Extension of involutions on spheres

By Yoshinobu Kamishima (Received May 12, 1978)

Introduction

Let Z_{2q} be a cyclic group of order 2q generated by T'. Suppose that a free involution T is given on the sphere S^n . If there exists a free Z_{2q} -action on S^n such that the restriction of the Z_{2q} -action to the Z_2 -action coincides with T on S^n , i. e., $T'|Z_2=T'^q=T$, then we call that the involution T on S^n extends to a free Z_{2q} -action. In this paper, we show that:

THEOREM. Let q be any integer and $n \ge 1$. Then, every picewise linear (resp. topological) free involution on S^{2n+1} extends to a picewise linear (resp. topological) free Z_{2q} -action on S^{2n+1} .

The theorem follows from a similar method to the proof of the following proposition.

PROPOSITION 3. 1. Let T be a free involution on a homotopy sphere Σ^{2n+1} such that the normal invariant $\eta(\Sigma^{2n+1}/T) \in Im \{p^* : [L^{2n+1}(2q), G/H] \rightarrow [p^{2n+1}, G/H]\}$ and $(q, |\Theta_{2n+1}(\partial \pi)|) = 1$, where $p : p^{2n+1} \rightarrow L^{2n+1}(2q)$ is the projection and H = O, PL or TOP and $n \ge 2$. Then, T extends to a free Z_{2q} -action on Σ^{2n+1} .

§ 1 and § 2 will be devoted to the preliminaries of the above proposition. In § 3, we shall prove it and the above theorem.

The author would like to thank Professor Y. Kitada and Professor H. Suzuki for many valuable suggestions.

1. Definition of transfer

Let X^{2n-1} be a (2n-1)-dimensional closed oriented manifold with fundamental group π . Denote by $\mathscr{S}^{\epsilon}_{H}(X)$ the set of ε -homotopy structures on X, where H=O or PL and $\varepsilon=h$ or s. An ε -homotopy equivalence $f: M \to X$ determines a normal map

$$au \left(heta(F_y H)
ight) = heta \left((F_y)_1 H_1
ight) = heta \left((F_y)_1
ight)$$
 $= au \left(heta(F_y)
ight)$,

we have

$$\tau(x+y) = \tau(x) + \tau(y).$$

REMARK 1. 2. The inclusion $i: \pi_1 \subset \pi$ induces a homomorphism $i_*: L_{2n}^{\epsilon}(\pi_1) \to L_{2n}^{\epsilon}(\pi)$. Then we have the following as a property of the transfer (See [2, p. 54]).

Proposition 1.3. Let $C(\pi)$ be the center of π . If $\pi_1 \subset C(\pi)$, then

$$au i^*(x) = [\pi \; ; \; \pi_1] \; x : \quad L_{2n}^{\epsilon}(\pi_1) \xrightarrow{\quad i_* \quad} L_{2n}^{\epsilon}(\pi) \xrightarrow{\quad \tau \quad} L_{2n}^{\epsilon}(\pi_1) \; ,$$

where $[\pi; \pi_1]$ is the index of π_1 in π .

The trivial map $p: \pi \to 1$ induces the homorphism $p_*: L_*(\pi) \to L_*(1)$ which is onto, and so we have

$$L_*^\epsilon(\pi) = L_*^\epsilon(\widetilde{\pi}) \oplus L_*(1)$$
 ,

where $L_*^{\epsilon}(\widetilde{\pi}) = Ker[p_*: L_*^{\epsilon}(\pi) \rightarrow L_*(1)]$ is the reduced Wall group.

Our goal in this section is the following lemma.

Lemma 1.4. $\tau: L_0^\epsilon(Z_{2q}) \to L_0(Z_2)$ is onto modulo $L_0(1)$. Here $L_0(1) \subset L_0(Z_2)$.

Proof. $L_0(Z_2)$ is isomorphic to $8Z \oplus 8Z$. The correspondence is given by

$$x = \theta(F, W) \longmapsto \left(I(W), I(\widetilde{W})\right)$$
 ,

where $F: W \to P^{4k-1} \times I$ is a normal map, P^{4k-1} the standard projective (4k-1)-space, and I(W) (resp. $I(\widetilde{W})$) is the index of W (resp. \widetilde{W}), \widetilde{W} the universal cover of W.

Let T be a generator of Z_2 . The multi-signature invariant $\rho(T, x)$ for $x \in L_0(Z_2)$ is given by

(1)
$$\rho(T, x) = Sign(T, \widetilde{W}) = 2I(W) - I(\widetilde{W}).$$

It follows that

$$(2) \qquad \rho(T, -): L_0(\widetilde{Z}_2) \longrightarrow 8Z$$

is an isomorphism, and Ker $\rho = L_0(1)$ which is isomorphic to $\{(m, 2m)\}_{m \in \mathbb{Z}} \subset L_0(\mathbb{Z}_2)$. For the Atiyah-Singer invariants $\sigma(T, \partial_{\pm}\widetilde{W})$ of $\partial_{\pm}\widetilde{W}$, we have

(3)
$$\rho(T,x) = \sigma(T,\partial_{-}\widetilde{W}) - \sigma(T,\partial_{+}\widetilde{W}).$$

by taking $\xi = g^* \nu_M$, where ν_M is the normal bundle of M and g is an ε -homotopy inverse of f. Take $x \in L_{2n}(\pi)$. By the realization theorem of Wall [9], there is a triad $(W, \partial_+ W, \partial_- W)$ and a map F of this to the triad $(X \times I, X \times 0, X \times 1)$ satisfying that

- (1) There is a bundle map B covering F of the normal bundle of W which extends the bundle map b.
 - (2) $(\partial_- W, F|\partial_- W) = (M, f)$.
 - (3) $F|\partial_+ W$ is an ε -homotopy equivalence.
 - (4) $\theta(F, W) = x \in L_{2n}^{\epsilon}(\pi)$.

Let π_1 be a subgroup of π and let \tilde{X} be the universal cover of X. Put $X_1 = \tilde{X}/\pi_1$. For the projection $p: X_1 \to X$, we consider the following pull-back diagram

$$W_{1} \xrightarrow{F_{1}} X_{1} \times I$$

$$\downarrow p \qquad \qquad \downarrow p$$

$$W \xrightarrow{F} X \times I.$$

The pair (F_1, W_1) has the same properties corresponding with (1), (2) and (3). We set

$$\tau(x) = \theta(F_1) \in L_{2n}^{\mathfrak{s}}(\pi_1).$$

It is easy to see that the definition of τ is independent of choices of the cobordisms which represent x. In particular, we may start from $(X, id) \in \mathscr{S}_H^*(X)$ in place of (M, f).

Lemma 1.1. $\tau: L_{2n}^{\epsilon}(\pi) \rightarrow L_{2n}^{\epsilon}(\pi_1)$ is a well-defined homomorphism.

PROOF. We can show that τ is a homomorphism similarly as the proof of the theorem [7, p. 50]. Let x, $y \in L_{2n}^{\epsilon}(\pi)$, and let $F_x : W_x \to X \times I$ be the cobordism between $id : X \to X$ and $f_x : M_x \to X$ such that $\theta(F_x) = x$. We represent y by the cobordism $F_y : W_y \to X \times I$ similarly. We consider cobordisms

- (i) $F_{-x}: W_{-x} \rightarrow X \times I$ between f_x and id such that $\theta(F_{-x}) = -x$.
- (ii) $F_{yx}: W_{yx} \rightarrow M_y \times I$ between $id: M_y \rightarrow M_y$ and $f_{yx}: M_{yx} \rightarrow M_y$ such that $\theta(F_{yx}) = x$.

Combining these with $id: W_y \rightarrow W_y$, we have a map

$$H': W_{-x} \cup W_y \cup W_{yx} \longrightarrow W_y$$
.

It follows that $\theta(H') = \theta(F_{-x}) + \theta(id) + \theta(F_{yx}) = 0$. We have an ε -homotopy equivalence $H \colon W'_y \to W_y$. We take $F_x \cup F_y H \colon W_x \cup W'_y \to X \times I$ as the normal map $F_{x+y} \colon W_{x+y} \to X \times I$ corresponding to x+y. Since

By [8], there exists a homotopy equivalence f_i of a homotopy complex projective 3-space HCP^3 into the complex projective 3-space CP^3 which is transverse regular to CP^2 and such that the restricted normal map

$$\bar{f}_i: N^4 = f_i^{-1}(CP^2) \longrightarrow CP^2$$
 satisfies

(4)
$$\theta(\bar{f}_i) = 8i$$
 for any $i \in Z$.

Consider the S^1 -fibration $p: L^7(2q) \rightarrow CP^3$, where $L^7(2q)$ being the 7-dimensional standard lens space. Pulling back this fibration by f_i , we have a homotopy lens space L_i^7 and an ε -homotopy equivalence

$$(5)$$
 $g_i: L_i^7 \rightarrow L^7(2q)$,

which is transverse to $L^{5}(2q)$, $L_{i}^{5}=g_{i}^{-1}(L^{5}(2q))$, and $\bar{g}_{i}=g_{i}|L_{i}^{5}:L_{i}^{5}\rightarrow L^{5}(2q)$ is the restricted normal map. Since the surgery obstruction $\theta(\bar{g}_{i})=0$ in $L_{5}^{\epsilon}(Z_{2q})$, \bar{g}_{i} is normally cobordant to an ϵ -homotopy equivalence $g_{i}^{\epsilon}:L_{i}^{5\prime}\rightarrow L^{5}(2q)$. By the normal cobordism extension property (See [7, p. 45]), we may extend the normal cobordism between $\bar{g}_{i}:L_{i}^{5}\rightarrow L^{5}(2q)$ and $g_{i}^{\epsilon}:L_{i}^{5\prime}\rightarrow L^{5}(2q)$ to a cobordism between $g_{i}:L_{i}^{7}\rightarrow L^{7}(2q)$ and $h_{i}:L_{i}^{7\prime}\rightarrow L^{7}(2q)$ such that $h_{i}^{-1}(L^{5}(2q))=L_{i}^{5\prime}$, and $h_{i}|L_{i}^{5\prime}=g_{i}^{\prime}$. Let $N(L^{5}(2q))$ be a tubular neighbourhood of $L^{5}(2q)$ in $L^{7}(2q)$. Then the surgery obstruction of h_{i} , $\theta(h_{i})$ is equal to the surgery obstruction of the restriction map

$$h_i:\ L_i^{7\prime}-\mathrm{int}\ N(L_i^{5\prime}) {\longrightarrow} L^{7}(2q)-\mathrm{int}\ N\Big(L^{5}(2q)\Big) \cong D^{6}\times S^{1}$$

which is a homotopy equivalence on the boundary, i. e.,

$$heta(h_i) = hetaig(h_iig|L_i^{7\prime} - ext{int } N(L_i^{5\prime})ig) \in L_7(Z) \cong L_6(1) = Z_2 \ .$$

Here $N(L_i^{5\prime})$ is a tubular neighbourhood of $L_i^{5\prime}$ in $L_i^{7\prime}$. Since $\theta(h_i) = \theta(g_i) = 0$, there exists a normal cobordism rel. boundary between $h_i|(L_i^{7\prime} - \text{int } N(L_i^{5\prime}))$ and a homotopy equivalence $h_i': E \rightarrow D^6 \times S^1$. Put $M_i^7 = E \cup N(L_i^{5\prime})$. There is an ε -homotopy equivalence

$$k: M_i^7 \longrightarrow L^7(2q)$$

defined to be h'_i on E and h_i on $N(L_i^{5\prime})$. Combining these cobordisms, there is a normal cobordism

$$F: V^8 \longrightarrow L^7(2q) \times I$$

between $g_i: L_i^7 \to L^7(2q)$ and $k: M_i^7 \to L^7(2q)$. It follows that $\theta(F, V) \in L_8^s(Z_{2q})$. We have

(6)
$$\tau\theta(F,\,V)=\theta(F_{\rm 1},\,V_{\rm 1})\!\in\!L_{\rm 8}(z_{\rm 2})\,{\rm ,}$$

where $F_1: V_1 \rightarrow P^7 \times I$ is a normal map, and the universal cover $\partial \widetilde{V}_1 = \widetilde{L}_i^7 \cup \widetilde{M}_i^7$. Since $L_i^7 \rightarrow HCP^3$ is the S^1 -fibration, so $\sigma(T, \widetilde{L}_i^7)$ is the value $\sigma(-1, \widetilde{HCP^3})$ of the Atiyah-Singer invariant $\sigma(t, \widetilde{HCP^3})$, $t \in S^1$ at t = -1. Hence from (4) we have

(7)
$$\sigma(T, \widetilde{L}_i^7) = \sigma(-1, \widetilde{HCP^3}) = 8i$$
.

On the other hand, the Atiyah-Singer invariant $\sigma(T, Q^{4k-1})$ is equal to the Browder-Livesay invariant $\sigma(Q^{4k-1})$ for a homotopy projective (4k-1)-space Q^{4k-1} (See [3]). If we note that the Browder-Livesay invariant $\sigma(Q^{4k-1})$ is the desuspension invariant of Q^{4k-1} , we see that the q-fold covering manifold \overline{M}_i^7 is a homotopy projective space which desuspends (in fact, (T, \widetilde{M}_i^7) is a double suspension). Hence we have

(8)
$$\sigma(T, \widetilde{M}_i^7) = 0.$$

By (3), (6), (7) and (8), it follows that

$$\tau(\theta(F, V)) = 8i$$
.

Therefore, by (2), $\tau: L_0^*(Z_{2q}) \to L_0(Z_2)$ is onto modulo $L_0(1)$. This completes the proof of the lemma.

2. Surgery exact sequence

Let $\mathscr{S}_H^{\epsilon}(X)$ be the set of ϵ -homotopy structures on X and let [X, G/H] be the set of normal cobordisms classes of normal maps into X. We consider the surgery exact sequences for $X=P^{2n+1}$ and $L^{2n+1}(2q)$ (See [9]). The projection $p: P^{2n+1} \to L^{2n+1}(2q)$ induces a map

$$p!: \, \mathscr{S}_{H}^{\mathfrak{s}} \Big(L^{2n+1}(2q) \Big) \longrightarrow \mathscr{S}_{H}^{\mathfrak{s}} (P^{2n+1})$$

by taking q-fold covering. Similarly, p induces a map

$$p^*: [L^{2n+1}(2q), G/H] \longrightarrow [P^{2n+1}, G/H].$$

Then we have the following commutative diagram of exact sequences for $n \ge 2$.

$$(2.1) \qquad \begin{array}{c} L_{2n+2}(Z_{2}) \xrightarrow{\omega} \mathcal{S}_{H}(P^{2n+1}) \xrightarrow{\eta} [P^{2n+1}, G/H] \xrightarrow{\theta} L_{2n+1}(Z_{2}) \\ \uparrow \tau \qquad \qquad \uparrow p! \qquad \qquad \uparrow p^{*} \\ L_{2n+2}^{\epsilon}(Z_{2q}) \xrightarrow{\omega} \mathcal{S}_{H}^{\epsilon}(L^{2n+1}(2q)) \xrightarrow{\eta} [L^{2n+1}(2q), G/H] \xrightarrow{\theta} L_{2n+1}^{\epsilon}(Z_{2q}) \end{array}$$

LEMMA 2. 2. $p^*: [L^{2n+1}(2q), G/H] \rightarrow [P^{2n+1}, G/H]$ is onto for H=PL, TOP.

PROOF. The projection $p: L^{2n+1}(s) \to CP^n$ induces a map $p^*: [CP^n, G/H] \to [L^{2n+1}(s), G/H]$ for each integer $s \in \mathbb{Z}$. The lemma follows from the fact that p^* is onto (See [9, Lemma 14 A. 2, p 186]).

The natural projection $d: Z_{2q} \rightarrow Z_2$ induces the isomorphism

$$(2.3) d: L_3^{\epsilon}(Z_{2q}) \cong Z_2 \longrightarrow L_3(Z_2) \cong Z_2.$$

We have the following lemma.

Lemma 2.4. There is a following commutative diagram for H=O, PL, or TOP and $k \ge 1$.

$$[P^{4k+3}, G/H] \xrightarrow{\theta} L_3(Z_2)$$

$$\uparrow p^* \qquad \uparrow d$$

$$[L^{4k+3}(2q), G/H] \xrightarrow{\theta} L_3^{\epsilon}(Z_{2q})$$

Remarks. The lemma of PL case is seen in [9, Theorem 14. 4] and the smooth case is seen in [5, Theorem 3.7]. Throughout the cases H=O, PL, or TOP, the proof of this lemma is to determine the nontrivial obstruction for the fundamental group of a cyclic group of even order in place of a cyclic group of odd order in [1, Theorem 1'].

PROOF. Take a normal map $f\colon L^{4k+3}\to L^{4k+3}(2q)$. As in the proof of the lemma 1.4, there is a normal map $g\colon L_1^{4k+3}\to L^{4k+3}(2q)$ which is normally cobordant to f such that $g\colon g^{-1}(L^{4k+1}(2q))\to L^{4k+1}(2q)$ is an ε -homotopy euivalence. Let $N(g^{-1}(L^{4k+1}(2q)))$ be a tubular neighbourhood of $g^{-1}L^{4k+1}(2q)$ in L_1^{4k+3} . It follows that

$$\theta(f) = \theta\Big(g\Big|L_1^{4k+3} - \mathrm{int}\ N\Big(g^{-1}\Big(L^{4k+1}(2q)\Big)\Big)\Big)\,,$$

where $g: L_1^{4k+3}-\operatorname{int} N(g^{-1}(L^{4k+1}(2q))) \to D^{4k+2} \times S^1$ is a normal map which is a homotopy equivalence on the boundary. Make g transverse to $D^{4k+2} \times t \subset D^{4k+2} \times S^1$ such that $g^{-1}(S^{4k+1} \times t)$ is a homotopy sphere and $g: g^{-1}(S^{4k+1} \times t) \to S^{4k+1}$ is a homotopy equivalence. Let $d'': L_3^{\epsilon}(Z_{2q}) \to L_2(1)$ be the homomorphism defined by the composition of $L_3^{\epsilon}(Z_{2q}) \to L_3(Z)$ and $L_3(Z) \xrightarrow{\cong} L_2(1)$. We have

$$d^{\prime\prime}\theta(f)=\theta\left(g\left|g^{-1}(D^{4k+2}\times t)\right)\!\in\!L_{2}(1)\cong Z_{2}\,.$$

The q-fold covering map of f induces a normal map $p^*(f): Q \to P^{4k+3}$. Here Q is the q-fold cover of L^{4k+3} . Then it follows that the surgery obstruction

 $\theta(p^*(f))$ is equal to $\theta(g|g^{-1}(D^{4k+2}\times t))$, i. e., $d'\theta(p^*(f))=\theta(g|g^{-1}(D^{4k+2}\times t))$, where $d':L_3(Z_2)\to L_2(1)$ is the isomorphism. From the commutative diagram

$$L_3(Z_2) \xrightarrow{d'} L_2(1)$$

$$\uparrow d \qquad \uparrow d'$$

$$L_3^{\epsilon}(Z_{2q}) \qquad d''$$

we have $d\theta(f) = \theta(p^*(f))$. This proves the lemma.

3. Proof of Theorem

First we prove the following.

Proposition 3.1. Let H=O, PL, or TOP and $n \ge 2$. Let T be a free involution on a homotopy sphere Σ^{2n+1} such that $\eta(\Sigma^{2n+1}/T) \in Im[p^*: [L^{2n+1}(2q), G/H] \rightarrow [P^{2n+1}, G/H]]$ and $(q, |\Theta_{2n+1}(\partial \pi)|) = 1$, where $\Theta_{2n+1}(\partial \pi)$ is the group of homotopy (2n+1)-spheres which bound parallelizable manifolds, and $|\Theta_{2n+1}(\partial \pi)|$ is the order of $\Theta_{2n+1}(\partial \pi)$. Then, T extends to a free Z_{2q} -action on Σ .

Remark. For example, q=3 satisfies $(q, |\Theta_{2n+1}(\partial \pi)|)=1$ for any $n \ge 2$.

PROOF. Case 1. $n \equiv 0(2)$. Let T be a free involution on Σ^{4k+1} such that $\eta(\Sigma^{4k+1}/T) \in \text{Im } p^*$. Since $\theta: [L^{4k+1}(2q), G/H] \to L^{\epsilon}_{4k+1}(Z_{2q})$ is zero, there exists an element $L_1^{4k+1} \in \mathscr{S}_H^{\epsilon}(L^{4k+1}(2q))$ such that

$$\eta \left(p! (L_1^{4k+1}) \right) = \eta (\Sigma^{4k+1}/T)$$
.

Since the action ω of $L_2(Z_2) \cong L_2(1)$ is to add the Kervaire manifold, we have

$$\varSigma^{4k+1}/T \cong p!(L_1^{4k+1})$$

or

$$\Sigma^{4k+1}/T \cong p!(L_1^{4k+1}) \# \Sigma_K^{4k+1}$$
,

where Σ_K^{4k+1} is the Kervaire sphere.

If $p!(L_1^{4k+1}) \sharp \Sigma_K^{4k+1} \cong \Sigma^{4k+1}/T$, we take $L_2^{4k+1} = L_1^{4k+1} \sharp \Sigma_K^{4k+1} \in \mathscr{S}_H^{\epsilon}(L^{4k+1}(2q))$. Since $(q, |\Theta_{4k+1}(\partial \pi)|) = 1$ and the order of $\Theta_{4k+1}(\partial \pi)$ is at most 2, we have

$$\begin{split} p!(L_2^{4k+1}) &\cong p!(L_1^{4k+1}) \, \sharp \, q \Sigma_K^{4k+1} \\ &\cong p!(L_1^{4k+1}) \, \sharp \, \Sigma_K^{4k+1} \cong \Sigma^{4k+1}/T \; . \end{split}$$

Hence T extends to a free Z_{2q} -action.

Case 2. $n \equiv 1(2)$. Let T be a free involution on Σ^{4k+3} such that $\eta(\Sigma^{4k+3}/T) \in \text{Im } p^*$. By Lemma 2. 4, there exists an element $L_1^{4k+3} \in \mathcal{S}_H^{\epsilon}(L^{4k+3})$

(2q)) such that $\eta(p!(L_1^{4k+3})) = \eta(\Sigma^{4k+3}/T)$. From (2.1), we have $\Sigma^{4k+3}/T = \omega(x, p!(L_1^{4k+3}))$ for some $x \in L_0(Z_2)$. By Lemma 1.4, there exists $y \in L_0^{\epsilon}(Z_{2q})$ such that $x - \tau(y) = x_0$ for some $x_0 \in L_0(1) \subset L_0(Z_2)$. Put $L_2 = \omega(y, L_1^{4k+3}) \in \mathcal{S}_{H^{\epsilon}}(L_1^{4k+3}(2q))$. We have from the commutativity of (2.1) that

$$\Sigma^{4k+3}/T = \omega(x_0, p!(L_2))$$
.

Since the action ω of $L_0(1)$ is to add the Milnor manifolds, it follows that

$$\Sigma^{4k+3}/T = p!(L_2) \# m\Sigma_1^{4k+3}$$

for some $m \in \mathbb{Z}$, where Σ_1^{4k+3} is a generator of $\Theta_{4k+3}(\partial \pi)$. By the condition $(q, |\Theta_{4k+3}(\partial \pi)|) = 1$, there is an integer n such that $nq \equiv 1 \mod |\Theta_{4k+3}(\partial \pi)|$. We take $L_3 = L_2 \sharp nm \Sigma_1^{4k+3} \in \mathscr{S}_H^{\epsilon}(L^{4k+3}(2q))$. Then we have

$$p!(L_3) \cong p!(L_2) \# qnm \Sigma_1^{4k+3}$$

 $\cong p!(L_2) \# m \Sigma_1^{4k+3} \cong \Sigma^{4k+3}/T$.

Hence T extends to a free Z_{2q} -action. This proves the proposition.

PROOF OF THEOREM IN INTRODUCTION.

By [6], any free involution on S^3 is conjugate to the antipodal map. Therefore, T extends to a free Z_{2q} -action on S^3 . Let T be a free involution on S^{2n+1} for $n \ge 2$. It follows from Lemma 2.2 that $\eta(S^{2n+1}/T) \in \text{Im} p^*$. Similarly to Proposition 3. 1, $S^{2n+1}/T \cong \omega(x, p!(M))$ for some $M \in \mathcal{S}_H^i(L^{2n+1}(2q))$ and $x \in L_{2n+2}(Z_2)$. Since the action ω of $L_{2n+2}(1)$ on $\mathcal{S}_H(P^{2n+1})$ is trivial for H = PL, TOP, we have $S^{2n+1}/T \cong p!(M_1)$ for some $M_1 \in \mathcal{S}_H^i(L^{2n+1}(2q))$. Hence T extends to a free Z_{2q} -action.

COROLLARY. (See [4]) There exist non-triangulable (simple) homotopy lens spaces $\bar{L}^{2n+1}(2q)$ for $n \ge 2$ and $q \ge 1$.

PROOF. From the computations of $[P^{2n+1}, G/H]$ for H=PL, TOP, there is an exact sequence

$$\mathcal{S}_{PL}(P^{2n+1}) \xrightarrow{\Phi} \mathcal{S}_{TOP}(P^{2n+1}) \xrightarrow{\Psi} Z_2 \xrightarrow{} 0,$$

where Φ is the obvious map, and Ψ is the obstruction map (See [7]).

References

- [1] W. BROWDER: Free Z_p -actions on homotopy spheres, Topology of manifolds, Proc. Univ. Georgia, 217-226 (1969).
- [2] P. E. CONNER and E. E. FLOYD: Differentiable periodic maps, Springer Verlag, 1964.

- [3] F. HIRZEBRUCH and K. JÄNICH: Involutions and singularities, Proc. Int. Colloq. on Algebraic Geometry, Bombay, 1968.
- [4] K. KAWAKUBO: Topological S^1 and Z_{2k} actions on spheres, Proceedings of the Conference on Transformation Groups, Amherst, Springer, 14-18 (1971).
- [5] Y. KITADA: Determination of homotopy spheres that admit free actions of finite cyclic groups, J. Math. Soc. of Japan, 28, 343-359 (1976).
- [6] G. R. LIVESAY: Fixed point free involutions on the 3-spheres, Ann. of Math. 72, 603-611 (1960).
- [7] LÓPEZ De MEDRANO: Involutions on manifolds, Springer, 1971.
- [8] P. MONTGOMERY and C. T. YANG: Free differentiable actions on homotopy spheres, Proceedings of the Conference on Transformation Groups, New Orleans Springer-Verlag 175-192 (1967).
- [9] C. T. C. WALL: Surgery on Compact manifolds, Academic Press, 1970.

Yoshinobu KAMISHIMA
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo Japan