On modules which are flat over their endomorphism rings

By Takeshi ONODERA

(Received September 14, 1977; Revised October 29, 1977)

Let $_{R}M$ be a left *R*-module over a ring R^{1} , and *S* be the endomorphism ring of $_{R}M$. Let $_{R}A$ be a left *R*-module. We say that *M*-codominant dimension of *A* is $\geq n$, if there is an exact sequence:

 $X_n \longrightarrow X_{n-1} \longrightarrow \cdots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow A \longrightarrow 0$,

where each X_i is isomorphic to a (finite or infinite) direct sum of copies of ${}_{R}M$. We denote by \mathscr{C}_n the category of left *R*-modules whose *M*-codominant dimensions are $\geq n$.

Recently T. Würfel has shown that, for a left *R*-module $_{R}M$, the following statements are equivalent :²⁾

- (a) The right S-module M_s is flat.
- (b) $_{R}M$ generates the kernel of every homomorphism $_{R}M^{m}\rightarrow_{R}M^{n}$, where m, n are natural numbers. (Here one can also set n=1).

Further, R. W. Miller has proved that, in case where $_{R}M$ is finitely generated and projective, the above statements are equivalent to

(c) $\mathscr{C}_2 = \mathscr{C}_3^{3}$

Here, regarding to the above results, we shall prove the following

THEOREM. Let $_{\mathbb{R}}M$ be left R-module with the endomorphism ring S, and Q an injective cogenerator in the category $_{\mathbb{R}}\mathfrak{M}$ of all left R-modules. Then the following statements are equivalent:

- (1) M_s is flat.
- (2) The left S-module $_{S}Hom_{R}(M, Q)$ is injective.
- (3) ${}_{S}\operatorname{Hom}_{R}(M, Q)$ is absolutely pure, that is, every homomorphism of a finitely generated submodule of ${}_{S}S^{m}$ to ${}_{S}\operatorname{Hom}_{R}(M, Q)$ is extended to that of ${}_{S}S^{m}$.
- (4) ${}_{s}\operatorname{Hom}_{R}(M, Q)$ is semi S-injective, that is, every homomorphism of a finitely generated left ideal of S to ${}_{s}\operatorname{Hom}_{R}(M, Q)$ is extended

¹⁾ In what follows, we assume that every ring has an identity element and every module is unital.

²⁾ Cf. [5], 1.14 Satz.

³⁾ Cf. [2], Theorem 2.1*.

to that of S.

In case where $_{R}M$ satisfies the condition TM = M, where T is the trace ideal of $_{R}M$: $T = \sum_{f \in \operatorname{Hom}_{R}(M,R)} f(M)$, the above statements are equivalent to

- (5) Ker $\alpha \in \mathscr{C}_2$ for every homomorphism $\alpha : X \to Y$, where X, $Y \in \mathscr{C}_2$.
- (6) Ker $\alpha \in \mathscr{C}_1$ for every homorphism $\alpha: X \to Y$, where X, $Y \in \mathscr{C}_2$.
- (7) Ker $\alpha \in \mathscr{C}_1$ for every homorphism $\alpha : X \to Y$, where X, Y are direct sums of copies of $_{\mathbb{R}}M$.

Further, in case where $_{R}M$ is projective, the above statements are equivalent to

- (8) If $X \supseteq Y$, and $X \in \mathscr{C}_2$, $Y \in \mathscr{C}_1$, then $Y \in \mathscr{C}_2$.
- $(9) \quad \mathscr{C}_2 = \mathscr{C}_3$
- (10) The class \mathscr{C}_2 forms an exact Grothendieck subcategory of $R\mathfrak{M}$.
- (11) The class \mathscr{C}_2 forms an exact abelian subcategory of $_R\mathfrak{M}$.

PROOF. The implications $(2) \Rightarrow (3) \Rightarrow (4)$ are clear. $(4) \Rightarrow (1)$. It suffices to show (b) under the condition (4). Let $(s_1, s_2, \dots, s_m) \in S^m$ be a homomorphism of ${}_{R}M^{m}$ to ${}_{R}M$, and K be its kernel. Let H be the trace of ${}_{R}M$ in $K: H = \sum_{f \in Hom_{R}(M,K)} f(M)$. Suppose $H \subseteq K$. Let (x_1, x_2, \dots, x_m) be an element of K which is not contained in H. Then there is a homomorphism φ of M^m to Q such that $\varphi(H) = 0, \varphi\{(x_1, x_2, \dots, x_m)\} \neq 0$. Then, as is easily seen, the mapping

$$\delta: \sum_{i=1}^m Ss_i \ni \sum_i a_i s_i \longrightarrow (M \ni x \longrightarrow \varphi \{ (xa_1, xa_2, \cdots, xa_m) \} \in Q),$$

is a well defined homorphism of $\sum_{i} Ss_{i}$ to ${}_{S}\operatorname{Hom}_{R}(M, Q)$. It follows, by assumption, that there is an element $g \in \operatorname{Hom}_{R}(M, Q)$ such that $g(\sum_{i} xa_{i}s_{i}) = \varphi \{(xa_{1}, xa_{2}, \dots, xa_{m})\}$ for $x \in M$. But this implies $0 = g(\sum_{i} x_{i}s_{i}) = \varphi \{(x_{1}, x_{2}, \dots, x_{n})\} \neq 0$, a contradiction. Thus H = K, as asserted. The implications $(5) \Rightarrow (6) \Rightarrow (7)$ are clear, because direct sums of copies of M have M-codominant dimensions ≥ 2 .

Assume that ${}_{R}M$ satisfies the condition TM = M. Let X be a left Rmodule. It is shown in [3] that $X \in \mathscr{C}_{2}$ iff $M \bigotimes_{S} \operatorname{Hom}_{R}(M, X)$ and X are naturally isomorphic under the mapping $\varepsilon_{M,X} \colon M \bigotimes_{S} \operatorname{Hom}_{R}(M, X) \supseteq \sum_{i} m_{i} \bigotimes f_{i} \rightarrow \sum_{i} f_{i}(m_{i}) \in X^{4}$

(1) \Rightarrow (5). Let M_S be flat and α be a homomorphism $X \rightarrow Y$, where X, $Y \in \mathscr{C}_2$. Applying the functor $M \bigotimes_S \operatorname{Hom}_R(M, X)$ to the exact sequence: $0 \rightarrow \overset{\iota}{\underset{S}{\operatorname{Ker}}} \alpha \xrightarrow{\alpha} X \xrightarrow{\gamma} Y$, we have the following commutative diagram with exact rows: (1) $\xrightarrow{\iota} \alpha$ (1) $\xrightarrow{\iota} \gamma$ (2) $\xrightarrow{\iota} \gamma$ (2) $\xrightarrow{\iota} \gamma$ (3) $\xrightarrow{\iota} \gamma$ (3), Theorem 2.

Since $\varepsilon_{M,\lambda}$, $\varepsilon_{M,Y}$ are isomorphisms, so is also $\varepsilon_{M,\text{Kera}}$. (7) implies (1), because (7) implies (b).

Assume that $_{R}M$ is projective. Then $_{R}M$ satisfies the condition TM =M. (5) \Rightarrow (8). Let $X \supseteq Y$ be such that $X \in \mathscr{C}_2$, $Y \in \mathscr{C}_1$. Then there is an exact sequence: $\bigoplus M \rightarrow X \rightarrow X/Y \rightarrow 0$. Applying to this the functor $M \otimes \operatorname{Hom}_{R}$ (M,), we see that $X/Y \in \mathscr{C}_2$. It follows by (5) that $Y \in \mathscr{C}_2$, because Y is the kernel of ν . (8) \Rightarrow (9). Let $X \in \mathscr{C}_2$. Then there is an exact sequence: $\oplus M \to \oplus M \to X \to 0$. Since $\oplus M \in \mathscr{C}_2$ and Im $\alpha \in \mathscr{C}_1$, we have Im $\alpha \in \mathscr{C}_2$ by (8). It follows that Ker $\alpha \in \mathscr{C}_1$ by [3], Theorem 4. This implies that $X \in$ \mathscr{C}_3 . Thus we have $\mathscr{C}_2 = \mathscr{C}_3$. (9) \Rightarrow (7). Consider a homomorphism $\alpha : \bigoplus M \rightarrow$ α $\oplus M/\operatorname{Im} \alpha \to 0$. On the other hand, since $\oplus M/\operatorname{Im} \alpha \in \mathscr{C}_2$, whence $\in \mathscr{C}_3$, there is a following exact sequence : $0 \rightarrow L \rightarrow \bigoplus M \rightarrow \bigoplus M / \operatorname{Im} \alpha \rightarrow 0$, where $L \in \mathscr{C}_1$. Applying Schanuel's lemma⁵ to the above sequences, we see that Ker $\alpha \in \mathscr{C}_1$. (1) \Rightarrow (10). Let M_s be flat and α be a homomorphism $X \rightarrow Y$, X, $Y \in \mathscr{C}_2$. Then by (5) Ker $\alpha \in \mathscr{C}_2$. Applying $M \bigotimes_{s} \operatorname{Hom}_{R}(M,)$ to the exact sequence: $X \rightarrow Y \rightarrow Y/\text{Im } \alpha \rightarrow 0$, we see that $Y/\text{Im } \alpha \in \mathscr{C}_2$. Further, from the exact sequence: Ker $\alpha \rightarrow X \rightarrow \text{Im } \alpha \rightarrow 0$, where X, Ker $\alpha \in \mathscr{C}_2$, we see as above that Im $\alpha \in \mathscr{C}_2$. Since \mathscr{C}_2 is closed under direct sums, and has M as a generator, it follows that \mathscr{C}_2 is an exact Grothendieck subcategory of $R\mathfrak{M}$. The assertions $(10) \Rightarrow (11) \Rightarrow (5)$ are clear.

5) Cf. [4], Theorem 3.41.

T. Onodera

References

- V. P. CAMILLO and K. R. FULLER: Rings whose faithful modules are flat over their endomorphism rings, Arch. Math. 27 (1976), 522-525.
- [2] R. W. MILLER: Finitely generated projective modules and TTF-classes, Pacific J. Math. Vol. 64, No. 2 (1976), 505-515,
- [3] T. ONODERA: Codominant dimensions and Morita equivalences, Hokkaido Math.
 J. 6 (1977), 169-182.
- [4] J. J. ROTMAN: Notes on homological algebra, Van Nostrand Reinhold Mathematical Studies 26 (1970).
- [5] T. WÜRFEL: Über absolut reine Ringe, Algebra Bericht Nr. 4, Math. Inst. d. Univ. München (1973).

Department of Mathematics Hokkaido University