On integrability conditions on the space of sections of jet-bundles

By Yoshifumi ANDO

(Received October 28, 1977; Revised February 22, 1978)

§1. Introduction

Let N be a n dimensional differentiable manifold. We consider a differentiable bundle E(N) over N with projection π and the bundle $E^r(N)$ of r-jets of local sections of E(N). Let Ω be an open set of $E^r(N)$. Then we let $\Gamma_{\varrho}E$ be the space of C^r sections, $s: N \to E(N)$ such that $j^r s(N)$ is contained in Ω equipped with C^r topology. We let $\Gamma_{\varrho}E^r$ be the space of continuous sections : $N \to E^r(N)$ whose image is contained in Ω , equipped with compact-open topology (An element of $\Gamma_{\varrho}E$ or $\Gamma_{\varrho}E^r$ will be called Ω -regular). Then there is a natural map $j^r: \Gamma_{\varrho}E \to \Gamma_{\varrho}E^r$. We discuss how the map j^r is close to a weak homotopy equivalence. This is related with the integrability of sections of $E^r(N)$ up to homotopy.

THEOREM. Let Ω and Ω' be open sets in $E^r(N)$ with $\Omega \supseteq \Omega'$. Let $\Omega - \Omega'$ is a finite union of regular submanifolds of Ω with codimensions greater than $n + \sigma$.

(i) If $j^r: \Gamma_{a'}E \to \Gamma_{a'}E^r$ is a τ -homotopy equivalence, then $j^r: \Gamma_a E \to \Gamma_a E^r$ is a min (τ, σ) -homotopy equivalence.

(ii) If $j^r: \Gamma_{\rho} E \to \Gamma_{\rho} E^r$ induces the isomorphisms of *i* dimensional homotopy groups $(0 \le i \le \tau)$, then $j^r: \Gamma_{\rho'} E \mapsto \Gamma_{\rho'} E^r$ induces the isomorphisms of *i* dimensional homotopy groups $(0 \le \tau \le \min(\tau, \sigma) - 1))$.

A *j*-homotopy equivalence means the isomorphisms of *i* dimensional homotopy groups $(0 \le i < j)$ and a surjection of *j* dimensional homotopy groups.

This theorem is a generalization of Transversality lemma due to A. du Plessis in [5] which is the case of differentiable maps of the above theorem. The applications of the theorem are given in §4 to the cace of Thom-Boardman singularities ([2, 7, 9]). The proof is based on the transversality arguments.

All manifolds should be paracompact and Hausdorff.

\S 2. A variant of Thom's transversality theorem

In this section we will show a variant of Thom's transversality theorem.

This is a generalization to the case of differentiable bundles E(N) of Morlet's transversality theorem ([8]) which says that the case of product bundles of the following theorem is valid. Let ΓE be the space of C^{∞} sections of E(N) over N with C^{∞} topology.

THEOREM 2.1. Let Σ be a regular differentiable submanifold of $E^r(N)$. Let $\Sigma(N)$ be the space of C^{∞} sections, $s: N \rightarrow E(N)$ whose r-jet, $j^r s: N \rightarrow E^r(N)$ is transverse on Σ . Then $\Sigma(N)$ is represented as the intersections of countable open dense sets of ΓE .

PROOF. At first we choose a countable covering of Σ by open subsets $\Sigma_1, \Sigma_2, \cdots$ such that each Σ_i satisfies

(i) the closure $\overline{\Sigma}_i$ of Σ_i in $E^r(N)$ is contained in Σ ,

(ii) $\bar{\Sigma}_i$ is compact,

(iii) there exists an open neighbourhood U_i in N where $E(N)|_{U_i}$ is trivial and a trivialization, $t: E(N)|_{U_i} \rightarrow U_i \times P$ as follows. This induces a diffeomorphism $t^r: E^r(N)|_{U_i} \rightarrow J^r(U_i, P)$ which is composed with a projection $\pi_P: J^r(U_i, P) \rightarrow P$. Then there exists an open chart V_i of P such that $\pi_P \circ t^r(\bar{\Sigma}_i)$ is contained in V_i ,

(iv) the closure \overline{U}_i of U_i is compact.

Let $\Sigma_i(N)$ be the space of C^{∞} sections of ΓE , whose *r*-jets are transverse on Σ_i . Then it is clear that $\Sigma(N)$ is the intersection of all $\Sigma_i(N)$. Now we show that $\Sigma_i(N)$ is represented as the intersection of countable open dense sets. We let $r_i: \Gamma E \rightarrow \Gamma(E|_{U_i})$ be the restriction map of C^{∞} sections of E(N). Let $\Sigma(U_i)$ be the space of C^{∞} sections of $E(N)|_{U_i}$ whose *r*-jects are transverse on Σ_i .

Then $r_i^{-1}(\Sigma(U_i)) = \Sigma_i(N)$. By the Morlet's transversality theorem $\Sigma(U_i)$ is represented as the intersection of countable open dense sets. Hence it is enough to show that $\Sigma_i(N)$ is dense in ΓE .

Let s be an element of ΓE . We show that there exists a sequence $\{s_i\}$ in $\Sigma_i(N)$ which converges to s. We choose a chart, $\eta: V_i \to R^p$ and differentiable functions ρ ; $N \to [0, 1]$ and $\rho': P \to [0, 1]$ such that

$$\rho = \begin{cases} 1 & \text{on a neibourhood of } \pi(\Sigma_i) \text{ in } U_i, \\ 0 & \text{off } U_i \end{cases}$$

$$\rho' = \begin{cases} 1 & \text{on a neibourhood of } \pi_P \circ t^r(\bar{\Sigma}_i) \text{ in } V_i, \\ 0 & \text{off } V_i. \end{cases}$$

This choice of ρ and ρ' is possible since $\overline{\Sigma}_i$ is compact. By Morlet's transversality theorem $\Sigma(U_i)$ is dense in $\Gamma(E|_{U_i})$. Hence there exists a sequence $\{g_i\}$ of $\Sigma(U_i)$ which converges to $s|_{U_i}$ in the fine C^{∞} Whitney topology.

Y. Ando

Now we define the sequence $\{s_i\}$ as follows

$$s_{\iota}(x) = \begin{cases} s(x) & \text{if } x \in U_{i} \text{ or } s(x) \in V_{i}, \\ \eta_{i}^{-1} \Big[\eta_{i} \Big(s(x) \Big) + \rho(x) \rho' \Big(g_{1} x \Big) \Big) \rho' \Big(s(x) \Big) \Big[\eta_{i} \Big(g_{1}(x) \Big) - \eta_{i} \Big(s(x) \Big) \Big]. \\ & \text{if otherwise.} \end{cases}$$

This definition is possible if l is sufficiently large. It is clear that the sequence $\{s_i\}$ converges to s. The rest of the proof is to show that s_i 's are contained on $\Sigma_i(N)$ for sufficiently large l. In fact there exists a large number a such that if $j^r s_l(x_0) \in \overline{\Sigma}_i$ and l > a, then $\rho(x_0) = 1$, $\rho'(s(x_0)) = 1$ and $\rho'(g_l(x_0)) = 1$. For, let ε be a positive number smaller than a half of the distance of the subset of V_i where ρ' is smaller than 1 and the subset $\pi_{P^\circ}t^r(\overline{\Sigma}_i)$. Then a is defined to be an integer such that $|\eta_i(g_l(x)) - \eta_i(s(x))|$ is smaller than ε for l > a. Since $j^r s_l(x_0) \in \overline{\Sigma}_i$ means that $s_l(x_0) (= \pi_{P^\circ}j^r s_l(x_0))$ are smaller than ε . Hence $\rho'(s(x_0)) = \rho'(g_l(x_0)) = 1$ for l > a. Since $j^r s_l(x_0) \in \overline{\Sigma}_i$ means $x_0 \in \pi_N(\overline{\Sigma}_i)$, we get $\rho(x_0) = 1$. Therefore if $j^r s_l(x_0) \in \overline{\Sigma}_i$ and l > a, then $s_l(x) = g_l(x)$ near x_0 . Hence $s_l(x)$ is transverse on Σ_i for l > a. Q. E. D.

REMARK 2.2. ΓE is a Baire space: We consider the space $C^{\infty}(N, E(N))$ of differentiable maps of N into E(N). It is well known that $C^{\infty}(N, E(N))$ is a complete metric space. Then it is clear that ΓE is a closed set of $C^{\infty}(N, E(N))$, hence, a complete metric space which is a Baire space.

By the above remark we have the following

COROLLARY 2.3. $\Sigma(N)$ is dense in ΓE .

COROLLARY 2.4. Let Ω be an open set of $E^r(N)$ and Σ , the regular submanifold of Ω with codim $\Sigma > \dim N$. Let W be a closed subset of N. Let s be a C^{∞} section of E(N) such that $j^r s(N) \subset \Omega$ and $j^r s(W) \cap \Sigma = \phi$. Then there exists a homotopy of sections, $S: I \rightarrow \Gamma E$ such that S(0) = s, $S(t)|_W =$ $s|_W$ for any t and $j^r S(1) \cap \Sigma = \phi$.

PROOF. Let U be an open small neibourhood of W in N such that $j^r s(x) \in \Sigma$ for $x \in U$. Then we only needs the deformation of s off U such that we let s be transverse on Σ . This is possible by the similar arguments as the proof of Theorem 2.1. Q. E. D.

§ 3. Elimination of the singularity Σ

Let Ω and Ω' be open sets in $E^r(N)$ with $\Omega \supseteq \Omega'$. Let $\Sigma = \Omega - \Omega'$ and Σ be a finite union of regular submanifolds of Ω with codimensions greater than $n+\sigma$. Then we have the following.

302

PROPOSITION 3.1. Let Ω , Ω' and Σ be as above. Then

- (i) the natural inclusion: $\Gamma_{a'} E \rightarrow \Gamma_{a} E$ is a σ -homotopy equivalence,
- (ii) the natural inclusion: $\Gamma_{a'} E^r \rightarrow \Gamma_a E^r$ is a σ -homotopy equivalence.

We need some notations for the proof. Let X be a differentiable manifold. Let p and f be base points of X and Y. Then $\mathscr{F}_0(X, Y)$ denotes the space of continuous maps preserving base point with compact-open topology. A continuous map $\alpha: X \to \Gamma_{g}E$ is called C^r differentiable if its associated section, $\alpha': X \times N \to X \times E(N)$ defined by $\alpha(x, n) = (x, \alpha(x)(n))$ is differentiable of class C^r . Let $\mathscr{F}_0^r(X, \Gamma_g E)$ denote the space of C^r differentiable maps of $\mathscr{F}_0(X, \Gamma_g E)$. Then we have the following lemma. This follows from the differentiable approximation theorem of continuous maps.

LEMMA 3.2. The canonical inclusion $\mathscr{F}_0(X, \Gamma_{\mathfrak{o}} E) \rightarrow \mathscr{F}_0(X, \Gamma_{\mathfrak{o}} E)$ induces a bijection of the sets of their connected components.

Next we define a map $\pi: (E_x)^r(X \times N) \to X \times E^r(N)$ where $E_x = X \times E$. Let α be a *r*-jet, $j^r s$ of a local section $s: X \times N \to X \times E$ defined near (x, y). Then we put $\pi(\alpha) = (x, (j^r s(x))(y))$. Let Ω_x be the pull back $\pi^{-1}(\Omega)$ of an open set Ω of $E^r(N)$. Then we can consider $\Gamma_{\mathfrak{g}_x}(E_x)$ and the natural map $\Gamma_{\mathfrak{g}_x}(E_x) \to \mathscr{R}^r(X, \Gamma_{\mathfrak{g}}E)$ which is a continuous bijection.

PROOF OF PROPOSITION 3.1. We shall begin with proving that the map $\pi_0(\Gamma_{\varrho'} E) \rightarrow \pi_0(\Gamma_{\varrho} E)$ is surjective when $\sigma \ge 0$. Let *s* be an element of $\Gamma_{\varrho} E$. Then it follows from Corollary 2.4 that there is a path, $S: I \rightarrow \Gamma_{\varrho} E$ such that S(o) = s and S(1) is transverse on Σ . Since $\operatorname{codim} \Sigma > n + \sigma$, this means $j^r S(1)(N) \cap \Sigma = \phi$. Hence S(1) is an element of $\Gamma_{\varrho'} E$.

By the above fact we may fix a base point in $\Gamma_{g'}E$ when we consider a connected component of $\Gamma_{g}E$. Let s be a base point in $\Gamma_{g'}E$. Consider the following commutative diagram

$$\begin{array}{cccc} \pi_{i}(\Gamma_{\varrho}, E, s) & \longrightarrow & \pi_{i}(\Gamma_{\varrho}, E, s) \\ \downarrow & \downarrow & \downarrow \\ \pi_{0}\left(\mathscr{F}_{0}(S^{i}, \Gamma_{\varrho'}, E)\right) & \longrightarrow & \pi_{0}\left(\mathscr{F}_{0}(S^{i}, \Gamma_{\varrho}, E)\right) \\ \downarrow & \downarrow & \downarrow \\ \pi_{0}\left(\mathscr{F}_{0}(S^{i}, \Gamma_{\varrho'}, E)\right) & \longrightarrow & \pi_{0}\left(\mathscr{F}_{0}(S^{i}, \Gamma_{\varrho}, E)\right). \end{array}$$

Since both of vertical maps are bijective, it is enough to show that the bottom horizontal map is bijective for $i < \sigma$ and surjective for $i = \sigma$. Let $\alpha: S^i \to \Gamma_{\rho} E$ be a element of $\mathscr{F}_0(S^i, \Gamma_{\rho} E)$. Then it is identified with an element $\alpha': S^i \times N \to S^i \times E(N)$ of $\Gamma_{\mathfrak{a}_{S^i}} E_{S^i}$. Since $\alpha(p) = s$, α' is transverse on Σ at $p \times N$, that is, $j^r \alpha'(p \times N) \cap \Sigma = \phi$. By Corollary 2.4 there exists an Ω_{S^i} -regular differentiable section, $S: I \times S^i \times N \to I \times S^i \times E(N)$ such that

Y. Ando

 $S|_{0\times S^{i}\times N} = \alpha', S|_{1\times S^{i}\times N} \in \Gamma_{a'S^{i}} E_{S}i$ and $S|_{t\times p\times N} = s$ for each $t \in I$. Hence i_{*} is surjective. Let α_{0} and α_{1} be elements of $\mathscr{G}_{0}^{\infty}(S^{i}, \Gamma_{a'}E)$ such that $i_{*}\alpha_{0} = i_{*}\alpha_{1}$. By the differentiable approximation theorem there exists an Ω -regular differentiable map $S: (I \times S^{i}, I \times p) \rightarrow (\Gamma_{a}E, s)$ such that $S|_{j\times S^{i}} = \alpha_{j}(j=0, 1)$. We obtain the associated differentiable section $\alpha'_{j}: S^{i} \times N \mapsto S^{i} \times E(N)$ and $S': I \times S^{i} \times N \rightarrow$ $I \times S^{i} \times E(N)$. We consider $\mathcal{Q}_{I\times S^{i}}$ and $\mathcal{Q}'_{I\times S^{i}}$. Then S' is an $\mathcal{Q}_{I\times S^{i}}$ -regular C^{r} section with $j^{r}S'(j \times S^{i} \times N) \subseteq \mathcal{Q}'_{I\times S^{i}}$ (j=0, 1) and $j^{r}S'(I \times p \times N) \subseteq \mathcal{Q}'_{I\times S^{i}}$. Since $\mathcal{Q}_{I\times S^{i}} - \mathcal{Q}'_{I\times S^{i}} = \pi_{I\times S^{i}}^{-1}(\Omega - \Omega')$, it is a finite union of submanifolds with codimensions $> n + \sigma$. By applying Corollary 2.4 to the case of $\mathcal{Q}_{I\times S^{i}}, \mathcal{Q}'_{I\times S^{i}},$ $S^{i} \times E(N)$ such that $\bar{S}'|_{j\times S^{i} \times N} = S|_{j\times S^{i} \times N}(j=0, 1)$ and $\bar{S}'|_{t\times p\times N} = s$ for each $t \in I$. This completes the proof.

The proof of (ii) follows from the similar arguments as above by the transversality theorem. In fact we consider the bundle $E^r(N)$ over N instead of E(N) over N in the proof of (i) and apply Corollary 2.4 to the following diagram

$$\begin{array}{ccc} \pi_{i}(\Gamma_{\varrho'}E^{r},*) & \longrightarrow & \pi_{i}(\Gamma_{\varrho}E^{r},*) \\ \downarrow & \downarrow & \downarrow \\ \pi_{0}\left(\mathscr{F}_{0}(S^{i},\Gamma_{\varrho'}E^{r})\right) & \longrightarrow & \pi_{0}\left(\mathscr{F}_{0}(S^{i},\Gamma_{\varrho}E^{r})\right) \\ \downarrow & \downarrow & \downarrow \\ \pi_{0}\left(\mathscr{F}_{0}^{r}(S^{i},\Gamma_{\varrho'}E^{r})\right) & \longrightarrow & \pi_{0}\left(\mathscr{F}_{0}^{r}(S^{i},\Gamma_{\varrho}E^{r})\right). \qquad Q. E. D. \end{array}$$

PROOF OF THEOREM. This follows from the following commutative diagram

§ 4. Applications

In this section we slightly extend the notion of Thom-Boardman singularities [2, 7, 9] into the space of r-jet bundles $E^r(N)$. Let $J^r(U, P)$ denote the bundle of r-jets over differentiable manifolds U and P. Then the Thom-Boardman singularity with symbol I, $\Sigma^I(U, P)$ is defined in $J^r(U, P)$. $\Sigma^I(U, P)$ is a regular differentiable submanifold of $J^r(U, P)$ and a differentiable subbundle of $J^r(U, P)$ over $U \times P$. Let V be a differentiable manifold which is diffeomorphic to U by h. Let $\overline{h}: U \times P \rightarrow V \times P$ be a differentiable bundle map over the diffeomorphism $h: U \rightarrow V$. Then we can define a map $j^r \overline{h}:$ $J^r(U, P) \rightarrow J^r(V, P)$. Let z be an element of $J^r(U, P)$ which is represented by $f: (U, x) \to (P, f(x))$. Then $j^r \overline{h}$ is defined to be the *r*-jet at $h^{-1}(x)$ of the composition, $p \circ \overline{h} \circ (id_U \times f) \circ h^{-1}$ where *p* denotes the projection of $V \times P$ onto *P*.

REMARK 4.1. The map $j^r \overline{h}$ maps $\Sigma^I(U, P)$ diffeomorphically onto $\Sigma^I(V, P)$ and makes the following diagram commute.

PROOF. Let $z=j^r f$ and y=f(x) where $f:(U, x)\to(P, y)$. Let $C(U)_x$ (resp. $C(P)_y$) denote the set of C^{∞} map germs, $(U, x)\to \mathbf{R}$ (resp. $(P, y)\to \mathbf{R}$). Let $\mathfrak{M}_x(\operatorname{resp.} \mathfrak{M}_y)$ denote the ideal in $C(U)_x(\operatorname{resp.} C(P)_y)$ consisting of C^{∞} map germs which vanish on $x(\operatorname{resp.} y)$. It is shown in [7] that the Boardman symbol I is determined only by the ideal $f^*(\mathfrak{M}_y)$ in $C(U)_x$ modulo \mathfrak{M}_x^{r+1} . It follows from [6, Proposition in (2.3)] that $(p \circ \overline{h} \circ (id_U \times f) \circ h^{-1})^* (\mathfrak{M}_y)$ is equal to $(h^{-1})^* f^*(\mathfrak{M}_y)$. Hence we know that the Boardman symbol of $j^r \overline{h}(z)$ coincides with that of z by definition. Other statement immediately follows from the definition of $j^r \overline{h}$.

Let $\pi: E(N) \to N$ be a differentiable bundle over N with fibre P. If π is trivial over an open set U, then $E^r(N)|_U$ is canonically identified with $J^r(U, P)$. Let $\Sigma^I(E|_U)$ denote the differentiable subbundle of $E^r(N)|_U$ which corresponds to $\Sigma^I(U, P)$ by this identification. Let $\{U_{\alpha}\}$ denote the covering of N such that the bundle π is trivial over U_{α} for each α . Then we put $\Sigma^I(E) = \bigcup \Sigma^I(E|_{U_{\alpha}})$. Then it follows from Remark 4.1 that $\Sigma^I(E)$ is a differentiable subbundle of $E^r(N)$ over N and does not depend on the choice of the covering $\{U_{\alpha}\}$. We should note that the codimension of $\Sigma^I(E)$ in $E^r(N)$ coincides with that of $\Sigma^I(U, P)$ in $J^r(U, P)$.

DEFINITION 4.2. We call $\Sigma^{I}(E)$ the Thom-Boardman singularity with symbol I of $E^{r}(N)$.

We define an open set $\Omega^{I}(E)$ in $E^{r}(N)$ to be the union of all Thom-Boardman singularities with symbol K such that $K \leq I$ where we consider the lexicographic order. Since the union of all Thom-Boardman singularities $\Sigma^{\kappa}(U, P)$, $K \leq I$ is open in $J^{r}(U, P)$, we know that $\Omega^{I}(E)$ is open in $E^{r}(N)$. Now we consider the integrability of $j^{r}: \Gamma_{g}E \rightarrow \Gamma_{g}E^{r}$ for $\Omega = \Omega^{I}(E)$.

In the sequel we provide $\pi: E(N) \rightarrow N$ with the certain condition which is called 'natural'. For any *n* dimensional manifold *N* there exists a differentiable bundle E(N) such that if *U* is open in *N*, then E(U) is the restriction E(N) to *U*. Moreover for any diffeomorphim *h* of an open sets *V* of *N*, there exists a diffeomorphism $\overline{h}: E(U) \rightarrow E(V)$ covering *h* such that $\overline{k} \circ \overline{h} = \overline{k} \circ \overline{h}$ and $\overline{id}_U = id_{E(U)}$. Also \overline{h} depends continuously on h (see, for example [3]).

Let E'(N') be a natural differentiable bundle over n+1 dimensional manifolds N' such that $E'(N \times \mathbf{R})$ is isomorphic to $E(N) \times \mathbf{R}$ over $N \times \mathbf{R}$. Then we have a natural map $\bar{\iota}': E'^r(N \times \mathbf{R}) \rightarrow E^r(N)$ which is induced from the inculusion $i: N = N \times O \subset N \times R$. If we consider $Q^{I}(E')$ in $E'^{r}(N \times R)$, then we obtain that $\bar{\iota}(\Omega^{I}(E'))$ is contained in $\Omega^{I}(E)$ by the similar arguments as in [4]. It follows from [3, Theorem B] that $j^r: \Gamma_g(E) \to \Gamma_g(E^r)$ is a weak homotopy equivalence for $\Omega = i(\Omega^{I}(E'))$. Now we show that $\Omega^{I}(E) - i(\Omega^{I}(E'))$ is a finite union of regular submnaifolds of $\Omega^{I}(E)$. At first we note that $\Omega^{I}(E)$ and $\tilde{\iota}(\Omega^{I}(E'))$ are open subbundles over E(N). Their fibers are described as follows. Let $J^r(n, p)$ (resp. $\Omega^I(n, p)$) denote the fibre over the origin (**0**, **0**) of $J^r(\mathbf{R}^n, \mathbf{R}^p)$ over $\mathbf{R}^n \times \mathbf{R}^p$ (resp. $\Omega^I(\mathbf{R}^n \times \mathbf{R}^p)$ where $N = \mathbf{R}^n$ and $E(N) = \mathbf{R}^n \times \mathbf{R}^p$. There is a restriction map $\mathbf{i}: J^r(n+1, p) \rightarrow J^r(n, p)$ forgetting the last coordinate. Then the fibre of $\mathcal{Q}^{I}(E)$ (resp. $\overline{i}(\mathcal{Q}^{I}(E'))$ is $\Omega^{I}(n, p)$ (resp. $\bar{\iota}(\Omega^{I}(n+1, p))$). If we identify $J^{r}(n, p)$ with an eucledian space in the usual way, then we know that $\Omega^{I}(n, p)$ and $\overline{i}(\Omega^{I}(n+1, p))$ are both Zariski open sets. In fact it follows from [7, The Proof of Proposition 2] that $J^r(n, p) - \Omega^I(n, p)$ is a Zariski closed set. It follows from [10] that $J^r(n, p)$ $-i\Omega^{I}(n+1, p)$ is a finite union of locally Zariski closed submanifolds of $J^r(n, p)$. Thus $\Omega^{I}(n, p) - i(\Omega^{I}(n+1, p))$ is a finite union of locally Zariski closed submanifolds. Hence we obtain that $\Omega^{I}(E) - \overline{i}(\Omega^{I}(E'))$ is a finite union of regular submanifolds of $\Omega^{I}(E)$. We again note that the minimal codimension of these submanifolds coincides with that of the submanifolds of $\Omega^{I}(n, p) - \overline{i}(\Omega^{I}(n+1, p))$. Let σ^{I} denote the interger such that $\sigma^{I} + n + 1$ is the above codimension. The following theorem is a slight extension of the result in [4, §1] and we know that $\Omega^{I}(n, p)$ is equal to $\overline{i}(\Omega^{I}(n+1, p))$ in this case.

THEOREM 4.3. Let $\pi: E(N) \rightarrow N$ be a natural differentiable fibre bundle with dim N=n and dim P=p. Let $I=(i_1, \dots, i_r)$ and $d^{I} = \sum_{s=1}^{r-1} \alpha_s$ where $\alpha_s = \begin{cases} 1 & \text{if } i_s - i_{s+1} > 1. \\ 0 & \text{otherwise} \end{cases}$

If $i_r > n-p-d^I$, then for $\Omega = \Omega^I(E)$ $j^r : \Gamma_{\mathcal{Q}}(E) \longrightarrow \Gamma_{\mathcal{Q}}(E^r)$

is a weak homotopy equivalence.

Now we give a few applications of Theorem in §1.

PROPOSITION 4.4. Let $\pi: E(N) \rightarrow N$ be as in Theorem 4.3. Let $\Omega^{I}(E)$ and σ^{I} be as defined above. Then $j^{r}: \Gamma_{g}(E) \rightarrow \Gamma_{g}(E^{r})$ is a σ^{I} -homotopy equivalence for $\Omega = \Omega^{I}(E)$. Let $K \leq I$. Then $\mathcal{Q}^{I}(E) - \mathcal{Q}^{\kappa}(E)$ is the union of Thom-Boardman singularities with symbol H such that $K < H \leq I$. The codimension of $\Sigma^{H}(E)$ is determined in [2]. If we take $\mathcal{Q}^{I}(E)$ (or $\mathcal{Q}^{\kappa}(E)$) as \mathcal{Q} in Theorem 4.3 or Proposition 4.4, we know by applying Theorem in § 1 or Proposition 4.4 how the map $j^{r}: \Gamma_{\mathfrak{g}}(E) \rightarrow \Gamma_{\mathfrak{g}}(E^{r})$ is close to a homotopy equivalence. For example, let i_{1} be fixed. Let i_{2} be the positive minimal integer such that $i_{2} > n - p - d^{I}$ where $I = (i_{1}, i_{2})$. Let $K = (i_{1}, i_{2} - 1)$. Then j^{r} is a homotopy equivalence for $\mathcal{Q}^{I}(E)$. Hence j^{r} induces the isomorphisms of k dimensional homotopy groups where $k < (p - n + i_{1}) \{i_{1}(i_{2} + 1) - (1/2) i_{2}(i_{2} - 1)\} - i_{2}(i_{1} - i_{2})$ for $\mathcal{Q}^{\kappa}(E)$ since the codimension of $\Sigma^{I}(E)$ is as mentioned. The examples of the number σ' in Proposition 4.4 are given in [1] for the product bundle $E(N) = N \times P$, which is also valid in our general bundle case.

References

- [1] Y. ANDO: On differentiable maps without some Thom-Boardman singularities, to appear.
- [2] J. M. BOARDMAN: Singularities of differentiable maps, Publ. I. H. E. S., 33 (1967), 383-419.
- [3] A. DU PLESSIS: Homotopy classification of regular sections, Compositio Math., 32 (1976), 301-333.
- [4] A. DU PLESSIS: Maps without certain singularities, Comment. Math. Helv., 50 (1975), 363-382.
- [5] A. DU PLESSIS: Contact invariant regularity conditions, Springer Lecture Notes, 535 (1975), 205-236.
- [6] J. N. MATHER: Stability of C[∞] mappings III, Publ. I. H. E. S., 35 (1968), 127–156.
- [7] J. N. MATHER: On Thom-Boardman singularities, Dynamical Systems, Academic Press (1973), 233-248.
- [8] C. MORLET: Le lemme de Thom et les théorémes de plongement de Whitney, Séminaire Henri Cartan, 14 (1961/62).
- [9] R. THOM: Les singularités des applications différentiables, Ann. Inst. Fourier, 6 (1955-1956), 43-87.
- [10] H. WHITNEY: Elementary structure of real algebraic varieties, Ann. of Math., 66 (1956), 545-556.

Department of Mathematics Hokkaido University