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1. Introduction.

In this note we describe (for any prime p) group theoretic properties

p*andp*p and the corresponding functors O_{p^{*}} and O_{p^{*}p} .
They are in the class of all (finite !) groups what the functors O_{p} , and

O_{pp}” are for solvable or, more precisely, for p-constrained groups.

Besides this analogy
p*prightarrow p’,p

p^{*}rightarrow p’

there is another interesting analogy,

namely between O_{p*} , O_{p*p} and the well-known functors E and F^{*} , respecti-
vely. In order to exhibit this analogy most clearly we treat these four
functors (and the corresponding properties) uniformly (in section 4).

This is done via the concept of the generalized centralizer C_{G}^{*}(X) dis-
cussed in section 3, and by working with a prime set \pi which is the set of
all primes or consists of our p only.

In sections 5 and 6 we specialize to these two cases, getting the (well

known) elementary E-F^{*} -theory and our p^{*}-p^{*}p-theory
In the theory of simple groups (general classification problems) one has

reached a point where one is forced to handle nearly arbitrary (sub) groups
H, and hence needs small subgroups of H conveniently structured which still
control the structure of H somehow. It is exactly this what E(H), F^{*}(H) ,

O_{p*}(H) , O_{p^{*}p}(H) and similar constructions are all about. In this field how-
ever, due to the structure of the known simple groups, O_{p*}(H) and O_{p*p}(H)

appear in a certain special form, and then many of our results are con-
tained in the work of Gorenstein and Walter, see [2], 172, [3], [4], [5].

These include our Theorem 6. 10 stating that O_{p^{*}}(N_{H}(P))\subseteq O_{p*}(H) for every
p subgroup P.

Part of this research initiated during the Group Theory Conference at

Hokkaido University and Kyoto University in 1974. I wish to thank these
institutions for their hospitality, and the Taniguchi Foundation for its support.
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2. Notation.

We use the following notation –mostly standard or self-explanatory–
in addition to that of [2].

A group theoretic property (=class of groups) X is a radical property
if every group G has a maximal normal X-subgroup (the X radical of G),
usually denoted by X(G) or O_{X}(G) .

This means that products of normal X-subgroups are X-groups. MoreO-
ver, since NaG implies X(N)aG, every subnormal X-subgroup of G lies
in X(G) .

Conversely, any functor X (assigning to every G a characteristic sub-
group X(G)) yields a property which may also be denoted by X and is
defined by “

G\in X\Leftrightarrow G=X(G)”-
We write F_{\pi}(G) for O_{\pi}(F(G)) , where \pi of course stands for a set of

primes.
A property X is residual if every G has a unique smallest normal sub-

group with X-factor group. This X-residual of G is often denoted by O^{X}(G) .
By O^{s}(G) , O^{F}(G) , O^{A}(G) , S^{\pi}(G) , F^{\pi}(G) , A^{\pi}(G) we denote the solvable,

nilpotent, abelian (\pi-)residual of G, respectively. Here we recall that pr0-
perties inherited by subgroups and direct products are residual.

The symbol O_{X_{1},X_{2}},\cdots(G) we use quite freely. Any X_{i} may be a radical
property or a functor, and X_{1} is also allowed to be a normal subgroup of G.
So for example we have O_{2,F’(}\prime G )/O_{2}(G)=F(G/O_{2}(G))=F_{2’}(G/O_{2}(G)) and
O_{N,p}(G)/N=O_{p}(G/N) where N*G.

Extensions of X-groups by Y-groups are called X-Y-groups. If X and
Y are radical properties with Y inherited by factor groups, then X-Y is
a radical property and O_{X-Y}(G) equals O_{X,Y}(G) .

If one -hence each– of the subgroups S^{\pi}(G) , F^{\pi}(G) , A^{\pi}(G) equals G,
G is called \pi-perfect.

A group is \pi -solvable ( \pi -nilpotent) if all n0n-7r’-chief-fact0rs are \’abelian
(central). Notice that \pi-nilpotent groups are nothing but \pi’ X-groups.

A product AB is seminormal if A or B is normal in AB.
A centralizer-closed subgroup K of G satisfies C_{G}(K)\subseteq K.
[A] denotes the mapping Xarrow[A, X] .
A semisimple group is a direct product of non-abelian simple groups,

a quasisemisimple group is a perfect group H with H/Z(H) semisimple,
and such an H is quasisimple if H/Z(A) is non-abelian simple.

G is constrained if its Fitting subgroup is centralizer-closed, i . e . C_{G}(F(G))
\subseteq F(G) , and G is \pi constrained if G/O_{\pi’}(G) is constrained.
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3. Nilpotent action and the generalized centralizer.

3. 1. Let A be an operator group on the group K. The following four
conditions are equivalent. When they are satisfield, we say that A acts

nilpotently on K.
(i) [A]^{n}K=1 for some integer n .
(ii) A stabilizes some subgroup series 1=K_{0}\subseteq K_{1}\underline{\subset}\cdots\underline{\subset}K_{n}=K, i . e.

[A, K_{i+1}]\underline{\subset}K_{i} .
(iii) A stabilizes some normal series 1=K_{0}aK_{1}a\cdots aK_{n}=K.
(iv) A is subnormal in the semidirect product KA of K and A.
This situation has been studied by P. Hall in [6] (also for infinite groups).

One of his results is the basic nilpotent action lemma stated below (in general,
A/C_{A}(K) is nilpotent and [A, K] is locally nilpotent).

It allows (for finite groups) to add a fifth condition to the above:
(v) A stabilizes a series 1=K_{0}\underline{\subset}K_{1}\underline{\subset}\cdots\subseteq K_{m}=K of normal subgroups

of K.
3. 2. Nilpotent action is inherited in many obvious ways:
(i) If A is nilpotent on K, then on every A-invariant subgroup and

factor group of K.
(ii) If A is nilpotent on all quotients K_{i+1}/K_{i} of some series 1=K_{0}\wedge

\ldots \wedge K_{n}=K, then A is nilpotent on K.
(iii) By (i) and (ii), if A is nilpotent on both factors of some seminor

mal product XY, then A is nilpotent on XY.
In particular, the A group K has a unique largest normal subgroup on

which A is nilpotent.
(iv) Any seminormal product A_{0}A_{1} of two subgroups of A nilpotennt

on K is itself nilpotent on K.
To prove (iv), let A_{0}\wedge A_{0}A_{1} and observe that (by (i)) A_{1} –hence A_{0}A_{1}-

is nilpotent on every quotient [A_{0}]^{i}K/[A_{0}]^{i+1}K . Then apply (ii).

3. 3. By 3. 2. iv, our operator group A on K has a unique largest
normal subgroup C_{A}^{*}(K) nilpotent on K.

Since B\wedge A implies C_{B}^{*}(K)\wedge A , it contains every subnormal subgroup
of A nilpotent on K.

For any subgroup U of K we set C_{A}^{*}(U):=C_{N_{A}(U)}^{*}(U) .
This defifines C_{A}^{*}(U) for arbitrary subgroups A and U of a group G.
3. 4. Clearly, a group G is nilpotent if and only if C_{G}^{*}(G)=G . More

generally, C_{G}^{*}(G) equals F(G) .
A seminormal product KA (with K normal) of nilpotent groups K and

A is nilpotent if and only if C_{A}^{*}(K)=A , see 3. 2. iv/iii .
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More generally, if K\wedge G with K and G/K nilpotent, then G is nilpotent
if and only if G=KC_{G}^{*}(K) .

3. 5. Nilpotent action lemma (P. Hall [6]): Suppose A is nilpotent on
K. Then [A, K] and A/C_{A}(K) are nilpotent and have the same prime
divisors.

PROOF. Set \pi=\pi(A/C_{A}(K)) and let p\in\pi . Then an S_{p}-subgroup A_{p}

of A does not centralize K, i . e . [A_{p}, K]\neq 1 .
Being nilpotent on K, A_{p} is subnormal in the semidirect product KA_{p} .
Hence A_{p}\subseteq O_{p}(KA_{p}) , so that [A_{p}, K]\subseteq K\subset O_{p}(KA_{p})=O_{p}(K) .
This proves \pi\subseteq\pi([A, K]) and [A, K]\subseteq F_{\pi}(K) .
As for nilpotency of A/C_{A}(K) , consider distinct primes p and q in \pi .

Then [A_{p}, A_{q}]\subseteq C_{A}(K/O_{p}(K))\subset C_{A}(K/O_{q}(K))=C_{A}(K) .
A more natural proof (not using semidirect products) is based on the

following phenomenom.
3. 6. If [X]^{2}Y=1 , then [X, Y] is abelian, and for each y\in Y the map-

ping xarrow[x, y] is an homomorphism from X into [X, Y] .
This holds for groups X and Y whenever it makes sense.
3. 7. In the situation of the nilpotent action lemma, C_{Z(F(K))}(A) is a non-

identity normal subgroup of K (unless [A, K]=1).
This yields condition (v) of 3. 1.
3. 8. As another immediate consequence of the nilpotent action lemma,

any p-subgroup P of a group G satisfifies
C_{G}^{*}(P)=O_{c_{r;}(P),P}(N_{G}(P))

3. 9. Nilpotent action of A on K is guaranteed if A centralizes a
centralizer-closed normal subgroup L of K, because then [A, K]\subseteq C_{K}(L)\subseteq L .

If in addition |A:A’| is prime to |F(K)|-or just to |[A, K]|- then
the nilpotent action lemma forces [A, K]=1 .

By induction, this is also true under the weaker assumption {on L) that
there exists a series L=K_{1}\wedge K_{2}\wedge\cdots\wedge K_{n}=K with K_{i}=K_{i}^{A} centralizer-closed
in K_{i+1} .

3. 10. Assume now that our A group K is nilpotent on [A, K] . Then,
in the semidirect product KA, K is nilpotent on A[A, K] .

So if |K:K’| is prime to the order of [A, K] (a subgroup of F(K)),
then [A, K]=1 , by the nilpotent action lemma.

Note that all the above assumptions are trivially satisfied when [A, K]\subseteq

Z(K) and K is perfect (in which case one can also apply 3. 6).
3. 11. If K is a centralizer-closed subgroup of a group G, then the
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nilpotent action lemma forces every subgroup of N_{G}(K) nilpotent on K to
be nilpotent. In particular, C_{G}^{*}(K)=F(N_{G}(K)) .

3. 12. Thus a group G is constrained if and only if G_{G}^{k}(F(G))=F(G) .
It follows that G is \pi -constrained if and only if an S_{\pi} subgroup P of

O_{\pi,F}(G) satisfifies C_{G}^{*}(P)\subseteq O_{\pi,F}(G) .

4. \pi^{*}\pi and \pi^{*} .
4. 1. In this section \pi is either the set of all primes or consists of

a single prime p. It suffices to keep in mind that the Syloxv \pi -theorem
holds in every group.

By X_{\pi} we usually mean an S_{\pi}-subgroup of a group X. By the Frattini
argument we have H=XN_{H}(X_{\pi}) and hence

(i) XC_{H}(X_{\pi})\wedge H whenever X\wedge H.
We often use the fact that, by the nilpotent action lemma,
(ii) S^{\pi}(C_{H}^{*}(P))\underline{\subset}F^{\pi}(C_{H}^{*}(P))\underline{\subset}C_{H}(P)

for any \pi subgroup P of a group H. We also mention that
(ii) X\wedge H=XU implies H=XS^{\pi}(U) if H is \pi -perfect.
Notation introduced here will be used only in the case \pi=p . In the

other case we shall write E for \pi^{*} and O_{\pi^{*}} , and F^{*} for \pi^{*}\pi and O_{\pi^{*}\pi} .
4. 2. Definition of \pi^{*}\pi and \pi^{*}: H is a \pi^{*}\pi group if H=XC_{H}^{*}(X_{\pi})

for every X\wedge H ; and \pi^{*} group are \pi -perfect \pi^{*}\pi groups.
By 4. 1. iii/ii , a \pi^{*} group H satisfifies H=XS^{\pi}(C_{H}(X_{\pi})) for every normal

subgroup X.
4. 3. Both \pi^{*}\pi and \pi^{*} are inherited by factor groups.
Since \pi-perfectness is inherited by factor groups, it suffices to prove

this for \pi^{*}\pi . So it suffices to verify that

X/M\wedge H/M=:\overline{H} implies \overline{C_{H}^{*}(X_{\pi}}) \subset-C\frac{\star}{H}(\overline{X}_{\pi}) ,

and this will be clear when \overline{C_{H}^{*}(X_{\pi}}) \wedge N_{\overline{H}}(\overline{X}_{\pi}) , which amounts to C_{H}^{*}(X_{\pi})M\wedge

N_{H}(X_{\pi}M) .
Now observe that, by the Frattini argument, N_{H}(X_{\pi}M)=N_{H}(X_{\pi})M, and

remember C_{H}^{*}(X_{\pi})\wedge N_{H}(X_{\pi}) .
4. 4. Since in a \pi^{*}\pi group H an abelian (or nilpotent) normal \pi -sub-

group H_{1} satisfies H=C_{H}^{*}’(H_{1}) , it follows from 4. 3 that a \pi^{*}\pi group H is
nilpotent on every abelian, hence on every solvable \pifactor H_{1}/H_{0} (with
H_{i}\wedge H) . Thus H_{1}/H_{0} is nilpotent.

In particular, S^{\pi}(H)=F^{\pi}(H) .
If H is a \pi^{*} -group, then the nilpotent action lemma forces H=F^{\pi}(H)
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to centralize all such solvable \pi -factors.
In particular, S^{\pi}(K)=F^{\pi}(K)=A^{\pi}(K) for every K\wedge H, and all solvable

normal \pi -subgroups of H lie in Z(H).
4. 5. A solvable \pi -subgroup A and a \pi^{*} -subgroup K normalizing each

other necessarily centralize each other.
For [A, K] is a solvable normal \pi -subgroup of the \pi^{*} -group K, hence

lies in Z(K) ; and since K is \pi-perfect, this implies [A, K]=1 , see 3. 10.

4. 6. K\wedge\sim H\in\pi^{*} implies O^{\pi’}(K)aH, hence H=KC_{H}(K_{\pi}) .
PROOF : Proceeding by induction, we may assume H=XC_{H}(X_{\pi}) for

some X\wedge\wedge H such that K\wedge X.
Then K_{\pi} : =K\cap X_{\pi} satisfies \langle K_{\pi}^{H}\rangle=\langle K_{\pi}^{X}\rangle=\langle K_{\pi}^{K}\rangle=O^{\pi’}(K) .
4. 7. We show that X, K\wedge H with K\in\pi^{*}\pi implies

K=(X\cap K)C_{K}^{*-}(X_{\pi})

Let D:=X\cap K and D_{\pi}=X_{\pi}\cap K. Then K=DK_{0} with K_{0} :=C_{K}^{*}(D_{\pi}) .
The Frattini argument applied to (K_{0}\cap X)X_{\pi}=K_{0}X_{\pi}\cap X\wedge K_{0}X_{\pi} yields K_{0}X

=(K_{0}\cap X)X_{\pi}N_{K_{0}X_{\pi}}(X_{\pi}) , hence, by Dedekind’s modular law, K_{0}=(K_{0}\cap X)N_{K_{0}}

(X_{\pi}) . It follows that K=DK_{0}=(X\cap K)N_{K_{0}}(X_{\pi}) .
Now observe that N_{K_{0}}(X_{\pi}) is nilpotent on X_{\pi} (because [N_{K_{0}}(X_{\pi}), X_{\pi}] lies

in X_{\pi}\cap K=D_{\pi}) and is normal in N_{H}(X_{\pi}) , thus lies in C_{K}^{*}(X_{\pi}) .

4. 8. Both \pi^{*}\pi and \pi^{*} are radical properties, i. e . any normal product
H=K_{1}K_{2} of \pi^{*}\pi -groups ( \pi^{*} -groups) K_{1} and K_{2} is a \pi^{*}\pi group ( \pi^{*} -group).

To prove this, consider some XaH. By 4. 7, K_{i}=(X\cap K_{i})C_{K_{i}}^{*}(X_{\pi}) and
hence H=K_{1}K_{2}=XC_{H}^{*}(X_{\pi}) . Thus H is a \pi^{*}\pi group As for \pi^{*} , note that
\pi-perfectness is inherited by normal products.

The above defifines O_{\pi^{*}\pi}(G) and O_{\pi^{*}}(G) for every group G.
Being simple, hence \pi^{*}\pi-groups, all minimal subnormal subgroups of

G lie in O_{\pi^{*}\pi}(G) . In particular, O_{\pi^{*}\pi}(G)\neq 1 unless G=1 .
4. 9. By 4. 7 and 4. 1. iii/ii , X, K\wedge H with K\in\pi^{*} implies

K=(X\cap K)C_{K}(X_{\pi})=(X\cap K)S^{\pi}(C_{K}(X_{\pi}))t

This allows to improve 4. 8 in the \pi^{*} -case : Let H=K_{1}K_{2} with \pi^{*}-

subgroups K_{1} and K_{2} normalized by suitable S_{\pi}-subgroups of H. Then H
is a \pi^{*} -group.

To verify this, let XrH and choose X_{\pi} so that it normalizes both K_{i} .
Apply the above to X_{\pi}K_{i} in place of H. This yields K_{i}=(X\cap K_{i})C_{K_{i}}(X_{\pi}) ,

hence H=XC_{H}(X_{\pi}) .
4. 10. We proceed to prove the following basic result:
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If H/K and K are \pi^{*}\pi group, with H=KC_{H}^{*_{\backslash }}(K_{\pi}) , then H is a \pi^{*}\pi -

group
We have to show that H=XC_{H}^{*}(X_{\pi}) for every X\wedge H.
By 4. 7, K=(X\cap K)C_{R}^{*},(X_{\pi}) . Let K_{\pi}=(X\cap K)_{\pi}S=(X_{\pi}\cap K)S with S=C_{K}^{*}

(X_{\pi})_{\pi} . The Frattini argument yields

N_{H}(X_{\pi})=C_{K}^{*}(X_{\pi})N_{N_{H}(x_{\pi})}(S)=C_{K}^{*}(X_{n})N_{H}(X_{\pi}S)=C_{K}^{*}(X_{\pi})N_{H}(X_{\pi}K_{\pi}) .

It follows that C_{K}^{*}(X_{\pi})C_{H}^{*}(X_{\pi}K_{\pi}) is normal in N_{H}(X_{\pi}) and hence lies in
C_{H}^{*}(X_{\pi}) . Thus it suffices to verify H=XKC_{H}^{*}(X_{\pi}K_{\pi}) .

Hence, replacing X by XK, we may assume that K\subseteq X.
Let H^{*}: =C_{H}^{*}(K_{\pi}) , K^{*}: =K\cap H^{*} , and X^{*}: =X\cap H^{*} .
Then H=KH^{*} , X=KX^{*} , whence we may assume X_{\pi}=K_{\pi}X_{\pi}^{*} , and H^{*}/

K^{*-}-H/K\in\pi^{*}\pi .
The latter yields H^{*}=X^{*}U with U:=C_{H^{*}}^{*}(X_{\pi}^{*}K^{*}/K^{*}) .
The Frattini argument applied to (U\cap X)X_{\pi}=UX_{\pi}\cap X\wedge UX_{\pi} yields UX_{\pi}

=(U\cap X)X_{\pi}N_{UX_{K}}(X_{\pi}) , hence U=(U\cap X)N_{U}(X_{\pi}) .
Being normal in N_{H}(X_{\pi}) and nilpotent on X_{\pi}, N_{U}(X_{\pi}) lies in C_{H}^{*}(X_{\pi}) .
Now H=KH^{*}=KX^{*}U=KX^{*}(U\cap X)N_{U}(X_{\pi})\subseteq XC_{H}^{*}(X_{\pi}) , as required.
4. 11. We prove that \pi^{*}\pi is inherited by normal subgroups:
Let H\wedge G\in\pi^{*}\pi . Proceeding by induction, we may assume that H/K\in

\pi^{*}\pi , where K=O_{\pi^{*}\pi}(H) ; here we have to remember that K\neq 1 unless H=1 ,
see 4. 8, and that G/K\in\pi^{*}\pi, by 4. 3.

Clearly, G=KC_{G}^{*}(K_{\pi}) implies H=K(H\cap C_{G}^{*}(K_{\pi}))=KC_{H}^{*}(K_{\pi}) .
Then 4. 10 yields H\in\pi^{*}\pi .
4. 12. If K\wedge H\in\pi^{*} , then, by 4.4 and 4. 11, A_{\pi}(K) is a \pi -perfect

\pi^{*}\pi group, i. e . a \pi^{*} -group. This is the \pi^{*} -analogue of 4. 11.
4. 13. By 4.4 and 4. 11 again, H\in\pi^{*}\pi implies F^{\pi}(H)\in\pi^{*} . Thus

O_{\pi^{*}}(G)=F^{\pi}(O_{\pi^{*}\pi}(G)) for every group G

4. 14. By the nilpotent action lemma, any \pi-subgroup P satisfifies
O_{\pi^{*}}(C_{G}(P))=O_{\pi^{*}}(C_{G}^{\star}(P))

By 4. 5, any solvable \pi -subgroup P satisfifies
O_{\pi^{*}}(C_{G}(P))=O_{\pi^{*}}(N_{G}(P))

4. 15. Assume K\wedge H=KU\in\pi^{*} . By 4. 4, K/F^{\pi}(K) is centralized by
H. Hence F^{\pi}(K)U is a normal subgroup with nilpotent \pi-factor group,
and therefore equals H. By 4. 12, F^{\pi}(K) equals O_{\pi^{*}}(K) .
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By 4. 1. iii , U can be replaced by F^{\pi}(U) which in case U\in\pi^{*}\pi equals
O_{\pi^{*}}(U) . So we get H=O_{\pi^{*}}(K)O_{\pi^{*}}(U) if U\in\pi^{*}\pi .

4. 16. Assume H/K\in\pi^{*}\pi . If H=C_{H}^{*}(K_{\pi}) , then 4. 10 forces H to be
a \pi^{*}\pi-group. It follows that, more generally, C_{H}^{*}(K_{\pi}) is a \pi^{*}\pi-group (because
C_{H}^{*}(K_{\pi})/C_{K}^{*}(K_{\pi})-\sim C_{H}^{*}(K_{\pi})K/K\wedge H/K\in\pi^{*}\pi and \pi^{*}\pi is inherited by normal
subgroups).

4. 17. It also follows that C_{K}^{*}(K_{\pi})\in\pi^{*}\pi in 4. 7. So if K\in\pi^{*} in 4. 7,

we conclude from 4. 14 (forcing o_{\pi^{*}}(c_{K}^{* (X_{\pi}))=O_{\pi^{*}}(C_{K}(X))}. and 4. 15 that

K=O_{\pi^{*}}(X\cap K)O_{\pi^{*}}(C_{K}(X_{\pi}))

4. 18. Applying 4.7/17 with K:=O_{\pi^{*}\pi}(G) and K:=O_{\pi^{*}}(G) we get

O_{\pi^{*}\pi}(G)=XO_{\pi^{*}\pi}(C_{G}^{*}(X_{\pi})) for any normal \pi^{*}\pi subgroup X

and

O_{\pi^{*}}(G)=XO_{\pi^{*}}(C_{G}(X_{\pi})) for any normal \pi^{*} subgroup X

Observe that these two products are normal (because G=XN_{G}(X_{\pi}) ) \pi^{*}\pi -

groups (by 4. 10).

4. 19. We begin to characterize O_{\pi^{*}\pi}(G) and O_{\pi^{*}}(G) from above :
O_{\pi^{*}\pi}(G) is the unique smallest normal subgroup K of G satisfying C_{G}^{*}

(K_{\pi})\subseteq K.
PROOF: Let K:=O_{\pi^{*}\pi}(G) and X\wedge G with C_{G}^{*}(X_{\pi})\subseteq X. Then 4. 7 yields

K=(X\cap K)C_{K}^{*}(X_{\pi})\subseteq XC_{G}^{*}(X_{\pi})\subseteq X.
So consider L:=KC_{G}^{*}(K_{\pi}) . With H defined by H/K:=O_{\pi^{*}\pi}(L/K) ,

4. 10 yields H\in\pi^{*}\pi , hence H\subseteq O_{\pi^{*}\pi}(G)=K, i . e . O_{\pi^{*}\pi}(L/K)=1 , hence L/K=1 ,
i . e . C_{G}(K_{\pi})\underline{\subset}K, as required.

4. 20. As mentioned in section 3, a group G is \pi-constrained if and
only if K:=O_{\pi’,F}(G) satisfifies C_{G}^{*}(K_{\pi})\subseteq K.

By 4. 19, this is equivalent to O_{\pi^{*}\pi}(G)=O_{\pi’,F}(G) , hence also equivalent
to O_{\pi^{*}}(G)=O_{\pi’}(G) .

4. 21. Each group G has a unique smallest normal subgroup L {namely
L=O^{\pi’}(O_{\pi_{*}}(G))) with C_{G}(L_{\pi})-or equivalently C_{G}^{*}(L_{\pi})-\pi -constrained.

Furthermore, L is a \pi^{*} -group and satisfifies
O_{\pi^{*}}(G)=LO_{\pi’}(C_{G}(L_{\pi}))

and

O_{\pi^{*}\pi}(G)=LO_{\pi’,F}(C_{G}^{*}(L_{\pi}))
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PROOF: Let H:=O_{\pi^{*}}(G) and L:=O^{\pi’}(H) . Since L/F^{\pi}(L) lies in
Z(H/F^{\pi}(L)) , see 4. 4, Burnside’s transfer theorem forces H/F^{\pi}(L) to be \pi -

nilpotent, hence to be a \pi’ -group.
Thus L is \pi-perfect, hence is a \pi^{*} -group (because L\wedge H\in\pi^{*}).
Now 4. 18 yields

H=O_{\pi^{*}}(G)=LO_{\pi^{*}}(C_{G}(L_{\pi}))

and

O_{\pi^{+}\pi}(G)=LO_{\pi^{*}\pi}(C_{G}^{*}(L_{\pi})) .

Since L_{\pi}=H_{\pi} , it follows that O_{\pi^{*}}(C_{G}(L_{\pi}))=O_{\pi^{*}}(C_{G}^{*}(L_{\pi})) has a central
S_{\pi}-subgroup, hence is \pi-nilpotent (again by Burnside’s transfer theorem),
hence is a \pi’ -group.

By 4. 20, this means that C_{G}(L_{\pi}) and C_{G}^{*}(L_{\pi}) are \pi -constrained and also
that O_{\pi^{*}\pi}(C_{G}^{*}.(L_{\pi}))=O_{\pi’,F}(C_{G}^{*}(L_{\pi})) .

So it only remains to verify that any X\wedge G with C_{G}(X_{\pi})\pi-constrained
(i. e. O_{\pi^{*}}(C_{G}(X_{\pi}))=O_{\pi’}(C_{G}(X_{\pi}))) contains L.

By 4. 17, L=(X\cap L)O_{\pi}^{*}(C_{L}(X_{\pi}))=(X\cap L)O_{\pi’}(C_{L}(X_{\pi})) , hence X\cap L\supseteq O^{\pi’}

(L)=L, as required.

4. 22. Let P be an S_{\pi}-subgroup of O_{\pi^{*}\pi}(G) , and K a P-invariant \pi^{*}-

subgroup of G.
Applying 4. 9 (or 4. 17) to H:=N_{G}(K) with X:=H\cap O_{\pi^{*}\pi}(G) , we get

K=(X\cap K)C_{K}(P) ; and by 4. 19, C_{G}(P)\subseteq O_{\pi^{*}\pi}(G) .
This proves K\subseteq O_{\pi^{*}\pi}(G) , hence K\subseteq O_{\pi^{*}}(G) .
As an immediate consequence, every X\wedge G satisfifies

O_{\pi^{*}}(N_{G}(X_{\pi}))\subseteq O_{\pi^{*}}(G) ,

which together with 4. 17 yields

O_{\pi^{*}}(G)=O_{\pi^{*}}(X)O_{\pi^{*}}(C_{G}(X_{\pi}))(

4. 23. Next we generalize some important action properties of \pi-groups
on \pi’ -groups.

First let P be an arbitrary group acting on a \pi^{*} -group K. We show
that K_{0} :=[P, K] is a \pi^{*} group: Being normal in K, it is a \pi^{*}\pi-group,
whence K_{0}/O_{\pi^{*}}(K_{0}) is a central \pi-subgroup of K/O_{\pi^{*}}(K_{0}) . Since K is \pi -

perfect, 3. 9 forces P to centralize K/O_{\pi^{*}}(K_{0}) , as required.
Now let P be a \pi -group. We mainly show that

K=[P, K]O_{\pi^{*}}(C_{K}(P)) and [P]^{2}K=[P, KJ\circ
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In the semidirect product KP we consider the normal subgroup X:=
[P, K]P=K_{0}P. Since X\cap K equals K_{0} , a \pi^{*} -group, 4. 17 yields

K=K_{0}O_{\pi^{*}}(C_{K}(X_{\pi}))

Choose X_{\pi}\supseteq P. Then K=K_{0}C_{K}(P) and likewise K_{0}=[P, K_{0}]C_{K_{0}}(P) ,

hence K=[P, K_{0}]C_{K}(P) , so that [P, K]\subseteq[P, K_{0}] , i . e . K_{0}=[P, K_{0}] .
For the proof of K=K_{0}O_{\pi}*(C_{K}(P)) , choose X_{\pi} so that it contains (in

addition to P) an S_{\pi} subgroup P_{0} of C_{K_{0}}(P) .
Then we apply 4. 16 with K^{*}: =C_{K}(P) and K_{0}^{*} : =C_{K_{0}}(P) in place of

H and K, and get C_{K^{*}}(P_{0})\in\pi^{*}\pi , hence

O_{\pi^{*}}(C_{K}(X_{\pi}))\subseteq F^{\pi}(C_{K^{*}}(P_{0}))=O_{\pi^{*}}(C_{K^{*}}(P_{0}))

As P_{0} is an S_{\pi} subgroup of some normal subgroup of K^{*} , 4. 22 yields
O_{\pi^{*}}(C_{K^{*}}(P_{0}))\in O_{\pi^{*}}(K^{*}) . It follows that O_{\pi^{*}}(C_{K}(X_{\pi})) lies in O_{\pi^{*}}(K^{*})=O_{\pi^{*}}(C_{K}(P)) .

Now we have K=K_{0}O_{\pi^{*}}(C_{K}(X_{\pi}))=K_{0}O_{\pi^{*}}(C_{K}(P)) , as required.

4. 24. Now let P be a \pi -group acting on a \pi^{*}-\pi-group K. We
partially generalize 3. 9:

Let L=K_{1}rK_{2}\wedge\cdots\wedge K_{n}=K with K_{i} centralizer-closed in K_{i+1} and
P-invariant. If [P, O_{\pi^{*}}(L)]=1 , then [P, O_{\pi^{*}}(K)]=1 .

Since \pi^{*}-\pi is inherited by normal subgroups, we may assume K=K_{2} .
Choose L_{\pi} to be P-invariant. By 4. 23, [L_{\pi}, O_{\pi^{*}}(K)] is a \pi^{*} -group, hence
lies in O_{\pi^{*}}(L) , hence is centralized by P. Thus, also by 4. 23, it suffices
to show that Q:=[P, O_{\pi^{*}}(C_{O_{\Gamma^{*}}(K)}.(L_{\pi}))]=1 . Centralizing both O_{\pi^{*}}(L) (because

P does) and L_{\pi} , Q lies in C_{K}(O_{\pi^{*}}(L)L_{\pi})=C_{K}(L)=Z(L) . By 4. 23, Q is a \pi^{*}-

group and equals [P, Q] . So we get [P, Q]=Q\subseteq O_{\pi’}(L)\subseteq C_{L}(P) , hence Q=1 .
4. 25. Let A be a centralizer-closed normal subgroup of G_{\pi}\backslash, and K

an A-invariant \pi^{*} subgroup of G.
We prove that K lies in O_{\pi^{*}}(G) , i . e . in O_{\pi^{*}\pi}(G) :
Since Z(A) is an S_{\pi} subgroup of C_{G}(A) , Burnside’s transfer theorem

forces C_{G}(A) to be \pi -nilpotent. Hence O_{\pi^{*}}(C_{K}(A))\subseteq O_{\pi’}(C_{G}(A))\subseteq O_{\pi^{*}}(G) , the
latter inclusion being due to A\wedge G_{\pi} , see 4. 22.

So 4. 23 allows to assume K=[A, K] .
Let P=G_{\pi}\cap O_{\pi^{*}\pi}(G) and P_{0}=A\cap P.
Since [P_{0}, K]\underline{\subset}[P_{0}, G]\subseteq O_{\pi^{*}\pi}(G) , we may assume –again by 4. 23– that

K\subseteq C_{G}(P_{0}) .
We have O_{\pi^{*}}(N_{G}(P_{0}))\subseteq O_{\pi^{*}}(G) , because P_{0}\wedge G_{\pi} . Hence we may assume

G=N_{G}(P_{0}) .
Since P is an S_{\pi} subgroup of O_{\pi^{*}\pi}(G) , the Frattini argument yields O_{\pi^{*}n}



On the normal p-structure of a fifinite group and related topics 281

(G) C_{G}(P/P_{0})\wedge G , and the fundamental 4. 19 gives C_{G}^{*}(P)\underline{\subset}O_{\pi^{*}\pi}(G) . By defi-
nition of \pi^{*} , O_{\pi^{*}\pi}(G)\subseteq P_{0}C_{G}^{*}(P_{0}) .

So, using Dedekind’s modular law, we get (note that A\subseteq C_{G}(P/P_{0}) )

K=[A, K]\subseteq O_{\pi^{*}\pi}(G)C_{G}(P/P_{0})\cap P_{0}C_{G}^{*}(P_{0})

=O_{\pi^{*}\pi}(G)(C_{G}(P/P_{0})\cap P_{0}C_{G}^{*}(P_{0}))

=O_{\pi^{*}\pi}(G)P_{0}(C_{G}(P/P_{0})\cap C_{G}^{*}(P_{0}))\subseteq O_{\pi^{*}\pi}(G)C_{G}^{*}(P)=O_{\pi^{*}\pi}(G) ,

as required.
4. 26. Let H:=O_{\pi^{*}\pi}(G) , and P a \pi -subgroup of G subnormal in PH_{\pi}

[for some H_{\pi}=H_{\pi}^{P}). Then

O_{\pi^{*}}(N_{G}(P))\underline{\subset}O_{\pi^{*}}(G)

PROOF: Suppose false. Choose K minimal among normal \pi^{*} subgroups
of N_{G}(P) not lying in O_{\pi^{*}}(G) , i . e . not in H.

By 4. 22, H_{\pi}\not\subset P. Thus P_{\#}^{\wedge}Q\wedge\wedge PH_{\pi}=QH_{\pi} for some Q, and we may
assume that the assertion is true for Q, i . e . O_{\pi^{*}}(N_{G}(Q)) lies in O_{\pi^{*}}(G) .

By 4. 23 and minimal choice of K, K equals [P, K] or C_{K}(P) .
In the first case, K=[P, K]\subseteq P and hence K\subseteq O_{\pi^{*}}(P)\underline{\subset}O_{\pi^{*}}(Q)\subseteq O_{\pi^{*}}(N_{G}

(Q))\subseteq O_{\pi^{*}}(G) .
Thus P centralizes K. Hence [Q, K]=[P(Q\cap H_{\pi}), K]=[Q\cap H_{\pi}, K]\subseteq H,

so that –again by 4. 23– it only remains to show that O_{\pi^{*}}(C_{K}(Q))\subseteq H.
Since C_{G}(Q)\underline{\subset}N_{G}(P)\subseteq N_{G}(K) , we have C_{K}(Q)\wedge C_{G}(Q)and hence O_{\pi_{*}}(C_{K}(Q))

\underline{\subset}O_{\pi^{*}}(C_{G}(Q))\subseteq O_{\pi^{*}}(G) .
4.27. Finally we come to components. Let K be a \pi^{*} group with

O_{\pi’}(K)=1 (replace K by K/O_{\pi’}(K) ).
First we remark that any \pi -solvable subnormal subgroup of K (being

a \pi^{*}\pi -group) is \pi -nilpotent (see 4. 20), hence lies in F_{\pi}(K)=Z(K) . Similarly,
any \pi -solvable factor group of K is a \pi’ -group.

By 4. 21, L : =O^{\pi’}(K) is a \pi^{*} -group satisfying K=LO_{\pi’}(C_{K}(L_{\pi})) .
Let L_{1} , \cdots , L_{n} be the minimal non-\pi -solvable subnormal subgroups of

K, the components of K. We have n=0 only when K is a \pi’ -group.
By the above, a maximal normal subgroup of L_{i} is L_{i}\cap Z(K)=Z(L_{i}) .

Thus L_{i}/Z(L_{i}) is simple, so that L_{i} is quasisimple.
We have L_{i}=O^{\pi’}(L_{i})\wedge K, see 4. 6.
So for i\neq j we have [L_{i}, L_{j}]\subseteq L_{i}\cap L_{j}\subseteq Z(K) , and this implies [L_{i}, L_{j}]=

1 because L_{i} is perfect.
In particular, L_{i} \cap\prod_{j\neq i}L_{j}\subseteq Z(L_{i}) , so that L^{*}=L_{1}L_{2}\cdots L_{n} cannot be the
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product of a proper subset of the L_{i} .
Let P be a group acting on K. By 4. 23, [P, K] is a \pi^{*} -group (normal

in K). Since [P, K] centralizes every L_{i} centralized by P, no such L_{i} lies
in [P, K] . Conversely, every L_{i} not lying in [P, K] is centralized by P : If
L_{0}^{*} is the product of these L_{i}{?}[P, K] , then [P, L_{\acute{0}}^{*}] , a normal \pi^{*} subgroup
of L_{0}^{*} has no component, hence is a \pi^{*} -group, thus lies in O_{\pi’}(K)=1 .

In short: The components of [P, K] are the components of K not cen-
tralized by P (and [P, L^{*}] is the product of these components).

By induction (applied to K/[P, L^{*}] ), [P, L] equals [P, K]\cap L and satisfifies
[P]^{2}L=[P, L] .

Since C_{K}(L^{*}) contains no component, it is \pi-solvable. So if C_{L}(L_{\pi}^{\star_{1}})

induces a \pi -solvable automorphism group on L^{*} , then C_{L}(L_{\pi}^{*}) is \pi-solvable,
hence L/L^{*} is (because L=L^{*}C_{L}(L_{\pi}^{*}) ), hence is a \pi’ -group. Thus L=L^{*}

(because L=O^{\pi’}(K)), i . e. L=L_{1}L_{2}\cdots L_{n} .

5. F^{*} and E.

This section corresponds to the case \pi=set of all primes in section 4.
Thus “

\pi -group” has to be read as “group”, “
\pi’ -group” as “1”. “

\pi -perfect”
as “perfect”, etc. As mentioned before, we write F^{*} for \pi^{*}\pi and O_{\pi^{*}\pi} and
E for \pi^{*} and O_{\pi^{*}} .

Lemma 5. 1. Each of the following statements means that H is an
F^{*} -group.

(i) H=NC_{H}^{\star}(N) for every NaH.
(ii) Every factor group of H is an F^{*} -group.
(iii) Every normal subgroup of H is an F^{*} -group.
(iv) H is a product of normal F^{*} -subgroups.
(v) H has a normal F^{*} subgroup K with H/K an F^{*} group and

H=KC_{H}^{*}(K) .
PROOF. See 4. 2, 3, 11, 8, 10.

Lemma 5. 2. Each of the following statements means that H is an
E-group.

(i) H is a perfect F^{*} -group.
(ii) H=H’ and H=NC_{H}(N) for every N\wedge H.
(iii) Every factor group of H is an E-group.
(iv) H=H’ and K’ is an E-group for every K\wedge H.
(v) H is quasisemisimple, i. e . H=H’ and H/Z(H) is semisimple.
(vi) H is the central product of its quasisimple subnormal subgroups,

the components of H.
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PROOF. See 4. 2, 3, 12, 27. That a quasisemisimple group is an E-
group follows from 5. 1. v .

REMARK 5. 3. In an E-group all subnormal subgroups are normal,
and a proper subset of components generates a proper subgroup.

If K\wedge H, H an E-group, then K is the product of K\cap Z(H) and the
components lying in K.

Lemma 5. 4. F^{*}(G) and E(G) can be characterized in many ways:

F^{*}(G)=the largest normal F^{*} subgroup of G

=the smallest normal subgroup satisfying C_{G}^{*}(F^{*}(G))\underline{\subset}F^{*}(G)

=E(G)F(G) , a central product.

E(G)=the largest normal E subgroup of G

=the smallest normal subgroup with C_{G}(E(G)) constrained
=O^{F}(F^{*}(G)) .

PROOF. By 4. 21, F^{*}(G)=E(G)F(G) ; and this product is central (4. 5).
For the rest see 4. 8, 13, 19, 21.

REMARK. F^{*}(G) is also the smallest centralizer-closed normal subgroup
containing F(G) , the set of elements of G inducing inner automorphisms
on every chief factor, and the full inverse image of the product of all minimal
normal subgroups of C_{G}(F(G))F(G)/F(G) .

Lemma 5. 5. A solvable subgroup and an E-subgroup normalizing
each other must centralize each other.

More generally, if a group A acts on an E-group K, and centralizes
K/Z(K)=K/S(K) , then [A, K]=1 .

Lemma 5. 6. If A is a group acting on an E-group K, then [A, K]
equals [A, [A, K]] and is an E-group, namely the product of components
of K not centralized by A.

PROOF. See 4. 27 or 4. 23.
Lemma 5. 7. F^{*}(G)\subseteq H\subseteq G implies E(H)=E(G) .
PROOF. See 4. 22.
REMARK 5. 8. By 5. 6, if Aa aH, then E(A) is the product of com-

ponents of E(H) not centralized by A.
In particular, E(H) normalizes A.
Lemma 5. 9. Let A\underline{\subset}G and Aa \wedge AF^{*}(G) . Then E(N_{G}(A))=E(G) .
PROOF. See 4. 26 and Remark 5. 8.
REMARK 5. 10. Since F^{*} is inherited by normal subgroups, a subnormal
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subgroup A of F^{*}(G) is just the product of a subgroup of F(G) and some
components of E(G) . Thus A is centralizer-closed in F^{*}(G) if and only if
E(G) lies in A(i. e. E(G)=E(A)) and A\cap F(G)=F(A) is centralizer-closed
in F(G) .

Lemma 5. 11. Let B be an operator group on a group G with |B:B’|

prime to |F(G)| .
If B centralizes some centralizer-closed subnormal subgroup of F^{*}(G) ,

then [B, G]=1 .
PROOF. Since C_{G}(F^{*}(G))\subseteq F^{*}(G) , and by 5. 10 normalizers of subnormal

subgroups of F^{*} -groups are also subnormal, 3. 9 applies.

Lemma 5. 12. Let A be a centralizer-closed subnormal subgroup of
F^{*}(G) , and K an A-invariant E-subgroup of G. Then K\subseteq E(G) .

PROOF. By 5. 6, K=[A, K]E(C_{K}(A)) ; and by 5. 11, B :=E(C_{K}(A))

must be 1. Thus K=[A, K]\underline{\subset}F^{*}(G) , i . e . K\underline{\subset}O^{F}(F^{*}(G))=E(G) .
REMARK 5. 13. For any component E_{1} of E(G) and any q\in G we have

E_{1}^{q}=E_{1} or E_{1}^{q}\cap E_{1}\subseteq Z(E_{1}) . For p\in\pi(E_{1}) and an S_{p} subgroup P of E(G) ,
P\cap E_{1} is a non-central S_{p} subgroup of E_{1} . It follows that C_{G}(P) normalizes E_{1} .

6. p^{*}p and p^{*} .

This main section corresponds to the case when our \pi in section 4
consists of a single prime p.

Lemma 6. 1. Each of the following statements means that H is a p^{*}p -

group
(i) H=NC_{H}^{*}(N_{p}) for every N\wedge H.
(ii) Every factor group of H is a p^{*}p group
(iii) Every normal subgroup of H is a p^{*}p-group.
(iv) H is a product of normal p^{*}p-groups.
(v) H has a normal p*p subgroup K with H/K a p*p group and H=

KC_{H}^{*}(K_{p}) .
PROOF. See 4. 2, 3, 11, 8, 10.
We recall that for a p subgroup P, C_{H}^{*-}(P) equals O_{c_{H}(P),p}(N_{H}(P)) .
Lemma 6. 2. Each of the following statements means that H is a p^{*}-

group
(i) H is a p-perfect p^{*}p -group.
(ii) H=O^{p}(H) and H=NC_{H}(N_{p}) for every N\wedge H.
(iii) Every factor group of H is a p* group
(iv) H=O^{p}(H) and O^{p}(K) is a p* -group for every K\wedge H.
(v) H is a product of normal p* subgroups
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PROOF. See 4. 2, 3, 12, 8.
REMARK 6. 3. By 4. 6, Ka a H\in p* implies O^{p’}(K)\wedge H. Hence 6. 2.

ii holds also for subnormal subgroups N.
THEOREM 6. 4. L:=O^{p’}(O_{p*}(G)) is the smallest normal subgroup of

G with N_{G}(L_{p})p -constrained. Furthermore, L is a p* -group, and

O_{p^{*}p}(G)=the largest normal p*p subgroup of G

=the smallest normal subgroup H of G satisfying C_{G}^{*}(H_{p})\subseteq H

=LO_{p’,p}(N_{G}(L_{p})) .

O_{p*}(G)=the largest normal p* subgroup of G

=O^{p}(O_{p^{*}p}(G))

=LO_{p’}(N_{G}(L_{p}))

PROOF. See 4. 21, 19, and notice that for any subgroup K, C_{G}(K_{p}) is
p-constrained if and only if N_{G}(K_{p}) is, and that C_{G}(K_{p})\underline{\subset}K implies C_{G}^{*}(K_{p})

=O_{c_{G^{(K_{p}),p}}}(N_{G}(K_{p}))=O_{p’,p}(N_{G}(K_{p})) .
Lemma 6. 5. A p subgroup and a p* -subgroup normalizing each other

must centralize each other.
Lemma 6. 6. (p* -action lemma). Let A be a group acting on a p^{*}-

group K. Then [A, K] is a p* -group.
If A is a p-group, then [A]^{2}K=[A, K] and

K=[A, K]O_{p*}(C_{K}(A)) .

PROOF. See 4. 23.
REMARK 6. 7. Generalizing the situation of 6. 5, consider an arbitrary

subgroup A and a p* subgroup K normalizing each other. Then, by 6. 6,
[A, K]\subseteq O_{p*}(A) . Thus O_{p^{*}}(A)=1 would imply [A, K]=1 .

Secondly, if A in 6. 6 just satisfies A=O^{p’}(A) , then [A, K] equals the
product of all [P, K] , with P\in Sy1_{p}(A) , and hence by 6. 6 again satisfies
[A]^{2}K=[A, K] .

It follows that O^{p’}(A)=A\wedge aG implies [A, O_{p*}(G)]\subseteq O_{p*}(A) .

THEOREM 6. 8. Let C_{G_{p}}(A)\subseteq A\wedge G_{p} . Then every A-invariant p* -sub-
group of G lies in O_{p*}(G) .

PROOF. See 4. 25.
REMARK 6. 9. Since E-groups are p* -groups by definition, p’ -E-groups

are i . e . O_{p’,E}(G)\underline{\subset}O_{p*}(G) . Hence an S_{p} subgroup P of O_{p’,E}(G) satisfies
O_{p*}(G)=O_{p’,E}(G)C_{o_{\mathcal{D}^{*}}(G)}(P) .
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It follows that O_{p^{K}}(G) fixes each component of E(G/O_{p’}(G)) , see 5. 13.
Thus theorem 6. 8 sharpens and generalizes theorem 1 of [7].
MAIN THEOREM 6. 10. For every p-subgroup P of a group G, O_{p*}

(N_{G}(P))=O_{p*}(C_{G}(P)) lies in O_{p*}(G) .
More generally, it lies in O_{p*}(C_{G}(P_{0})) for every subgroup P_{0}\subseteq P.
PROOF. Let P_{0}aP_{1}a\cdots aP_{n}=P. By 4. 26, O_{p*}(C_{G}(P))\subseteq O_{p*}(G) and

likewise O_{p*}(C_{G}(P_{i+1}))\subseteq O_{p*}(N_{G}(P_{i}))=O_{p*}(C_{G}(P_{i})) .
Lemma 6. 11. Let P be a p-group acting on a p* group K. Suppose

P centralizes O_{p*}(L) for some centralizer-closed subnormal subgroup L of
F^{*}(K) . Then P centralizes K.

PROOF. This is a special case of 4. 24. Observe in this connection that
O_{p*}(L)=O^{p}(L)=E(L)F_{p’}(L) for any F^{*} group L.

Thus our assumption [P, O_{p*}(L)]=1 just means that P centralizes E(K)
and some centralizer-closed subgroup of F_{p’}(K) .

Lemma 6. 12. The following conditions are equivalent.
(i) G is p-constrained.
(ii) O_{p’,E}(G)=O_{p’}(G) .
(iii) O_{p*}(G)=O_{p’}(G) .
PROOF. See 5. 4 and 6. 4.
LEMMA 6. 13. XaG implies O_{p*}(G)=O_{p*}(X)O_{p*}(C_{G}(X_{p})) .
PROOF. See 4. 22.
PROPOSITION 6. 14. The following properties of a group G, with K :

=O_{p*}(G) , L:=O_{p’,E}(G),\overline{G} :=G/O_{p’}(G) , are equivalent.
In case they are valid, we call p* regular (on G).
(i) K/L is a p’ -group, i. e. O^{p’}(K)=O^{p’}(L) .
(ii) C_{G}(L_{p}) is p-constrained, i. e . O_{p*}(C_{G}(L_{p}))=O_{p’}(C_{G}(L_{p})) .
(iii) C_{G}(P) is p-constrained for every p-subgroup P of G such that C_{L}

(P\cap L) is p-constrained.
(iv) K=LO_{p’}(C_{G}(L_{p})) .
(v) K=LO_{p’}(C_{G}(M_{p})) , where M:=O_{p’} , F^{*(G)} .
(vi) C_{K}(L_{p}) induces a p-solvable automorphism group on \overline{L} .

(vii) C_{K}(L_{p}) induces a p-solvable automorphism group on each component
X (i. e. on X/Z(X), for X is perfect) of \overline{L} .

PROOF. For (i)arrow(ii) see 6. 4. Assuming (i), we derive (iii) : By 6. 10,

O^{p’}(O_{p^{*}}(C_{G}(P)))\underline{\subset}O^{p’}(O_{p^{*}}(C_{K}(P\cap L)))\underline{\subset}O_{p^{*}}(C_{L}(P\cap L))

=O_{p’}(C_{L}(P\cap L))i
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whence O_{p^{*}}(C_{G}(P)) is a p’ group i . e . C_{G}(P) is p-constrained.
Since certainly C_{L}(L_{p}) is p-constrained, (iii) implies K=LO_{p’}(C_{G}(X_{p}))

whenever X\wedge G and O_{p}*(X)=L , see 6. 13. Thus (iii) implies (iv) and (v),
which obviously yield (i). Trivially, (i) implies (vi), and that (vi) implies (i)
has already been noticed in the last paragraph of 4. 27.

Finally, (vi) and (vii) are equivalent because p-solvabih.ty is residual and,
with A:=C_{K}(L_{p}) , C_{A}(\overline{L})=\cap C_{A}(X) , X component of \overline{L} .

REMARK 6. 15. Each of the following hypotheses implies that p* is
regular.

(1) If is a simple group of order divisible by p, then
(i) C_{Aut(X)}(X_{p}) is p-solvable, or
(ii) every p-automorphism of X centralizing X_{p} is inner, or
(iii) X satisfifies Schreier s conjecture, i . e. its outer automorphism group

is solvable.
(2) If A acts on a group L, then C_{A}(L_{p}) induces a p-solvable outer

morphism group on L/O_{p’}(L) .
Indeed, each of these four hypotheses implies the first one (1i), hence

implies condition (vii) of 6. 14.
All known simple groups satisfy (liii), and for odd p they also seem

to satisfy (I ii).
Hypothesis (2) is satisfified by p=2 (whence 2* is regular), due to the

following.
Theorem of Glauberman [1] : Let O_{2’}(G)=1 . then C_{Aut(G)}(G_{2}) is 2-nil-

potent and has abelian S_{2}-subgroups.
By Remark 1 of [1], the p-analogue of this theorem holds provided

the p-analogue of his famous Z^{*} -theorem holds. As an exercise, the reader
may verify that (Iii) implies Glauberman’s theorem (for p) with the addition
that C_{Aut(G)}(G_{p}) has central S_{p}-subgroups.

Concluding remarks: We have already indicated in the introduction
that when we restrict ourselves to a class of groups on which F^{*} is regular,
many of our results are contained in the work of Gorenstein and Walter,
namely in [4] (as point out in section 5 of [5], arguments in the relevant
parts of [4] work also for odd primes). Notationally we have

L=E L_{p’,p}=O_{p’,F^{*}}

L_{p’}=O^{p} , O_{p’,E} L_{p’,p}^{*_{1}}=O_{p^{*}} (if p*is regular).

Since L_{p’}(H) equals O^{p’}(O_{p*}(H)) for regular p* , it seems natural to
denote the latter important subgroup (see 6. 4) by L_{p’}(H) in general.
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Then from 6. 10 we immediately get L_{p’}(N_{H}(P))\subseteq L_{p’}(H) for every
p-subgroup P, and L_{p’}= “class of p* group X satisfying O^{p’}(X)=X” is ob-
viously a radical property.
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