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Notes on extremizations

By Yukio NAGASAKA
(Received April 26, 1979)

1. Let G be a subregion of a hyperbolic Riemann surface R with an
analytic relative boundary \partial G , compact or noncompact. We denote by HP_{0}(G)

the class of nonnegative continuous functions on R which are harmonic on
G and vanish on R-G. Let u\in HP_{0}(G) . Then \{H_{u^{n}}^{R}\}_{n} is an increasing
sequence, where \{R_{n}\} is an exhaustion of R and H_{u}^{R_{\eta}} is a harmonic function
of R_{n} with boundary values u on \partial R_{n} . Then Eu=E_{G}u= \lim H_{u^{n}}^{R} is harmonic

narrow\infty

on R or identically +\infty . If Eu is harmonic on R, Eu is called the ex-
tremization of u relative (R, G) in the Kuramochi terminology. If u is
bounded on G or the Dirichlet integral D_{G}(u) of u on G is finite, then
u has the extremization. But u\in HP_{0}(G) has not always the extremiza-
tion. In the present paper, we give a sufficient condition for u to have
the extremization and give an example of G such that any u(\not\equiv 0) of HP_{0}(G)

has not the extremization.
2. Let u\in HP_{0}(G) and z_{0}\in G . We denote by G_{n}(z, z_{0}) and G(z, z_{0})

the Green’s function on R_{n} and R with pole at z_{0} respectively. By Green’s
formula,

\int_{\alpha}u(z)\frac{\partial}{\partial n}G_{n}(z, z_{0})ds=\int_{\alpha}G_{n}(z, z_{0})\frac{\partial u}{\partial n}ds ,

where \alpha=\partial(R_{n}\cap G-(|z-z_{0}|\leqq\epsilon)) for small \epsilon>0 ,

-2 \pi u(z_{0})+\int_{\partial R_{n}\cap G}u(z)\frac{\partial}{\partial n}G_{n}(z, z_{0})ds=\int_{\partial G\cap R_{n}}G_{n}(z, z_{0})\frac{\partial u}{\partial n}d_{S\tau}

Then

H_{u}^{R_{n}}(z_{0})= \frac{1}{2\pi}\int_{\partial R_{n}\cap G}u(z)\frac{\partial}{\partial n}G_{n}(z, z_{0})ds=u(z_{0})+\frac{1}{2\pi}\int_{\partial G\cap R_{n}}G_{n}(z, z_{0})\frac{\partial u}{\partial n}ds

Since G_{n}(z, z_{0})\uparrow G(z, z_{0}) on \partial G , we have

(1) Eu(z_{0})=u(z_{0})+ \frac{1}{2\pi}\int_{\partial G}G(z, z_{0})\frac{\partial u}{\partial n}ds ,

where the normal n is taken inward with respect to G. From (1) we obtain
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the next Theorem 1. We use the notations

G_{a}=G_{a}^{u}=\{z;u(z)>a\} , L_{a}=L_{a}^{u}=\partial G_{a}^{u}

and

G_{ab}=G_{ab}^{u}=\{z;a<u(z)<b\} for every 0\leqq a<b .

THEOREM 1 (Z. Kuramochi [1]) If \int_{L}\frac{\partial u}{a\partial n}ds<+\infty for some a\geqq 0 , then

E_{G}u is harmonic.

PROOF. Let u_{1}=u-a on G_{a} and take z_{0}\in G_{a} . We apply (1) with u=
u_{1} , G=G_{a} . Then we have

(2)
E_{G_{a}}u_{1}(z_{0})=u_{1}(z_{0})+ \frac{1}{2\pi}\int_{La}G(z, z_{0})\frac{\partial u_{1}}{\partial n}ds

Since \sup_{z\in L_{a}}G(z, z_{0})<+\infty and \int_{L}\frac{\partial u_{1}}{a\partial n}ds=\int_{L}\frac{\partial u}{a\partial n}ds<+\infty , it follows from (2) that

E_{G_{a}}u_{1}(z_{0})<+\infty . Hence E_{G_{a}}u_{1} is harmonic. Since u_{1}\leqq E_{G_{a}}u_{1} on G_{a} , u\leqq a+

E_{G_{a}}u_{1} on G. This shows that E_{G}u is harmonic.
In the next theorem, we use terms of the Royden compactification R^{*}

of R. For a subset A of R we denote by \overline{A}^{*} the closure of A with respect
to R^{*} .

THEOREM 2. Let u\in HP_{0}(G) . If \overline{L_{a}^{u^{*}}}\cap\overline{L_{b}^{u^{*}}}=\phi for some a and b(0\leqq

a<b) , then E_{G}u is harmonic.
PROOF. By \overline{L}_{a}^{*}\cap\overline{L}_{b}^{*}=\phi , there exists a bounded continuous Tonelli func-

tion f on R with finite Dirichlet integral over R such that f|L_{a}=0 and
f|L_{b}=1 (cf. p. 156 in L. Sario and M. Nakai [2]). Let \omega_{n} be the harmonic
function in G_{ab}\cap R_{n} which has the boundary values 0 on \overline{L_{a}\cap R}_{n} and 1 on
\overline{L_{b}\cap R}_{n} and whose normal derivative vanishes on the rest of the boundary.
From the existence of the above f we see that \omega_{n} converges to a function
\omega\in HD(G_{ab}) locally uniformly and in Dirichlet norm. Then \omega has the
boundary values 0 on L_{a} and 1 on L_{b} . By Green’s formula,

D( \omega_{n})=-\int_{\partial(G_{ab}\cap R_{n})}\omega_{n}\frac{\partial\omega_{n}}{\partial n}ds=\int_{L_{b}\cap R_{n}}\frac{\partial\omega_{n}}{\partial n}ds=\int_{L_{a^{\cap R}n}}\frac{\partial\omega_{n}}{\partial n}ds .

Since \frac{\partial\omega_{n}}{\partial n}\geqq 0 on L_{a}\cap R_{n} ,

\varliminf_{narrow\infty}\int_{L_{a^{\hat{1_{l}^{1}}R}n}}\frac{\partial\omega_{n}}{\partial n}ds\geqq\int_{L}\frac{\partial\omega}{a\partial n}ds
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by Fatou’s lemma. Since D(\omega)\geqq D(\omega_{n}) , this shows

(3) 0 \leqq\int_{L}\frac{\partial\omega}{a\partial n}ds\leqq D(\omega)<+\infty

Set E_{n}=(G_{a}-G_{b})\cap(R-R_{n}) and F_{n}=\overline{G}_{b}\cap(R-R_{n}) . Let v=u-a on G_{a} . For
a closed set F of G_{a} we denote by v_{F} the regularized reduced function of
v relative to F in G_{a} . Consider v_{E_{n}} and v_{F_{n}} . Since \{v_{E_{n}}\} and \{v_{F_{n}}\} are
decreasing sequences, v_{1}= \lim v_{En} and v_{2}= \lim v_{Fn} are harmonic on G_{a} . Since
v_{1}\leqq v\leqq b-a on G_{a} , v_{1} isnarrow\infty bounded on G_{a}andnarrow\infty so E_{G_{a}}v_{1} is harmonic on R.
On the other hand, since v_{2}\leqq v_{\overline{C\tau}}b\leqq(b-a)\omega on G_{ab} and v_{2}=(b-a)\omega=0 on
L_{a} , we see

0 \leqq\int_{L}\frac{\partial v_{2}}{a\partial n}ds\leqq(b-a)\int_{L}\frac{\partial\omega}{a\partial n}ds<+\infty

by (3). By Theorem 1, this shows that E_{G_{a}}v_{2} is harmonic. Since v\leqq v_{E_{n}}+

v_{F_{n}} for any n, v\leqq v_{1}+v_{2} and so v\leqq E_{G_{a}}v_{1}+E_{G_{a}}v_{2} on G_{a} . Hence we see
that E_{G_{a}}v is harmonic. Since v\leqq E_{G_{a}}v on G_{a} , u\leqq a+E_{G_{a}}v on G. This
shows that E_{G}u is harmonic on R.

THEOREM 3. Let G\subset\{z;G(z, z_{0})>\delta\} for some \delta>0 . Then u\in HP_{0}(G)

has extremization if and only if \int_{L}\frac{\partial u}{a\partial n}ds=\int_{L}\frac{\partial u}{0\partial n}ds<+\infty for any a>0 .

PROOF. “if” part follows from Theorem 1.
Next suppose that E_{G}u is harmonic. Since u-a\leqq E_{G}u on G_{a} for every

a\geqq 0 , E_{G_{a}}(u-a)\leqq E_{G}u and so E_{G_{a}}(u-a) is harmonic for every a\geqq 0 . Let
0\leqq a\leqq M<+\infty and take z_{1}\in G_{M} . Then

E_{G_{a}}(u-a)(z_{1})=(u-a)(z_{1})+ \frac{1}{2\pi}\int_{L_{a}}G(z, z_{1})\frac{\partial u}{\partial n}ds

by (2). Since G_{a}\subset G\subset\{z\in R;G(z, z_{1})>\delta’\} for some \delta’>0 , we have

\int_{L}\frac{\partial u}{a\partial n}ds\leqq\frac{2\pi}{\delta}, (E_{G}u)(z_{1})<+\infty for 0\leqq a\leqq M

Hence by Lemma 5 in [1],

D_{G_{oM}}(u)= \int_{0}^{M}(\int_{L}\frac{\partial u}{a\partial n}ds)
da \leqq\frac{2\pi M}{\delta’}(E_{G}u)(z_{1})<+\infty

This shows that D_{G}( \min(u, M))<+\infty for every M>0 . Take any a>0 .
Here we note that the double \hat{G}_{oa} of G_{0a} about L_{0}\cup L_{a} is parabolic. Since
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D_{G_{oa}}(u)<+\infty , there exists a exhaustion G_{n} of \hat{G}_{0a} such that

\lim_{narrow\infty}\int_{G_{oa}\cap\partial G_{n}}|\frac{\partial u}{\partial n}|ds=0

This shows that

\int_{L}\frac{\partial u}{a\partial n}ds=\int_{L}\frac{\partial u}{0\partial n}ds<+\infty

THEOREM 4. Let G\subset\{z\in R;G(z, z_{0})>\delta\} for some \delta>0 . Then E_{G}u

is harmonic if and only if there is a constant \alpha>0 such that

D( \min(u, M))=\alpha M for every M>0

PROOF. Let D( \min(u, M))<+\infty for every M. Take a and b(0\leqq

a<b) . Since min (u, b) is a bounded continuous Tonelli function on R with
finite Dirichlet integral on R such that min (u, b)|L_{a}^{u}=a and min (u, b)|L_{b}^{u}=b .
This shows \overline{L}_{a}^{*}\cap\overline{L}_{b}^{*}=\phi . Hence we have E_{G}u is harmonic by Theorem 2.

Suppose on the other hand that E_{G}u is harmonic. Then, by Theorem

3, there is a non-negative constant \alpha such that |_{L} \frac{\partial u}{a\partial n}ds=\alpha for every a\geqq 0 .

Hence we have

D( \min(u, M))=\int_{0}^{M}(\int_{L}\frac{\partial u}{a\partial n}ds)
da=\alpha M

This completes the proof.
Here we use the following Kuramochi’s result [1] : Let R be a hyper-

bolic Riemann surface and suppose lim G(z, z_{0})=0 , where G(z, z_{0}) is the

Green’s function of R and oo is theAlexandroff’ szarrow\infty ideal boundary point.

If a positive harmonic function u on R satisfies \varlimsup_{Marrow\infty}\frac{D(\min(u,M))}{M}<+\infty ,

then u is quasibounded on R. Using this result we obtain the next theorem.

THEOREM 5. Let G\subset\{z\in R;G(z, z_{0})>\delta\} for some \delta>0 and suppose

\lim_{G9zarrow\infty}G’(z, z_{0})=0 .

where G’(z, z_{0}) is the Green’s function on G. Then any function u(\not\equiv 0)

of HP_{0}(G) has not the extremization.
PROOF. Suppose that a function u of HP_{0}(G) has the extremization.

Then \varlimsup_{Marrow\infty}\frac{D(\min(u,M))}{M}\leqq\alpha<+\infty by Theorem 4. Hence, by the above
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result, we see that u is a quasibounded on G. Since G is an SO_{HB} region,
this implies u\equiv 0 on G.
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