On modules which are flat over their endomorphism rings

By Takeshi Onodera
(Received September 14, 1977 ; Revised October 29, 1977)

Let ${ }_{R} M$ be a left R-module over a ring R^{1}, and S be the endomorphism ring of ${ }_{R} M$. Let ${ }_{R} A$ be a left R-module. We say that M-codominant dimension of A is $\geqq n$, if there is an exact sequence:

$$
X_{n} \longrightarrow X_{n-1} \longrightarrow \cdots \longrightarrow X_{2} \longrightarrow X_{1} \longrightarrow A \longrightarrow 0,
$$

where each X_{i} is isomorphic to a (finite or infinite) direct sum of copies of ${ }_{R} M$. We denote by \mathscr{C}_{n} the category of left R-modules whose M-codominant dimensions are $\geqq n$.

Recently T. Würfel has shown that, for a left R-module ${ }_{R} M$, the following statements are equivalent :2)
(a) The right S-module M_{S} is flat.
(b) ${ }_{R} M$ generates the kernel of every homomorphism ${ }_{R} M^{m} \rightarrow{ }_{R} M^{n}$, where m, n are natural numbers. (Here one can also set $n=1$). Further, R. W. Miller has proved that, in case where ${ }_{R} M$ is finitely generated and projective, the above statements are equivalent to
(c) $\mathscr{C}_{2}=\mathscr{C}_{3}{ }^{3}$

Here, regarding to the above results, we shall prove the following
Theorem. Let ${ }_{R} M$ be left R-module with the endomorphism ring S, and Q an injective cogenerator in the category ${ }_{R} \mathfrak{M}$ of all left R-modules. Then the following statements are equivalent:
(1) M_{s} is flat.
(2) The left S-module ${ }_{s} \operatorname{Hom}_{R}(M, Q)$ is injective.
(3) ${ }_{s} \operatorname{Hom}_{R}(M, Q)$ is absolutely pure, that is, every homomorphism of a finitely generated submodule of ${ }_{S} S^{m}$ to ${ }_{S} \operatorname{Hom}_{R}(M, Q)$ is extended to that of ${ }_{s} S^{m}$.
(4) ${ }_{s} \operatorname{Hom}_{R}(M, Q)$ is semi S-injective, that is, every homomorphism of a finitely generated left ideal of S to ${ }_{s} \operatorname{Hom}_{R}(M, Q)$ is extended

1) In what follows, we assume that every ring has an identity element and every module is unital.
2) Cf. [5], 1.14 Satz.

3) Cf. [2], Theorem 2.1*.
to that of S.
In case where ${ }_{R} M$ satisfies the condition $T M=M$, where T is the trace ideal of ${ }_{R} M: T=\sum_{f \in \operatorname{Hom}_{R^{(}}(M, R)} f(M)$, the above statements are equivalent to
(5) Ker $\alpha \in \mathscr{C}_{2}$ for every homomorphism $\alpha: X \rightarrow Y$, where $X, Y \in \mathscr{C}{ }_{2}$.
(6) Ker $\alpha \in \mathscr{C}_{1}$ for every homorphism $\alpha: X \rightarrow Y$, where $X, Y \in \mathscr{C}{ }_{2}$.
(7) Ker $\alpha \in \mathscr{C}_{1}$ for every homorphism $\alpha: X \rightarrow Y$, where X, Y are direct sums of copies of ${ }_{R} M$.
Further, in case where ${ }_{R} M$ is projective, the above statements are equivalent to
(8) If $X \supseteqq Y$, and $X \in \mathscr{C}_{2}, Y \in \mathscr{C} 1$, then $Y \in \mathscr{C}_{2}$.
(9) $\mathscr{C}_{2}=\mathscr{C}_{3}$
(10) The class \mathscr{C}_{2} forms an exact Grothendieck subcategory of ${ }_{R} \mathbb{M}$.
(11) The class \mathscr{C}_{2} forms an exact abelian subcategory of ${ }_{R} \mathfrak{M}$.

Proof. The implications $(2) \Rightarrow(3) \Rightarrow(4)$ are clear. (4) $\Rightarrow(1)$. It suffices to show (b) under the condition (4). Let $\left(s_{1}, s_{2}, \cdots, s_{m}\right) \in S^{m}$ be a homomorphism of ${ }_{R} M^{m}$ to ${ }_{R} M$, and K be its kernel. Let H be the trace of ${ }_{R} M$ in $K: H=$ $\sum_{f \in \operatorname{Hom}_{R}(M, K)} f(M)$. Suppose $H \subseteq K$. Let $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ be an element of K which is not contained in H. Then there is a homomorphism φ of M^{m} to Q such that $\varphi(H)=0, \varphi\left\{\left(x_{1}, x_{2}, \cdots, x_{m}\right)\right\} \neq 0$. Then, as is easily seen, the mapping

$$
\delta: \quad \sum_{i=1}^{m} S s_{i} \ni \sum_{i} a_{i} s_{i} \longrightarrow\left(M \ni x \longrightarrow \varphi\left\{\left(x a_{1}, x a_{2}, \cdots, x a_{m}\right)\right\} \in Q\right)
$$

is a well defined homorphism of $\sum_{i} S s_{i}$ to ${ }_{s} \operatorname{Hom}_{R}(M, Q)$. It follows, by assumption, that there is an element $g \in \operatorname{Hom}_{R}(M, Q)$ such that $g\left(\sum_{i} x a_{i} s_{i}\right)=$ $\varphi\left\{\left(x a_{1}, x a_{2}, \cdots, x a_{m}\right)\right\}$ for $x \in M$. But this implies $0=g\left(\sum_{i} x_{i} s_{i}\right)=\varphi\left\{\left(x_{1}, x_{2}, \cdots\right.\right.$, $\left.\left.x_{n}\right)\right\} \neq 0$, a contradiction. Thus $H=K$, as asserted. The implications (5) \Rightarrow $(6) \Rightarrow(7)$ are clear, because direct sums of copies of M have M-codominant dimensions $\geqq 2$.

Assume that ${ }_{R} M$ satisfies the condition $T M=M$. Let X be a left R module. It is shown in [3] that $X \in \mathscr{C}_{2}$ iff $M \underset{S}{\otimes} \operatorname{Hom}_{R}(M, X)$ and X are naturally isomorphic under the mapping $\varepsilon_{M, X}: M \underset{S}{\otimes} \operatorname{Hom}_{R}(M, X) \ni \sum_{i} m_{i} \otimes f_{i} \rightarrow$ $\sum_{i} f_{i}\left(m_{i}\right) \in X^{4}{ }^{4}$
$(1) \Rightarrow(5)$. Let M_{S} be flat and α be a homomorphism $X \rightarrow Y$, where X, $Y \in \mathscr{C}_{2}$. Applying the functor $M \otimes \underset{S}{\otimes} \operatorname{Hom}_{R}(M, X)$ to the exact sequence : $0 \rightarrow$ $\operatorname{Ker} \stackrel{\iota}{\rightarrow} X \xrightarrow{\alpha} Y$, we have the following commutative diagram with exact rows :

[^0]

Since $\varepsilon_{M, X}, \varepsilon_{M, Y}$ are isomorphisms, so is also $\varepsilon_{M, \text { Kera }}$. (7) implies (1), because (7) implies (b).

Assume that ${ }_{R} M$ is projective. Then ${ }_{R} M$ satisfies the condition $T M=$ M. (5) $\Rightarrow(8)$. Let $X \supseteq Y$ be such that $X \in \mathscr{C}{ }_{2}, Y \in \mathscr{C}_{1}$. Then there is an exact sequence : $\oplus M \rightarrow X \rightarrow X / Y \rightarrow 0$. Applying to this the functor $M \underset{S}{\otimes} \operatorname{Hom}_{\boldsymbol{R}}$ (M,), we see that $X / Y \in \mathscr{C}_{2}$. It follows by (5) that $Y \in \mathscr{C}_{2}$, because Y is the kernel of $\nu .(8) \Rightarrow(9)$. Let $X \in \mathscr{C}{ }_{2}$. Then there is an exact sequence : $\oplus M \xrightarrow{\alpha} \oplus M \rightarrow X \rightarrow 0$. \quad Since $\oplus M \in \mathscr{C}_{2}$ and $\operatorname{Im} \alpha \in \mathscr{C}_{1}$, we have $\operatorname{Im} \alpha \in \mathscr{C}_{2}$ by (8). It follows that Ker $\alpha \in \mathscr{C} 1$ by [3], Therorem 4. This implies that $X \in$ \mathscr{C}_{3}. Thus we have $\mathscr{C}_{2}=\mathscr{C}_{3} .(9) \Rightarrow(7)$. Consider a homomorphism $\alpha: \oplus M \rightarrow$ $\oplus M$. Then we have the following exact sequence : $0 \rightarrow \operatorname{Ker} \underset{\alpha \rightarrow \oplus}{\iota} M \xrightarrow{\alpha} \oplus M^{\nu}$ $\oplus M / \operatorname{Im} \alpha \rightarrow 0$. On the other hand, since $\oplus M / \operatorname{Im} \alpha \in \mathscr{C}_{2}$, whence $\in \mathscr{C}{ }_{3}$, there is a following exact sequence : $0 \rightarrow L \rightarrow \oplus M \rightarrow \oplus M \rightarrow \oplus M / \operatorname{Im} \alpha \rightarrow 0$, where $L \in \mathscr{C}_{1}$. Applying Schanuel's lemma ${ }^{5)}$ to the above sequences, we see that $\operatorname{Ker} \alpha \in \mathscr{C}_{1} .(1) \Rightarrow(10)$. Let M_{S} be flat and α be a homomorphism $X \rightarrow Y, X$, $Y \in \mathscr{C}$ 2. Then by (5) Ker $\alpha \in \mathscr{C}_{2}$. Applying $M \otimes \otimes_{S} \operatorname{Hom}_{R}(M$,$) to the exact$ sequence : $X \rightarrow Y \rightarrow Y / \operatorname{Im} \alpha \rightarrow 0$, we see that $Y / \operatorname{Im} \alpha \in \mathscr{C} 2$. Further, from the exact sequence : $\operatorname{Ker} \alpha \rightarrow X \rightarrow \operatorname{Im} \alpha \rightarrow 0$, where X, $\operatorname{Ker} \alpha \in \mathscr{C}_{2}$, we see as above that $\operatorname{Im} \alpha \in \mathscr{C}_{2}$. Since \mathscr{C}_{2} is closed under direct sums, and has M as a generator, it follows that \mathscr{C}_{2} is an exact Grothendieck subcategory of ${ }_{R} \mathfrak{M}$. The assertions $(10) \Rightarrow(11) \Rightarrow(5)$ are clear.

[^1]
References

[1] V. P. Camillo and K. R. Fuller: Rings whose faithful modules are flat over their endomorphism rings, Arch. Math. 27 (1976), 522-525.
[2] R. W. Miller: Finitely generated projective modules and TTF-classes, Pacific J. Math. Vol. 64, No. 2 (1976), 505-515,
[3] T. Onodera: Codominant dimensions and Morita equivalences, Hokkaido Math. J. 6 (1977), 169-182.
[4] J. J. Rotman: Notes on homological algebra, Van Nostrand Reinhold Mathematical Studies 26 (1970).
[5] T. WÜrfel: Über absolut reine Ringe, Algebra Bericht Nr. 4, Math. Inst. d. Univ. München (1973).

[^0]: $4)$ Cf. [3], Theorem 2.

[^1]: 5) Cf. [4], Theorem 3.41.
