A note on linearly compact modules

Dedicated to Professor Goro Azumaya on his 60th birthday

By Takeshi ONODERA

(Received July 14, 1978)

Let R, S be rings¹⁾ and ${}_{R}M_{S}$ be an R-S-bimodule such that ${}_{R}M$ is linearly compact²⁾ as left R-module. In this note we consider the conditions under which M_{S} , as right S-module, to be injective. Thus we have the following theorem which generalize Theoreme 2 in [1].

THEOREM. Let $_{R}M_{s}$ be an R-S-bimodule such that $_{R}M$ is linearly compact. Then the following statements are equivalent:

- (1) M_s is injective.
- (2) M_s is absolutely pure, that is, every homomorphism of a finitely generated submodule of S_s^m to M_s is extended to that of S_s^m , where m is arbitaray natural number and S_s^m is a direct sum of m-fold copies of S_s .
- (3) M_s is semi S-injective, that is, every homomorphism of a finitely generated right ideal of S to M_s is extended to that of S.
- (4) ${}_{s}\operatorname{Hom}_{R}(M, Q)$ is flat for every injective left R-module Q with essential socle.
- (5) ${}_{s}\operatorname{Hom}_{R}(M, K)$ is flat for every injective cogenerator K with essential socle.
- (6) ${}_{s}\operatorname{Hom}_{R}(M, K_{0})$ is flat for some injective cogenerator K_{0} with essential socle.

In case where $S = \text{End}(_{\mathbb{R}}M)$, the endomorphism ring of $_{\mathbb{R}}M$, the above statements (1)~(6) are equivalent also to

(7) $_{R}M$ cogenerates the cokernel of every homomorphism $_{R}M^{m} \rightarrow_{R}M^{n}$, where m, n are arbitrary natural numbers. (Here one can set m=1).

In order to prove the theorem we need the following

LEMMA³⁾. Let A_s be a finitely generated right S-module, $_RM_s$ be an

¹⁾ In what follows it is assumed that all rings have an identity element and all modules are unital.

²⁾ A left R-module is called linearly compact if every finitely solvable system of congruences $x \equiv m_{\alpha} \pmod{M_{\alpha}}, \alpha \in A$, is solvable where $m_{\alpha} \in M$ and M_{α} are submodules of M.

³⁾ Cf. [1], Lemma 2, also [4], Lemma 3.5.

T. Onodera

R-S-bimodule such that $_{R}M$ *is linearly compact, and,* $_{R}Q$ *be an injective left R-module with essential socle. Then* $A \bigotimes_{S} \operatorname{Hom}_{R}(M, Q)$ *and* $\operatorname{Hom}_{R}(\operatorname{Hom}_{S}(A, M), Q)$ *are isomorphic under the isomorphism* θ_{A} :

$$\begin{array}{ll} \vartheta_{A} \colon & A \bigotimes_{S} \operatorname{Hom}_{R}(M, Q) \ni \sum_{i} a_{i} \otimes f_{i} \longrightarrow \\ & \left(\operatorname{Hom}_{S}(A, M) \ni g \longrightarrow \sum_{i} f_{i} \left(g(a_{i}) \right) \in Q \right), \\ & a_{i} \in A, \quad f_{i} \in \operatorname{Hom}_{R}(M, Q). \end{array}$$

At first we show that the mapping θ_A is a monomorphism. Proof. Let $A = \sum_{i=1}^{n} a_i S$ and $\sum_{i=1}^{n} a_i \otimes f_i$ be an element of the kernel of $\theta_A : \theta_A(\sum_{i=1}^{n} a_i \otimes f_i)$ =0. This implies that $\sum_{i=1}^{n} f_i(g(a_i)) = 0$ for all $g \in \operatorname{Hom}_{\mathcal{S}}(A, M)$. Let $\mathcal{U} :=$ $(s_1, s_2, \dots, s_n) \in \mathbb{Z}$. Let (y_1, y_2, \dots, y_n) be an element of \mathbb{Z} . Then the mapping $g: A \ni \sum_{i=1}^{n} a_i s_i \to \sum_{i=1}^{n} y_i s_i \in M$ is a (well defined) homomorphism of A_s into M_s such that $g(a_i) = y_i$, $i = 1, 2, \dots, n$. It follows that $\sum_{i=1}^n f_i(y_i) = 0$. Let φ be the homorphism of $_{R}M^{n}$ into $_{R}Q$ defined by $\varphi((x_{1}, x_{2}, \dots, x_{n})) = \sum_{i=1}^{n} f_{i}(x_{i})$. Then we have Ker $\varphi \supseteq \mathscr{U}^{\perp}$. Since _RM, whence _RMⁿ, is linearly compact and $M^n/\operatorname{Ker} \varphi \cong \varphi(M^n) \subseteq Q$ is cofinitely generated⁴⁾, there exist a finite number of elements $\mathcal{Z}_j := (s_1, s_2, \dots, s_n), j=1, 2, \dots, l$, of \mathcal{U} such that ker $\varphi \supseteq \bigcap_{i=1}^l \mathcal{Z}_j^{\perp}$ where $\mathscr{P}_{j}^{\perp} := \left\{ (x_1, x_2, \cdots, x^n) \in M^n \middle| \sum_{i=1}^n x_i s_i^{(j)} = 0 \right\}^{5}$. Then, since $_RQ$ is injective, the well defined mapping $((\mathscr{X}, \mathscr{F}_1), (\mathscr{X}, \mathscr{F}_2), \cdots, (\mathscr{X}, \mathscr{F}_l)) \rightarrow \sum_{i=1}^n f_i(x_i) \in Q$, where $\mathscr{X} = (x_1, x_2, \dots, x_n) \in M^n$ and $(\mathscr{X}, \mathscr{J}_j) = \sum_{i=1}^n x_i s_i^{(j)}$, is extended to a homorphism of $_{R}M^{'}$ into $_{R}Q$. Thus there exist homomorphisms $g_{1}, g_{2}, \dots, g_{l} \in \operatorname{Hom}_{R}(M, Q)$ such that $\sum_{i=1}^{n} f_{i}(x_{i}) = \sum_{i=1}^{n} g_{j}\left(\sum_{i=1}^{n} x_{i} s_{i}^{(j)}\right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{l} s_{i}^{(j)} g_{j}\right)(x_{i})$ for $(x_{1}, x_{2}, \dots, x_{n}) \in M^{n}$. It follows that $f_i = \sum_{j=1}^{l} s_i^{(j)} \cdot g_j$, $i=1, 2, \dots, n$. Then we have $\sum_{j=1}^{n} a_i \otimes f_i = \sum_{j=1}^{n} a_i \otimes f_j$ $\left(\sum_{i=1}^{l} s_{i}^{(j)} \cdot g_{j}\right) = \sum_{j=1}^{l} \left(\sum_{i=1}^{n} a_{i} s_{i}^{(j)}\right) \otimes g_{j} = 0.$ Thus θ_{A} is a monomorphism. Next we show that θ_A is an epimorphism. Let α be a element of $\operatorname{Hom}_R(\operatorname{Hom}_S(A, M),$

⁴⁾ Cf. [2], Propositions 1, 3, 5.

⁵⁾ Cf. [1], Theorem 6.

Q). Then, since $_{R}Q$ is injective, the well defined mapping

$$(g(a_1), g(a_2), \dots, g(a_n)) \longrightarrow \alpha(g) \in Q$$
, where $g \in \operatorname{Hom}_{\mathcal{S}}(A, M)$,

is extended to a homorphism of $_{R}M^{n}$ to $_{R}Q$. It follows that there exist $f_{1}, f_{2}, \dots, f_{n} \in \operatorname{Hom}_{R}(M, Q)$ such that $\alpha(g) = \sum_{i=1}^{n} f_{i}(g(a_{i})), g \in \operatorname{Hom}_{S}(A, M)$. This implies that $\alpha = \theta_{A}\left(\sum_{i=1}^{n} a_{i} \otimes f_{i}\right)$. Thus θ_{A} is an epimorphism.

PROOF OF THE THEOREM. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ are clear. $(3) \Rightarrow (4)$. Let \clubsuit be a finitely generated right ideal of S and

$$0 \longrightarrow \mathcal{M} \xrightarrow{\ell} S \xrightarrow{\nu} S/\mathcal{M} \longrightarrow 0$$

be the canonical exact sequence. Then, since M_s is semi S-injective and ${}_{R}Q$ is injective, we have the following commutative diagram with exact rows:

Here, by the above lemma, the vertical arrows are all isomorphisms. It follows that $\iota \otimes 1_{\operatorname{Hom}_R(M,Q)} : \mathscr{M} \otimes_S \operatorname{Hom}_R(M,Q) \to S \otimes_S \operatorname{Hom}_R(M,Q)$ is a monomorphism. Thus ${}_{S}\operatorname{Hom}_R(M,Q)$ is a flat left S-module. (4) \Rightarrow (5) \Rightarrow (6) are clear. (6) \Rightarrow (3). Suppose that ${}_{S}\operatorname{Hom}_R(M,K_0)$ is flat. Let \mathscr{M} be a finitely generated right ideal of S and

$$0 \longrightarrow \mathscr{m} \xrightarrow{\ell} S \xrightarrow{\nu} S/\mathscr{m} \longrightarrow 0$$

be the canonical exact sequence. Then we have the following exact sequence:

$$0 \longrightarrow_{\mathscr{K}} \bigotimes_{S} \operatorname{Hom}_{R}(M, K_{0}) \longrightarrow S \bigotimes_{S} \operatorname{Hom}_{R}(M, K_{0}) \longrightarrow S /_{\mathscr{K}} \bigotimes_{S} \operatorname{Hom}_{R}(M, K_{0}) \longrightarrow 0 .$$

It follows by the above lemma that we have the following exact sequence:

$$\begin{array}{l} 0 \longrightarrow \operatorname{Hom}_{R}(\operatorname{Hom}_{S}(\mathcal{M}, M), K_{0}) \longrightarrow \operatorname{Hom}_{R}(\operatorname{Hom}_{S}(S, M), K_{0}) \longrightarrow \\ & \operatorname{Hom}_{R}(\operatorname{Hom}_{S}(S/\mathcal{M}, M), K_{0}) \longrightarrow 0 \ . \end{array}$$

Since $_{R}K_{0}$ is an injective cogenerator, this means that the sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{S}}(S/\mathcal{M}, M) \xrightarrow{\operatorname{Hom}(\nu, 1_{M})} \operatorname{Hom}_{\mathcal{S}}(S, M) \xrightarrow{\operatorname{Hom}(\nu, 1_{M})} \operatorname{Hom}_{\mathcal{S}}(\mathcal{M}, M) \longrightarrow 0$$

T. Onodera

is exact. It follows that M_s is semi S-injective. (3) \Rightarrow (1). Let m be a right ideal of S and φ be a homomorphism of m into M_s . For each element s of m, since M_s is semi S-injective, there is an element m_s of M such that $\varphi(s) = m_s s$. Then the system of congruences:

$$x \equiv m_s (\mathrm{mod} \operatorname{Ann}_M(s)), \quad s \in \mathcal{M},$$

where $\operatorname{Ann}_{\mathcal{M}}(s) := \{x \in \mathcal{M} | xs = 0\}$, is finitely solvable, because again M_s is semi S-injective. Since $_{\mathcal{R}}M$ is linearly compact there exists a solution m_0 for the system of congruences. Then we have $m_0s = m_ss = \varphi(s)$ for all $s \in \mathscr{M}$. Thus M_s is injective. The equivalence $(7) \Leftrightarrow (2)$ is obtained in [5] ([5], 1.8 Satz).

From our theorem we have the following

COROLLARY⁶). Let R be a ring such that $_{R}R$ is linearly compact. Then the following statements are equivalent:

- (1) R_R is injective.
- (2) R_R is absolutely pure.
- (3) R_R is semi R-injective.
- (4) Every injective left R-module with essential socle is flat.
- (5) Every cofinitely generated injective left R-module is flat.
- (6) Every colocalⁿ injective left R-module is flat.
- (7) Every injective cogenerator with essential socle is flat.
- (8) There is a flat injective cogenerator with essential socle.
- (9) $_{\mathbb{R}}R$ cogenerates the cokernel of every homomorphism $\mathbb{R}^{m} \to \mathbb{R}^{n}$, where m, n are arbitrary natural numbers. (Here one can set m=1).

PROOF. Since R is semi-perfect⁸⁾, the number of non-isomorphic simple left R-modules is finite. Thus there is a cofinitely generated injective cogenerator. Then it is easy to see that the equivaleces $(5) \Leftrightarrow (6) \Leftrightarrow (8)$ hold. The rest of the proof follows direct from the theorem.

124

⁶⁾ Cf. [1], Théorème 2.

⁷⁾ Cf. [3], Satz 1'.

⁸⁾ Cf. [2], Corollary to Theorem 5.

References

- F. COUCHOT: Anneau auto-fp-injectifs, C. R. Acad. Sc. Paris, t 284, Serie A, 579-582 (1977).
- [2] T. ONODERA: Linearly compact modules and cogenerator, J. Fac. Sci., HokkaidoUniv., Ser. I. 12, No. 3, 4, 116-125 (1972).
- [3] T. ONODERA: Koendlich erzeugte Moduln und Kogeneratoren, Hokkaido Math.
 J., Vol. II, No. 1, 69-83 (1973).
- [4] P. VÁMOS: Classical rings, J. Algebra 34, 114-129 (1975).
- [5] T. Würfel: Über absolut reine Ringe, J. für die reine und angewandte Math., Bd. 262/263, 381-391 (1973).

Department of Mathematics Hokkaido University