Notes on extremizations

By Yukio NAGASAKA (Received April 26, 1979)

- 1. Let G be a subregion of a hyperbolic Riemann surface R with an analytic relative boundary ∂G , compact or noncompact. We denote by $HP_0(G)$ the class of nonnegative continuous functions on R which are harmonic on G and vanish on R-G. Let $u \in HP_0(G)$. Then $\{H_u^{R_n}\}_n$ is an increasing sequence, where $\{R_n\}$ is an exhaustion of R and $H_u^{R_n}$ is a harmonic function of R_n with boundary values u on ∂R_n . Then $Eu = E_G u = \lim_{n \to \infty} H_u^{R_n}$ is harmonic on R or identically $+\infty$. If Eu is harmonic on R, Eu is called the extremization of u relative (R, G) in the Kuramochi terminology. If u is bounded on G or the Dirichlet integral $D_G(u)$ of u on G is finite, then u has the extremization. But $u \in HP_0(G)$ has not always the extremization. In the present paper, we give a sufficient condition for u to have the extremization and give an example of G such that any $u \neq 0$ of $HP_0(G)$ has not the extremization.
- 2. Let $u \in HP_0(G)$ and $z_0 \in G$. We denote by $G_n(z, z_0)$ and $G(z, z_0)$ the Green's function on R_n and R with pole at z_0 respectively. By Green's formula,

$$\int_{\mathbb{R}} u(z) \frac{\partial}{\partial n} G_n(z, z_0) ds = \int_{\mathbb{R}} G_n(z, z_0) \frac{\partial u}{\partial n} ds,$$

where $\alpha = \partial(R_n \cap G - (|z-z_0| \leq \varepsilon))$ for small $\varepsilon > 0$,

$$-2\pi u(z_0) + \int_{\partial R_n \cap G} u(z) \frac{\partial}{\partial n} G_n(z, z_0) ds = \int_{\partial G \cap R_n} G_n(z, z_0) \frac{\partial u}{\partial n} ds.$$

Then

$$H_u^{R_n}(z_0) = rac{1}{2\pi} \int_{\partial R_n \cap G} u(z) rac{\partial}{\partial n} G_n(z, z_0) ds = u(z_0) + rac{1}{2\pi} \int_{\partial G \cap R_n} G_n(z, z_0) rac{\partial u}{\partial n} ds \ .$$

Since $G_n(z, z_0) \uparrow G(z, z_0)$ on ∂G , we have

(1)
$$Eu(z_0) = u(z_0) + \frac{1}{2\pi} \int_{\partial G} G(z, z_0) \frac{\partial u}{\partial n} ds,$$

where the normal n is taken inward with respect to G. From (1) we obtain

the next Theorem 1. We use the notations

$$G_a=G_a^u=ig\{z\,;\,\,u(z)\!>\!aig\}\,,\qquad L_a=L_a^u=\partial G_a^u$$

and

$$G_{ab} = G_{ab}^u = \{z; a < u(z) < b\}$$
 for every $0 \le a < b$.

Theorem 1 (Z. Kuramochi [1]) If $\int_{L_a} \frac{\partial u}{\partial n} ds < +\infty$ for some $a \ge 0$, then E_{GU} is harmonic.

PROOF. Let $u_1=u-a$ on G_a and take $z_0\in G_a$. We apply (1) with $u=u_1$, $G=G_a$. Then we have

(2)
$$E_{G_a}u_1(z_0) = u_1(z_0) + \frac{1}{2\pi} \int_{L_a} G(z, z_0) \frac{\partial u_1}{\partial n} ds.$$

Since $\sup_{z \in L_a} G(z, z_0) < +\infty$ and $\int_{L_a} \frac{\partial u_1}{\partial n} ds = \int_{L_a} \frac{\partial u}{\partial n} ds < +\infty$, it follows from (2) that $E_{G_a} u_1(z_0) < +\infty$. Hence $E_{G_a} u_1$ is harmonic. Since $u_1 \leq E_{G_a} u_1$ on G_a , $u \leq a + E_{G_a} u_1$ on G. This shows that $E_G u$ is harmonic.

In the next theorem, we use terms of the Royden compactification R^* of R. For a subset A of R we denote by \overline{A}^* the closure of A with respect to R^* .

Theorem 2. Let $u \in HP_0(G)$. If $\overline{L_a^u}^* \cap \overline{L_b^u}^* = \phi$ for some a and b $(0 \le a < b)$, then $E_G u$ is harmonic.

PROOF. By $\overline{L}_a^* \cap \overline{L}_b^* = \phi$, there exists a bounded continuous Tonelli function f on R with finite Dirichlet integral over R such that $f|L_a=0$ and $f|L_b=1$ (cf. p. 156 in L. Sario and M. Nakai [2]). Let ω_n be the harmonic function in $G_{ab} \cap R_n$ which has the boundary values 0 on $\overline{L_a \cap R_n}$ and 1 on $\overline{L_b \cap R_n}$ and whose normal derivative vanishes on the rest of the boundary. From the existence of the above f we see that ω_n converges to a function $\omega \in HD(G_{ab})$ locally uniformly and in Dirichlet norm. Then ω has the boundary values 0 on L_a and 1 on L_b . By Green's formula,

$$D(\omega_n) = -\int_{\partial(G_{ab} \cap R_n)} \omega_n \frac{\partial \omega_n}{\partial n} ds = \int_{L_b \cap R_n} \frac{\partial \omega_n}{\partial n} ds = \int_{L_a \cap R_n} \frac{\partial \omega_n}{\partial n} ds.$$

Since $\frac{\partial \omega_n}{\partial n} \geq 0$ on $L_a \cap R_n$,

$$\lim_{n\to\infty}\int_{L_{\alpha}\cap R_n}\frac{\partial\omega_n}{\partial n}ds \ge \int_{L_{\alpha}}\frac{\partial\omega}{\partial n}ds$$

by Fatou's lemma. Since $D(\omega) \ge D(\omega_n)$, this shows

$$0 \leq \int_{L_{\sigma}} \frac{\partial \omega}{\partial n} \, ds \leq D(\omega) < +\infty.$$

Set $E_n = (G_a - G_b) \cap (R - R_n)$ and $F_n = \bar{G}_b \cap (R - R_n)$. Let v = u - a on G_a . For a closed set F of G_a we denote by v_F the regularized reduced function of v relative to F in G_a . Consider v_{E_n} and v_{F_n} . Since $\{v_{E_n}\}$ and $\{v_{F_n}\}$ are decreasing sequences, $v_1 = \lim_{n \to \infty} v_{E_n}$ and $v_2 = \lim_{n \to \infty} v_{F_n}$ are harmonic on G_a . Since $v_1 \le v \le b - a$ on G_a , v_1 is bounded on G_a and so $E_{G_a} v_1$ is harmonic on R. On the other hand, since $v_2 \le v_{\bar{G}_b} \le (b-a) \omega$ on G_{ab} and $v_2 = (b-a) \omega = 0$ on L_a , we see

$$0 \leq \int_{L_a} \frac{\partial v_2}{\partial n} ds \leq (b - a) \int_{L_a} \frac{\partial \omega}{\partial n} ds < +\infty$$

by (3). By Theorem 1, this shows that $E_{G_a}v_2$ is harmonic. Since $v \le v_{E_n} + v_{F_n}$ for any n, $v \le v_1 + v_2$ and so $v \le E_{G_a}v_1 + E_{G_a}v_2$ on G_a . Hence we see that $E_{G_a}v$ is harmonic. Since $v \le E_{G_a}v$ on G_a , $u \le a + E_{G_a}v$ on G. This shows that $E_{G}u$ is harmonic on R.

Theorem 3. Let $G \subset \{z; G(z, z_0) > \delta\}$ for some $\delta > 0$. Then $u \in HP_0(G)$ has extremization if and only if $\int_{L_0} \frac{\partial u}{\partial n} ds = \int_{L_0} \frac{\partial u}{\partial n} ds < +\infty$ for any a > 0.

PROOF. "if" part follows from Theorem 1.

Next suppose that $E_G u$ is harmonic. Since $u-a \leq E_G u$ on G_a for every $a \geq 0$, $E_{G_a}(u-a) \leq E_G u$ and so $E_{G_a}(u-a)$ is harmonic for every $a \geq 0$. Let $0 \leq a \leq M < +\infty$ and take $z_1 \in G_M$. Then

$$E_{G_a}(u-a)(z_1) = (u-a)(z_1) + \frac{1}{2\pi} \int_{L_a} G(z, z_1) \frac{\partial u}{\partial n} ds$$

by (2). Since $G_a \subset G \subset \{z \in R : G(z, z_1) > \delta'\}$ for some $\delta' > 0$, we have

$$\int_{L_a} \frac{\partial u}{\partial n} ds \leq \frac{2\pi}{\delta'} (E_G u) (z_1) < +\infty \quad \text{for } 0 \leq a \leq M.$$

Hence by Lemma 5 in [1],

$$D_{G_{0M}}(u) = \int_{0}^{M} \left(\int_{L_{0}} \frac{\partial u}{\partial n} ds \right) da \leq \frac{2\pi M}{\delta'} (E_{G}u) (z_{1}) < +\infty.$$

This shows that $D_G(\min(u, M)) < +\infty$ for every M>0. Take any a>0. Here we note that the double \hat{G}_{0a} of G_{0a} about $L_0 \cup L_a$ is parabolic. Since

 $D_{G_{0a}}(u) < +\infty$, there exists a exhaustion G_n of \hat{G}_{0a} such that

$$\lim_{n\to\infty}\int_{G_{0}a\cap\partial G_n}\left|\frac{\partial u}{\partial n}\right|ds=0$$

This shows that

$$\int_{L_a} \frac{\partial u}{\partial n} ds = \int_{L_0} \frac{\partial u}{\partial n} ds < +\infty.$$

Theorem 4. Let $G \subset \{z \in R : G(z, z_0) > \delta\}$ for some $\delta > 0$. Then $E_G u$ is harmonic if and only if there is a constant $\alpha > 0$ such that

$$D(\min(u, M)) = \alpha M$$
 for every $M > 0$.

PROOF. Let $D(\min(u, M)) < +\infty$ for every M. Take a and b $(0 \le a < b)$. Since $\min(u, b)$ is a bounded continuous Tonelli function on R with finite Dirichlet integral on R such that $\min(u, b) | L_a^u = a$ and $\min(u, b) | L_b^u = b$. This shows $\bar{L}_a^* \cap \bar{L}_b^* = \phi$. Hence we have $E_G u$ is harmonic by Theorem 2.

Suppose on the other hand that $E_G u$ is harmonic. Then, by Theorem 3, there is a non-negative constant α such that $\int_{L_a}^{\underline{\partial} u} ds = \alpha$ for every $a \ge 0$. Hence we have

$$D(\min(u, M)) = \int_0^M \left(\int_{L_a} \frac{\partial u}{\partial n} ds\right) da = \alpha M.$$

This completes the proof.

Here we use the following Kuramochi's result [1]: Let R be a hyperbolic Riemann surface and suppose $\lim_{z\to\infty} G(z,z_0)=0$, where $G(z,z_0)$ is the Green's function of R and ∞ is the Alexandroff's ideal boundary point. If a positive harmonic function u on R satisfies $\overline{\lim}_{M\to\infty} \frac{D(\min(u,M))}{M} < +\infty$, then u is quasibounded on R. Using this result we obtain the next theorem.

Theorem 5. Let $G \subset \{z \in R; G(z, z_0) > \delta\}$ for some $\delta > 0$ and suppose

$$\lim_{G\ni z\to\infty}G'(z,z_0)=0,$$

where $G'(z, z_0)$ is the Green's function on G. Then any function $u(\equiv 0)$ of $HP_0(G)$ has not the extremization.

PROOF. Suppose that a function u of $HP_0(G)$ has the extremization. Then $\overline{\lim}_{M\to\infty} \frac{D(\min{(u,M)})}{M} \leq \alpha < +\infty$ by Theorem 4. Hence, by the above

result, we see that u is a quasibounded on G. Since G is an SO_{HB} region, this implies $u \equiv 0$ on G.

References

- [1] Z. KURAMOCHI: On quasi-Dirichlet bounded harmonic functions, Hokkaido Math. J., 8 (1979), 1–22.
- [2] L. SARIO and M. NAKAI: Classification theory of Riemann surfaces, Springer, 1970.

Department of Mathematics Hokkaido University