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A theorem on group spaces

By Christoph HERING
(Received September 25, 1978)

\S 1. Introduction.

The papers [5] and [9] contain the classification of all finite doubly
transitive permutation groups (\Omega, G) which have the property that the sta-
biliser G_{\alpha} on a point \alpha\in\Omega contains a normal subgroup Q acting sharply
transitively on 12-{\mbox{\boldmath $\alpha$}}. This result has found many applications, especially
in finite geometry. However in most of these applications the algebraic
objects most immediately connected to the geometric situation are group
spaces rather than permutation groups. Therefore it seems advisable to
adapt the above result to the more general case of group spaces. To do
this is the main purpose of this paper. Also, we investigate, which elements
of a group G of the type considered here are the product of two elements
lying in conjugates of Q (see Lemma 2. 6). Furthermore, in \S 3 we present
an application of our result to collineation groups of projective planes. Our
notation is the same as in [3] and [5]. The following lemma which shall
be needed for the proof of our main theorem, may be of independent in-
terest. Under the additional assumption that X is a 2-group or X is a p-
group and A is sharply transitive on X/Y it has been proved in [7, Lemma
3. 3] and [8, Lemma 2. 2 and Lemma 2. 3].

Lemma 1. 1. Let X be a finite group, Y a normal subgroup of X of
index at least 3 and A a group of automorphisms of X such that A cen -

tralises Y and acts transitively on X/Y-\{1\} . Clearly X/Y is an elementary
abelian p-group for some prime p. Denote |X/Y|=p^{n} and C=[X, A] . Then

a) C is a p group, X=YC, [Y, C]=1 , C’\leq\Phi(C)\leq C\cap Y\leq\S C, \S C=C\cap Y
or \S C=C, and C’ is elementary abelian of order at most p^{n-1} ;

b) if N\leq C and N is invariant under A, then N\leq C\cap Y or N=C ;
c) if in addition p\parallel_{1}|A| , then C’=\Phi(C)=C\cap Y, A is faithfully re-

present on C/Cf] Y, and one of the following statements holds:
I) X=Y\cross C.

II) C is a quaternion group of order 8, |A|=3 .
Ill) |X/Y|=p^{2}, where p\in\{11,19,29, 59\} , C is an extraspecial group

of order p^{3}, C\cap Y=@C and A^{(\infty)}\equiv SL(2,5) .
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IV) |X/Y|=p^{2}, where p\in\{3,5,7,11, 23\} , C is an extraspecial group
of order p^{3}, C\cap Y=\S C and A contains a normal subgroup isomor
-phic to a quaternion group of order 8.

V) |X/Y|=3^{4}, |C\cap Y|=3,3^{2} or 3^{3} , and A contains a normal subgroup
isomorphic to an extraspecial group of order 32.

PROOF. Let G be the corresponding semidirect product of X and A.
YC/Y is a normal subgroup of X/Y which is left invariant by A. Also,

A is trivial on X/Y/YC/Y, so that YC=X. If x\in X and a\in A , then [x, a]=
(a^{-1})^{x}a\in \mathfrak{C}_{G} Y. as Y\underline{\triangleleft}G and hence \mathfrak{C}_{G}Y\underline{\triangleleft}G . So [Y, C]=1 . Let N be
a sugroup of C which is left invariant by A and assume that N_{--},C\cap Y.
Then YN/Y is a non-trivial subgroup of X/Y left invariant by A, so that
YN=X. If y\in Y, x\in N and a\in A , then [yx, a]=(yx)^{-1}(yx)^{a}=x^{-1}y^{-1}y^{a}x^{a}=

x^{-1}x^{a}\in N. Hence C\leq N, and we have b). Let C_{p} be a Sylow p subgroup
of C. Then C=(C\cap Y)C_{p} , as C/C\cap Y\cong CY/Y=X/Y is a p group Also,
C\cap Y\leq@C so that C_{p} is characteristic in C and therefore C_{p}=C by b). Let
u, v\in C-Y. As C’\leq\Phi(C)\leq C\cap Y\leq\S C and C/C\cap Y is elementary abelian,
we have [u, v]^{p}=[u^{p}, v]=1 so that C’ is elementary abelian too. Let
k_{1} , \cdots , k_{n}\in C such that C/C\cap Y=\langle k_{1}(C\cap Y), \cdots, k_{n}(C\cap Y)\rangle . Because of the
transitivity there exists a\in A such that u^{a}Y=k_{1}Y. As A leaves invariant
C, there exist y_{1} , y_{2}\in C\cap Y such that u^{a}=k_{1}y_{1} and v^{a}=k_{1}^{e_{l}}\cdots k_{n}^{e_{n}}y_{2} for itable
integers e_{i} . Now [u, v]=[u, v]^{a}=[u^{a}, v^{a}]=[k_{1}y_{1}, k_{1}^{e_{1}}\cdots k_{n}^{e_{n}}y_{2}]=[k_{1}, k_{2}]^{e_{2}}\cdots

[k_{1}, k_{n}]^{e_{n}}\in\backslash \nearrow[k_{1}, k_{2}] , \cdots , [k_{1}, k_{n}]\rangle . So |C’|\leq p^{n-1} , and we have a).

We assume now that p\gamma|A| . Consider the action of A on C/C’ : We
have C=[X, A]=[YC, A]=[C, A] and hence C/C’=[C/C’, A] . Hence by
a Lemma of Zassenhaus (see Huppert [6,111 13.4]) C\cap Y/C’\leq \mathfrak{C}_{C/C’}A=1 so
that C’=\Phi(C)=C\cap Y. Therefore we can assume that C’\not\subset 1 , as otherwise
I) holds. Then C’=\Phi(C)=\S C=C\cap Y by a), so that C is special, and A
is symplectic on C/C’ . Actually the automorphism group A acts trivially
on Y and therefore is faithfully represented on C. Being a p’,group it is
also faithfully represented on C/C’ Clearly, A is transitive on C/C’-\{1\} .
To finish our proof we use the classification of transitive linear groups whose
order is prime to their characteristic (see [4] ; the result needed here can
also be deduced from [2, Theorems 4. 9, 3. 9, 5. 6, 5. 10 and 5. 13] ; if A
is sharply transitive on X/Y-\{1\} , one also can use the Zassenhaus [12]

classification of finite nearfields). The exceptional cases are easily handled:
If n=2 , then |C’|=p and C is extraspecial by a). For odd p we must
have elements of order p in C-C’ , as C is non-abelian. Hence each coset
of C’ contains an element of order p, and C’ is of exponent p. Assume
now that A induces a semi-linear group of dimension 1 on C/C’ . Then
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the linear part \overline{A} of A is a cyclic subgroup of order at least (p^{n}-1)/n which
is semi-regular on C/C’-\{1\} . On the other hand A is symplectic so that
|\overline{A}|\leq p^{n/2}+1 (see [6, V, 17. 13, a), (2)]) . So p^{n/2}-1\leq n and hence n=2
or 4, as n is even. If n=4 , then p=2, and p\parallel_{l}|A| implies |\overline{A}|=15 , a con-
tradiction. If n=2, then p\leq 3 . Here p=2 implies II). For p=3 we have
|\overline{A}|\leq 4 and hence |A|=8 . Clearly now A is a quaternion group, and C
is extraspecial of exponent 3.

\S 2. On regular normal subgroups in pointstabilisers of doubly
transitive group spaces.

Let (\Omega, G) be a finite transitive group space with the property :
(^{*}) There exists an element \alpha\in\Omega such that G_{\alpha} contains a normal subgroup
Q which is sharply transitive on \Omega-\{\alpha\} .

For this paragraph we introduce the following notation:
S is the normal closure of Q in G.
\Phi is the representation of G on \Omega determined by the group space (\Omega, G) .

K is the kernel of \Phi and Z=K\cap S. If U is a subgroup or an element of
G, then we denote U^{\Phi}=\overline{U}. Also, f2 (U) is the set of fixed points of U.

If g\in G and Q^{g}\underline{\subset}G_{a} , then \alpha\in\Omega(Q^{g})=\Omega(Q)^{g}=\{\alpha^{g}\} so that g\in G_{a} and
Q^{g}=Q . Hence for each \xi\in\Omega the stabiliser G_{\xi} contains exactly one conjugate
of Q, which we denote by Q_{\xi} .

PROPOSITION 2. 1. If N\underline{\triangleleft}S and N\underline{\not\subset}K, then S=QN.
PROOF. As S is doubly transitive, N must be transitive. Hence Q^{N}

contains Q_{\xi} for all \xi\in\Omega , and therefore Q^{N}=Q^{G} .
PROPOSITION 2. 2. [K, SJ =1 .
PROOF. As K and Q are normal subgroups of G_{\alpha} , we have [K, Q]\leq

K\cap Q=1 .

PROPOSITION 2. 3. Let Q^{*} be any normal subgroup of G_{\alpha} . Then [KQ^{*} ,
S_{\alpha}]\leq Q^{*} .

PROOF. Let k\in K, a\in Q^{*} and s\in S_{\alpha} . Then k^{-1}s^{-1}k=s^{-1} by 2. 2 so that
[ka, s]=a^{-1}k^{-1}s^{-1}kas=a^{-1}a^{s}\in Q^{*} .

THEOREM 2. 4. Let (\Omega, G) be a finite transitive group space, where
|\Omega|>2 . Assume that for some \alpha\in\Omega the stabiliser G_{\alpha} contains a normal
subgroup Q which is sharply transitive on \Omega-\{\alpha\} . If S is the normal
closure of Q in G, then one of the following holds:

(i) S\equiv PSL(2, q) , SL(2, q) , Sz(q) , PSU(3, q) , SU(3, q) or a group of
Ree type of order q^{3}(q^{3}+1)(q-1) , where q is a prime power and the degree
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i , q+1 in the linear case, q^{2}+1 in the Suzuki case and q^{3}+1 in the unitary
and Ree case.

(ii) S\equiv P\Gamma L(2,8) and |\Omega|=28 .
(iii) (\Omega, S) is sharply 2-transitive.
(iv) |\Omega|=p^{2} for p\in\{3,5,7,11,23,29, 59\} , S=O_{p}(S)\cdot Q , O_{p}(S) is extra-

spccial of order p^{3} and exponent p, \S O_{p}(S)=\S S is the kernel of (\Omega, S) and
S induces a sharply 2-transitive group on \Omega .

PROOF. Assume at first that \overline{S} is sharply 2-transitive on \Omega , and let
X be the preimage in S of the sharply transitive normal subgroup of \overline{S}.
Then Q acts transitively on X/Z-\{1\} , so that we can apply Lemma 1. 1.
Here [X, Q]\underline{\triangleleft}XQ=S and X=[X, Q] by Proposition 2. 1. Note that the
exceptional case V) does not occur here because |Q|=|X/Z|-1 . Also, S\cong

SL(2,3) if X is a quaternion group. Suppose that |Z|=19 . Then Q^{(\infty)}\cong

SL(2,5) and Q\cong C_{3}\cross SL(2,5) , so that the Sylow 3-subgroups of Q are
elementary abelian. But this is impossible as \overline{S} is a Frobenius group.

Consider now the case that \overline{S}\equiv P\Gamma L(2,8) and |\Omega|=28 . Here \overline{S^{(\infty)}}=

\overline{S}^{(\infty)}\equiv PSL(2,8) so that S^{(\infty)} is a Schur extension of PSL(2,8) and hence
actually S^{(\infty)}\equiv PSL(2,8) . Also, S/S^{()}\infty contains ZS^{(\infty)}/S^{(\infty)} as a central sub-
group with cyclic factor group. Hence S/S^{(\infty)} is abelian and S^{(\infty)}=S’ So
S’\equiv PSL(2, 8) . But [Q, S_{\alpha}]\leq Q\cap S’ and |[Q, S_{\alpha}]|\geq|[\overline{Q},\overline{S}_{a}]|=9 , so that S=
QS’\equiv P\Gamma L(2,8) by Proposition 2. 1.

We now use the classification of Shult [9] and Hering, Kantor, Seitz
[5] of finite groups with a split BN-pair of rank 1. It follows that in all

S=SbyremainingPropositioncases\overline{S}is2lSoSissimple.Also[\overline{Q},\overline{S}_{\alpha}]=\overline{Q}’ sothataSchurextension of\overline{S},andQ\leq S’andwecanhence

apply [1]. Suppose that a prime p dviides (|Z|, |\Omega|) and let P be a Sylow
p subgroup of Z. Then P\cross Q is a Sylow p subgroup of S. By a theorem
of Gasch\"utz (see [6,1. 17. 4]) there exists C\leq S such that S=P\cross C. Now
S’\leq C implies P=1 , a contradiction.

Finally, a remark on the uniqueness of Q.
Lemma 2. 5. If Q is not unique, then \overline{S} is sharply 2-transitive or

S\equiv P\Gamma L(2,8) .

PROOF. Assume that G_{\alpha} contains a second normal subgroup Q^{*} sharply
transitive on J2 -\{\alpha\} , and that \overline{S} is not sharply 2-transitive. Then \overline{S}_{\alpha} con-
tains only one sharply transitive normal subgroup, so that KQ^{*}=KQ and
[KQ, S_{a}]\leq Q^{*}\cap Q by Proposition 2. 3. As |[KQ, S_{\alpha}]|\geq|[\overline{Q},\overline{S}_{\alpha}]| , the lemma
follows.

Lemma 2. 6. Let a be an element in S-Z of prime order r. Then
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a is the product of two elements lying in conjugates of Q unless possibly if
S\equiv SU(3, q) or PSU{3,q) for q\neq 2 , and r is an odd prime dividing q^{3}+1 .

PROOF. We consider at first the cases (iii) and (iv) in Theorem 2. 4.
Then |\Omega| is a power of a prime p. Let \xi\in\Omega-\{\alpha\} and x\in Q_{\xi}-\{1\} . As
S=QO_{p}(S) , there exists elements y\in Q and a\in O_{p}(S) such that x=ya and
y^{-1}x=a . Here a\in O_{p}(S)-Z, as otherwise x fixes \alpha . Also, all elements in
the coset Za are conjugate to a under O_{p}(S) , and all cosets of Z in O_{p}(S)

different from Z are conjugate to Za under Q. Hence OP(S)-Z=a^{S} , and
each element in O_{p}(S)-Z is the product of two elements conjugate to ele-
ments in Q. Assume now that a\in S-O_{p}(S) and a has prime order r.
Then r\neq p , so that a fixes a point \xi . But S_{\xi}=Q_{\xi}\cross Z, and |Z||p . So actually
a\in Q_{\xi} .

Case (ii) is no problem because P\Gamma L(2,8) contains Frobenius groups
of order 12 and 21. If S\equiv SL(2, q) , PSL{2,q) or Sz(q) , then we can apply
[3, Lemma 2. 7] or [10, Theorem 9] respectively. Note that the groups
SU(3, q) and PSU(3, q) contain subgroups isomorphic to SL(2, q) , and groups
of Ree type of order q^{3}(q^{3}+1) (q–l) contain PSL(2, q) . So we can again
apply [3, Lemma 2. 7]. Also, we have the description of groups of Ree
type in [11].

\S 3. An application to perspectivities of projective planes.

THEOREM 3. 1. Let \mathfrak{p} be a projective plane, l a line of \mathfrak{p} , Pa
point of \mathfrak{p} not incident with l and G a finite group of collineations of
\mathfrak{p} fixing P and l. Let \Omega=\{X\in l|G(X, XP)\pm 1\} , q=|\Omega|-1 , and assume
that q\geq 2 and there exists a point Z\in\Omega such that G(Z, ZP) is transitive
on \Omega-\{Z\} . Then the subgroup S generated by all elations in G is is0-
morphic to SL(2, q) , and \mathfrak{p} contains desarguesian subplanes of order q.

PROOF. Obviously G leaves invariant \Omega , and we can apply Theorem
2. 4 to the group space (\Omega, G) . Here |S|\geq(q-1)q(q+1) by [3, (2. 3)]. Hence
S\equiv SL(2, q) , and \mathfrak{p} contains desarguesian subplanes of order q by [3, TheO-
rem 2. 8].
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