukawa Foundation.

a cyclic p-group. Let k be an algebraic closed field and let V be a kG-module such that $C_{V}(Q)=0$. Then V_{P} is a free kP-module.

This lemma is proved by the same way as the proofs of the elementary abelian cases of Hall-Higman and Shult theorems. See also [1, Theorem 3. 4. 3].

LEMMA 4. Let Q be an extraspecial q-group of order q^{2t+1} , q a prime, and let f be an automorphism of Q which acts irreducibly on Q/Q' and trivially on Q'. Then $|f||q^t+1$.

This lemma is proved in [1, Lemma 11. 2. 5]. See also [1, Lemma 5. 6. 3 and Theorem 5. 6. 5].

We can now prove Theorem 2.

PROOF OF THEOREM 2. Set $E = End_k(V)$. For $\theta \in E$ and $g \in G$, define $\theta^g \in E$ be $\theta^g(v) = g^{-1}\theta(gv)$ for $v \in V$, so that E is a kG-module. The irreducibility of Q on V yields that elements of Z(G) = Z(Q) acts on V as a scalar transformation. Thus Q' = Z(Q) acts trivially on E, and so E is regarded as a $k\overline{G}$ -module, where $\overline{G} = G/Q'$. Since V_Q is an irreducible kQ-module and k is a splitting field for Q, we have that $C_E(\overline{Q}) = End_{kQ}(V) = k$. Since $\overline{Q} = Q/Q'$ is an elementary abelian minimal normal subgroup of \overline{G} , it follows from Lemma 3 that $E_P = C_E(Q) \oplus [E, \overline{Q}] \cong k \oplus e \cdot kP$ for some integer e, where $e \cdot kP$ is the direct sum of e copies of kP. It is wellknown that dim $V = q^t$. See [1, Theorem 5.5.5]. Thus $q^{2t} = \dim E = 1 + eq^n$.

Suppose first that p=r=char(k). Let V_1, \dots, V_m be indecomposable kPsubmodules of V_P such that $V_P = \sum_i V_i$. Set $E_{ij} = \operatorname{Hom}_k(V_i, V_j)$ for each *i*, *j*. Then $E_P = \sum_{ij} E_{ij}$. Since kP is indecomposable and $E_P \simeq k \bigoplus e \cdot kP$, there is uniquely (i_0, j_0) such that $E_{ij} \cong e_{ij} \cdot kP$ if $(i, j) \neq (i_0, j_0)$ and $E_{ij} \cong k \bigoplus e_{ij} \cdot kP$ if $(i, j) = (i_0, j_0)$. Let $d_i = \dim_k V_i$ for each *i*. Then $1 \le d_i \le p^n$ and

$$d_{i}d_{j} = \dim E_{ij} \equiv \begin{cases} 0 & \text{if } (i,j) \neq (i_{0},j_{0}) \\ 1 & \text{if } (i,j) = (i_{0},j_{0}) \end{cases}$$

modulo p^n . Thus $i_0 = j_0$ and $d_i \equiv 0 \pmod{p^n}$ for $i \neq i_0$. We may assume that $i_0 = j_0 = 1$. Hence $d_1^2 \equiv 1 \pmod{p^n}$ and $d_i = p^n$ for $i \geq 2$. By Lemma 4, $p^n | q^t + 1$. Thus $d_1 \equiv \dim V = q^t \equiv -1 \pmod{p^n}$, and so $d_1 = p^n - 1$, whence $V_1 \cong kP/Z(kP)$. Hence V_P is isomorphic to the quotient module of $m \cdot kP$ by an irreducible submodule.

Suppose next that $r \neq p$. Let ω be a primitive p^n -th root of unity in k. Let V_i be an irreducible kP-module such that $(x-\omega^i) V_i=0$. Such V_i is uniquely determined up to isomorphism for each i, $0 \leq i < p^n$, and $V_{j+p^n} \cong V_j$ for each j. There are d_i , $0 \leq i < p^n$, such that $V_P \cong \Sigma_i d_i V_i$. Set $E_{ij} =$

T. Yoshida

Hom_k(V_i, V_j). Then $E_{ij} \cong V_{i-j}$, and so $E_P \cong \bigoplus \Sigma d_i d_j V_{i-j} \cong \bigoplus \Sigma d_i d_{i-j} V_j$, where i, j run over 0 to $p^n - 1$. Since $E_P \cong k \oplus e \cdot kP$ and $kP \cong \bigoplus \Sigma V_i$,

$$\Sigma_i d_i d_{i-j} = \begin{cases} 1+e & \text{if } j=0\\ e & \text{if } 0 < j < p^n, \end{cases}$$

where *i* runs 0 to $p^n - 1$. This implies that there is i_0 such that $d_i = m \pm \delta_{i,i_0}$ for some *m*. See the proof of [3, Satz 5.17.13]. As $p^n | q^t + 1$ by Lemma 4, $q^t = (p^n - 1) m + d_{i_0} \equiv -1 \pmod{p^n}$. Thus $d_{i_0} = m - 1$. Hence $V_P \bigoplus V_{i_0} \cong \bigoplus \Sigma m V_i = m \cdot kP$, proving the theorem.

ACKNOWLEDGEMENT. The author wish to thank T. Okuyama for much good advice.

References

- [1] D. GORENSTEIN: "Finite Groups", Harper and Row, 1968.
- [2] P. HALL and G. HIGMAN: On the *p*-length of *p*-solvable groups and reduction theorems for the Burnside problem, Proc. London Math Soc. (3), 6 (1956), 1-42.
- [3] B. HUPPERT: "Endliche Gruppen", Springer-Verlag, 1967.
- [4] E. SHULTS: On groups admitting fixed point free abelian operator groups, I11. Jour. Math., 9 (1965), 701-720.
- [5] J. THOMPSON: Vertices and sources, Jour. Alg., 6 (1967), 1-6.

Department of Mathematics, Hokkaido University, Sapporo 060, Japan