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Notes on extremizations

By Yukio Nacasaka
(Received April 26, 1979)

1. Let G be a subregion of a hyperbolic Riemann surface R with an
analytic relative boundary 9G, compact or noncompact. We denote by HPy(G)
the class of nonnegative continuous functions on R which are harmonic on
G and vanish on R—G. Let u€ HP)(G). Then {Hj»}, is an increasing
sequence, where {R,} is an exhaustion of R and HZr is a harmonic function
of R, with boundary values « on 9R,. Then Eu=Ezu=lim H;» is harmonic

n—oo

on R or identically +oco. If Eu is harmonic on R, Eu is called the ex-
tremization of u relative (R, G) in the Kuramochi terminology. If w is
bounded on G or the Dirichlet integral Dg(x) of # on G is finite, then
« has the extremization. But w& HP,(G) has not always the extremiza-
tion. In the present paper, we give a sufficient condition for « to have
the extremization and give an example of G such that any u(2=0) of HP,(G)
has not the extremization.

2. Let uc HP)(G) and z,&G. We denote by G,(2, 2) and G(z, 2
the Green’s function on R, and R with pole at 2, respectively. By Green’s

formula,

0 0
Su(z)% G,(z, 20) ds = SGn (2, zo)a—:jds ,
where a=09d(R,N G—(|z—=2o/ Z¢)) for small ¢>0,
2 e ds=\ G du
— 2mu(20) + u(z) 5~ Galz, z) ds = n(2, 20) 7 -ds .

OR,NG AGNRy,

Then
1 0 1 0
HEn () = %S u(z)—a—n— Go(z2, 20) ds = u(zy) + Z—ES Gz, zo)a%ds )
R, NG 3G Ry,
Since G,(z, 20)1 G(z, 29) on 0G, we have
1 0

(1) Eu(zg):u(zo)—l—gSG(z, zo)a—st,

G

where the normal 7 is taken inward with respect to G. From (1) we obtain
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the next [Theorem 1. We use the notations
Ga:G};:{z; u(z)>a}, L,= Lt =0G"

and

Gab:ng:{z; a<u(z)<b} for every 0 < a<b.

THEOREM 1 (Z. Kuramochi [1]) IfS%Z—ds< + oo for some a=0, then

La
Ecu is harmonic.

Proor. Let uy=u—a on G, and take z,&G,. We apply (1) with «=
u;, G=G,. Then we have

1 0
(2) Eo, () = o+ 5 | Gle, 20 30 ds.

Zg,

Since sup G(z, 2,) < + oo and S %Z:; ds = S—g%ds< + oo, it follows from (2) that
2elg
Lg,

Eg, u(z) < +oco. Hence Eg, ulais harmonic. Since u;=Eg u; on G,y u<a+
Eg,u; on G. This shows that Eyu is harmonic.

In the next theorem, we use terms of the Royden compactification R*
of R. For a subset A of R we denote by A" the closure of A with respect
to R*.

THEOREM 2. Let ucs HPy(G). If L ﬂf?,‘*:gzi for some a and b (0
a<b), then Equ is harmonic.

Proor. By l:: N [,: =¢, there exists a bounded continuous Tonelli func-
tion f on R with finite Dirichlet integral over R such that flL,=0 and
SILy=1 (cf. p. 156 in L. Sario and M. Nakai [2]). Let @, be the harmonic
function in Gy, N R, which has the boundary values 0 on L,N R, and 1 on
L,N R, and whose normal derivative vanishes on the rest of the boundary.
From the existence of the above f we see that w, converges to a function
w< HD(G,,) locally uniformly and in Dirichlet norm. Then o has the
boundary values 0 on L, and 1 on L,. By Green’s formula,

D(wn):—g wnaaa:;”dszs aaa:;’dszs Pon_gs.

N GapNRy) LyN Ry, LyNRy,

0wy

Since —5-=0 on L,NR,,

on
) 0w, 0w
}:—_,%S on ds = 587 ds
L,N\Ry, L
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by Fatou’s lemma. Since D(w)=D(w,), this shows

(3) Oégg—(zdséD(w)<+oo.

Lg
Set E,=(G,—G3)N(R—R,) and Fn:G_’bﬂ(R——Rn). Let v=u—aon G,. For
a closed set F of G, we denote by vy the regularized reduced function of
v relative to F' in G, Consider vz, and vy. Since {vg} and {vy} are
decreasing sequences, v;=lim v; and v,=lim vy, are harmonic on G,. Since

n—roo n—oo

v, =v=b—a on G, v, is bounded on G, and so E¢, v, is harmonic on R.
On the other hand, since 1,=v5,=(b—a)w on G, and v,=(b—a) w=0 on
L, we see

0 gg %";j dsgb_a)Sg—idx + oo
La La
by (3). By [Theorem 1|, this shows that Es, v, is harmonic. Since v=vy +
vy, for any n, v=v,4+v, and so v=Eq vi+Es v, on G, Hence we see
that Eg v is harmonic. Since v=FEzv on G, u=a+Egv on G. This
shows that Esu« is harmonic on R.

THEOREM 3. Let GC{z; Gz, 20) >0} for some 6>0. Then uc HP,(G)

has extremization if and only sz SZ dszgalds< +oco for any a>0.

Za z,
Proor. “if” part follows from [Theorem 1.

Next suppose that Egu is harmonic. Since #—a<FEsu on G, for every
a=0, Eq,(u—a)<Esu and so Eg (v—a) is harmonic for every a=0. Let
0=as=M< +oo and take 2,&Gy. Then

ou

EGa <u a) <21> (u a) (21) + ‘% S G(z’ 21) E{

Lg

by (2). Since GaCGC{zER; G (2, 2) >0} for some & >0, we have

ds

0
S—ud =5 (Egu) (1)< 400 for 0Zas M.

Lg

Hence by Lemma 5 in [1],

D= || ([ 2 ) da = 22 () 1) < o0

0
a

This shows that Dg(min (z, M))< + oo for every M>0. Take any a>0.
Here we note that the double G,, of G,, about LyU L, is parabolic. Since
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Dg, ,(u)< 4+ 0o, there exists a exhaustion G, of Gos such that

limS ou

on
GoaN0Gy

ds=0

This shows that

ou ou
La Z,
TueoreM 4. Let GC{zER; Gz, 20) >0} for some 6>0. Then Egu
ts harmonic if and only if there is a constant a>0 such that

D<min (u, M)> =aM  for every M>O0.

Proor. Let D(min(u, M))<+oo for every M. Take a and b (0=
a<b). Since min («, b) is a bounded continuous Tonelli function on R with
finite Dirichlet integral on R such that min («, b)| L*=a and min («, b)| LY =b.
This shows [_,: ﬂ[quﬁ. Hence we have Egu is harmonic by [Theorem 2

Suppose on the other hand that Esu« is harmonic. Then, by

. . ou
3, there is a non-negative constant a such that S—a-n*ds:a for every a=0.

Hence we have
o
D<min (u, M)> :S (S—@—Z—a@) da=aM.

This completes the proof.
Here we use the following Kuramochi’s result [1]: Let R be a hyper-
bolic Riemann surface and suppose lim G(z, z)) =0, where G(z, 2y is the

Green’s function of R and oo is theﬂ Alexandroff’s ideal boundary point.
D (min (u, M))

If a positive harmonic function « on R satisfies };Tn e < 4 oo,

then « is quasibounded on R. Using this result we obtain the next theorem.

THEOREM 5. Let GC{2€R; Glg, 2)) >0} for some 6>0 and suppose
lim G' (g, 29) =0,

G@Iz—00

where G'(z,2,) is the Green’s function on G. Then any function u(=0)
of HPy(G) has not the extremization.

ProoF. Suppose that a function u of HP,(G) has the extremization.

Then lim D(mmj\({u M) <a<+oo by [Theorem 4. Hence, by the above
M—o0
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result, we see that « is a quasibounded on G. Since G is an SOyp region,
this implies «=0 on G.
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