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Introduction

Let Q be a simple artinian ring. An order R in Q is called Krull if
there are a family {R;};cr and S(R) of overrings of R satisfying the following :
(K1) R=N;R;NS(R), where R, and S(R) are essential overrings of
R (cf. Section 2 for the definition), and S(R) is the Asano overrig of R;

(K2) each R; is a noetherian, local, Asano order in Q, and S(R) is
a noetherian, simple ring;

(K3) if ¢ is any regular element of R, then cR;#R; for only finitely
many ¢ in I and Ri,c#R; for only finitely many % in L

If S(R)=Q, then R is said to be bounded. Author mainly investigated
the ideal theory in bounded Krull orders in Q (cf. [10], [11], and [13]).
The class of Krull orders contains commutative Krull domains, maximal
orders over Krull domains, noetherian Asano orders and bounded noetherian
maximal orders. It is well known that if D is a commutative Krull domain,
then the polynomial and formal power series rings D [x] and D [[x]] are
both Krull, where the set x of indeterminates is finite or not.

The purpose of this paper is to show how the results above can be
carried over to non commutative Krull orders by using prime wv-ideals and
localization functors. After giving some fundamental properties on poly-
nomial rings (Section 1), we shall show, in Section 2, that if R is a Krull
order in Q and if x is a finite set, then so is R[x]. In case x is an infinite
set, we can not show whether R[x] is Krull or not. But we shall show
that R [x] satisfies some properties interesting in multiplicative ideal theory
as follows :

(i) RI[x]=nN4sR[x]pNS(R[x]), where P ranges over all prime v-ideals
of R [x], the local ring R [x]p is a noetherian and Asano order in the quotient
ring of R[x] and the Asano overring S(R [x]) is a simple ring.

(ii) The integral v-ideals of R [x] satisfies the maximum condition.
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In Section 4, we shall discuss on Krull orders over commutative Krull
domains. If 4 is a Krull D-order, where D is a commutative Krull domain,
then it is shown that 4 [x] and 4[[x]] are both Krull D[x] and D [[x]]-

orders, respectively, where x is finite or not.

1. Preliminaries

Throughout this paper, each ring will be assumed to have an identity,
Q will denote a simple artinian ring and R will denote an order in QY.
We refer to N. Jacobson [9] concerning the terminology on orders.

Let x={x,}.cqa be an arbitrary set of indeterminates over R subject to
the condition that rx,=z, for any &R and for any z,&x, where A4 is
an index set. The polynomial ring R [x] is defined to be the union of the
rings R [X'|=R[z., ", x,,], where x’ ={x,};-.I ranges over all finite subsets
of x. If xis an indeterminate over R, then Q [x] is a principal ideal ring by
Example 6.3 of and so it has a simple artinian quotient ring Q(Q[x])?.
Since Q[x] is an essential extension of R[z] as R [x]-modules and R [x]
is a prime ring, Q(R[z])=Q(Q[z]). So R[z] is an order in Q(R [z]).
Therefore R [x'] is also an order in Q(R[x']) for any finite subset x' of x.
Finally if x* and x” are subsets of x and if ¥’ Cx”, then we note that
QRI[X]CSQ (R [x"]).

LemMaA 1.1. Let R be an order in Q. Then R[x] has a simple ar-
tinian quotient ring and Q(R[x])=UQ(R[X]), where x' runs over all finite
subsets of x, and dim R=dim R [x] (dim R is always the Goldie dimension
of R).

Proor. The lemma will be proved in four steps.

(i) Let A and B be any non-zero ideals of R[x]. There exists a
finite subset x’ of x such that ANR[x']#0 and BN R[x']#0, because
A=U(ANRI[x"]), where x” ranges over all finite subsets of x. Since
R[x'] is a prime ring, we get 0#(ANR[x]) (BNR[x'])SAB. Hence R [x]
is a prime ring. It is evident that the ring S=UQ(R[x]) is an essential
extension of R [x] as R [x]-modules.

(ii) If dim R=mn, then we shall prove that dim R [x']=n for any finite
subset x" of x. It suffices to prove that dim R [z]=n. Since Q is the total
matrix ring (K), over a division ring K, we have Q [z]=(K), [z] ~(K [z])»
and K[x] is an Ore domain. Hence n=dim Q [z] =dim R [z], because

Q(Q [z]) =Q(R [z]).

1) Conditions assumed on rings will always be assumed to hold on both sided; for
example, an order always means a right and left order.
2) The quotient ring of a ring T will be denoted by Q(T).
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(i) If U is a uniform right ideal of R, then UJ[x'] is also a uniform
right ideal of R [x'] by (ii) for any finite subset X of x and so UQ(R[x'])
is a minimal right ideal of Q(R [x']). It follows that US is a minimal right
ideal of S.

(iv) If U@P---@U, is an essential right ideal of R, where U, are uniform
right ideals of R, then, since (UP---PU,) Q=Q, we have S=(UP---DU,)
S=U,5P---DU, S and the U;S are minimal right ideals of .S by (iii). Hence
S is a simple artinian ring and is the classical right quotient ring of R [x].
Similarly, it is the classical left quotient ring of R[x]. It is evident that
dim R=dim R [x].

LemMmAa 1.2. Let A be a non-zero ideal of R[z] and let r(x), c(x)=
Crx+---+c, be elements of R[x] such that c, is a regular element of R.
If r(x)ACc(x) A and deg r(x)<degc(x), then r(x)=0 (deg r(x) is the
degree of the polynomial r(x)).

Proor. Let £ be the minimum number of the set {deg f(x)| A>f(x)+ 0}
and A,={f(x)= Aldeg f(x)=Fk} U{0O}. Then it is an (R, R)-bimodule and so
AR [x] is an ideal of R [z]. If r(x)#0, then O+r(x) A, R [x]Cc(x) A. For
any non-zero element r(x) f(x) (f(x) EA,), we have deg r(x) f(x) <deg r(x)+ k.
But the degree of non-zero element of c(x) A is larger that degr(x)+k&,
because ¢, is a regular element of R and degr(x)<degc(zx). This con-
tradiction implies that r(x)=0.

ProrositioN 1.3. If R is a maximal order in Q, then R[x] is a
maximal order in Q(R [x]).

Proor. Firstly we shall prove the assertion in case x={x}. Let A
be any non-zero ideal of R [x] and let B be the ideal of all leading coefficients
of polynomials in A. Let ¢g=c(x)~!'7(x) be any non-zero element of O;(A)=
{g=Q(R [z])|gAC A}, the left order of A, and let c(x)=c, 2"+ +cp, r(x)=
Tm&™+---+7r, be non-zero elements in R[x]. By the same way as in
Lemma 2 of [17], we may assume that ¢, is a regular element of R. Since
r(x) ACc(x) A, we have r,BCc,B and ¢;'7,=0,(B)=R by
of [2]. Thus rn=cySu_n for some s,_,ER. By Lemma 1.2, n<m and so
r{x)=c(x) t;(x)+7r(x), where t,(x)=sp_p 2™ ", r(x)eR[x] and deg r(x)<m,
i.e, clxr(x)=t(x)+ c(x)'r(x). Hence (t;(x)+ c(x)ir(x)) AC A and
clx)r(x) ACA. If n<degr(x), then the process is repeated and we get
ri(x)=c(x) ta(x) +75(x) (ts(x), r2(x) ER [2]), degri(x)>degry(x) and c(z)™'7r3(x)
ACA. Continuing the process we obtain 7;(x)=c(x) t;11(x) +7ip1(x) (ti01(x),
rivi(x) ER [2]), deg 7y (x)<deg c(x) and c(x) 'r;(x) ACA. Then, by Lem-
ma 1.2, r,.1(x)=0 and therefore c(x) 'r(x)=t,(x)+ - +t;1(x) R [x]. This
implies that O;(A)=R [z] and, by symmetry, R |[x]=0,(A), the right order
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of A. Hence R[] is a maximal order in Q(R [z]) by the remark to
1.2 of [2]. By induction, R[x'] is a maximal order in Q(R [x']) for any
finite subset x' of x. Nextly we shall prove the assertion in case x is
arbitrary. Let A be any non-zero ideal of R [x] and let ¢ be any element
of O,(A). Then there exists a finite subset x' of x such that ¢g=Q(R [x'])
and 0+ANRI[X]. It follows that g(ANR[X])CSANQRI[X])=ANRI[xX]
and so g€O,((ANRI[X']))=R[x']. Hence O,(A)=R[x] and, by symmetry,
0,(A)=R|[x]. This implies that R [x] is a maximal order in Q(R [x]).

Let I be a right R-ideal. Following [1], we define I*=(I")~%. If I=1I%
then it is said to be a right v-ideal. In the same way one defines left
v-ideals and v-ideals.

LemMa 1.4. If R is a maximal order in Q and if I is a (one-sided)
R-ideal, then I''[x]=(I[x])". In particular, if I is a (one-sided) v-ideal,
then so is I[x].

Proor. We shall prove the lemma when I is a right R-ideal. Since
I [x] I[x] SR [x], we get I["'[x]C(I[x])"*. To prove the inverse inclusion,
let ¢ be any element in (I[x])™}, i.e, ¢gl[x]SR[x]. Since gc=R|[x] for
any regular element ¢ in I, g&Rc ' [x]SQ[x]. Therefore all coefficients
of g (as polynomials over Q) are contained in I~! and so ¢g&I'[x]. Hence

I''[x]=([x])"% as desired.

2. R|[a]

Let R be an order in Q and let F be a right additive topology on R.
We denote by Ry the ring of quotients of with respect to F (cf. [18]). An
overring R of R is said to be right essential if it satisfies the following
two conditions :

(i) There is a perfect right additive topology F on R such that R =
Ry (cf. p 74 of [18]).

(ii) If IF, then RI=R'.

If Ry is a right essential overring of R, then F consists of all right
ideals I of R such that IRz=Rz So each element of F is an essential
right ideal of R. So if R is a maximal order in Q, then Rr=U"YIEF).

An overring R of R is said to be essential if it is right and left es-
sential. If P is a prime ideal of R, then we denote by C(P) those elements
of R which are regular mod. (P). If R satisfies the Ore condition with
respect to C(P), then we denote by Rp the ring of quotients of R with
respect to C(P). We call an order R an Asano order if its R-ideals form
a group under multiplication. An order R is said to be local if its Jacobson
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radical J is the unique maximal ideal and R/J is an artinian ring. Let R
be a noetherian, local and Asano order. Then, by [Proposition 1.3 of [8],
R is a bounded, hereditary, principal right and left ideal ring. Following
[8], we define S(R)=U B!, where B ranges over all non-zero ideals of R
and call it an Asano overring of R.

Let R be a maximal order in Q and let P be an ideal of R. Then
the following are equivalent (cf. p. 11 and Theorem 4.2 of [I]):

(i) P is a prime v-ideal of R.

(ii) P is a maximal element in the lattice of integral v-ideals of R.

(iii) P is a meet-irreducible in the lattice of integral v-ideals of R.

If P satisfies one of the conditions above, then it is a minimal prime
ideal of R by Theorem 1.6 of [2]. The set D(R) of all v-ideals becomes
an abelian group under the multiplication “o” defined by A*oB*=(AB)*=
(A*B)* =((AB*))=(A*B** for any R-ideals A and B (cf. Lemma 2 of [12]).
If the integral v-ideals satisfies the maximum condition, then D(R) is a direct
product of infinite cyclic groups with prime v-ideals as their generators (cf.
Theorem 4.2 of [I]). These results are frequently used in this paper without
references.

An order R in Q is called Krull if there are a family {R;};cr and S(R)
of overrings of R satisfying the following :

(K1) R=NwrR:NS(R), where R; and the Asano overring S(R) are
essential overrings of R,

(K2) each R; is a noetherian, local, Asano order, and S(R) is a noe-
therian, simple ring, and

(K 3) for every regular element ¢ in R we have cR;#R; for only finitely
many ¢ in I and Ric#R;, for only finitely many £ in I.

If Ris a Krull order in Q, then it is a Krull ring in the sense of [10].
In non-commutative rings, it seems to me that the definition above is more
natural than one of Krull rings in [10].

In this section, P} will denote the unique maximal ideal of R; and P;=
P/NR (i€I). By Proposition 1.1 of [10], P; is a prime ideal of R and
R;=Rp,.

PropoSITION 2.1. Let R be a Krull order in Q. Then

(1) R is a maximal order in Q.

(2) The integral right and left v-ideals satisfy the maximum condi-
tion.

(3) If A is a non-zero ideal of R, then AS(R)=S(R) A=S(R).

(4) Let P be an ideal of R. Then it is a prime v-ideal of R if and
only if P=P; for some i in I.
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ProOOF. Since a simple ring is a maximal order, (1) follows from the
same way as in [Proposition 1.3 of [11].

(2) Let I be any right v-ideal. Then I=N;IR;N IS(R) by Corollary
4.2 of [10]. So (2) is evident from the definition of Krull orders.

(3) Let S(R):RFZRFL, where F and F; are perfect right and left
additive topologies on R, respectively. Since S(R) AS(R)=S(R), we write
1=23,_M;a;s;, where t;, s;&S(R) and a;& A. There are elements B and C
in F and F, respectively, such that Ct;, s;BCR. So CBC A, which implies
that S(R)D.S(R) ADS(R)CB=S(R). Hence S(R)=S(R) A and, by symmetry
S(R)=AS(R).

(4) Let P be a prime v-ideal. Then P=nN,PR;NS(R). There are
finitely many 1,---, kI only such that PR;#R; (1<i<k). Since R; is
bounded, there are natural numbers n; such that P*#C PR,. It follows that

m-.-NPwCP. Hence P,CP for some ¢ and thus P,=P. The fact

that each P; is a prime v-ideal follows from the same way as in Lemma

1.5 of [1I].

LEmMMA 2.2. Let R be a maximal order in Q and let S(R) be the
Asano overring of R. If AS(R)=S(R)=S(R) A for every non-zero ideal -
A of R, then S(R) is an essential overring of R and is a simple ring.

Proor. Let F={I|I is a right ideal of R and contains a non-zero ideal
of R}. We shall prove that F is a right additive topology on R. To prove
this let I be any element of F and let A be a non-zero ideal of R such
that IDA. Then, for any 7ER, we have r'I={x=R|rxc} Dr 1ADA
and so 7 IeF. If IEF and J is a right ideal of R such that a 'J&F for
all ac I, then we obtain S(R)2JS(R)D3,cralaJ) S(R)=2,c;aS(R)=IS(R)
=S(R). Hence S(R)=JS(R). Put 1=23,_Ta;t;, where q;€J and t,ES(R).
There is a non-zero ideal B of R such that ¢, BCR. It follows that BCJ
and JEF. Thus F is a right additive topology on R by Lemma 3.1 of
[18]. By the assumption, it is clear that S(R)=Rjy and that it is a right
essential overring of R. By symmetry, S(R) is a left essential overring of
R and therefore it is an essential overring of R. It is clear that S(R) is
a simple ring.

LEmMA 2.3. Let R be an order in Q and let R be a simple ring.
Then

(1) The correspondence

(*) P P = PQ [x]

is one-to-one between the family of all maximal ideals of R|[x] and the
family of all maximal ideals of Q[z]. The inverse of (¥) is given by
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the correspondence P'—P'N R [x].

(2) Rlx]lp=0Q [x]p, and is a noetherian, local, Asano order for every
mazximal ideal P of R [x].

(3) S(R[x]) is an essential overring of Rx], is a simple ring and
SR [z])SS(Q [z]). In particular, if R is noetherian, then so is S(R [x]).

Proor. The same proof as in Example 6.1 of gives that R [x]
is an ipri and ipli-ring. So R[z] is an Asano order in Q(R []).

(1) Let P’ be a maximal ideal of Q[z] and P=P'N R [«]. It is evident
that P is a maximal ideal of R[x]. Since Q[x] is an essential overring
of R[z] by Lemma 5.3 of [10], we have P'=PQ [z]=Q [z]P. Conversely
let P be a maximal ideal of R[x] and let P"=Q [z]PQ [z]. Assume that
P'=Q[z] and write 1=2;_7q;p:¢0;, where ¢;, :€Q [x] and p;,&P. There
are regular elements ¢, d in R such that cg;, ¢g;d=R|[z]. It follows that
R=RcdRC P, which is a contradiction. Hence P’ is a proper ideal of Q [z]
so that PN R[z] is also a proper ideal of R[x]. This implies that P=
P'NR[x] and thus P =PQ[x]=Q|[xz] P, since Q [z] is an essential overring
of R[x]. It is clear that P’ is a maximal ideal of Q [z].

(2) By Example 6.3 of [16], Q[«] is a Dedekind prime ring. So
Q [z]p is a noetherian, local, Asano order in Q(R[x]) by Theroem 2.6 of
[8]. Since P=P' NR[x], we get Q[x]p=R[x]r by Proposition 1.1 and
Lemmas 5.2, 5.3 of [10].

(3) Since R[x] is an Asano order in Q(R [z]), S(R [x]) is an essential
overring of R[x] and is a simple ring by [Lemma 2.2 Let A=Pp.--Plt
be any non-zero ideal of R [x], where P, are maximal ideals of R[x]. Then
we get AT'CQ[a]A'=(AQ[x])t=(P™---P")7* S S(Q [z]). Hence S(R[x])
CS(Q[z]). If R is a noetherian and simple ring, then so is S(R[x]) by
[8, p. 446], because R [x] is a noetherian Asano order.

THEOREM 2.4. If R is a Krull order in Q, then R[z] is a Krull
order in Q(R [x]).

Proor. Let R=N;Rp,NS (i€I), where P; ranges over all prime v-
ideals of R and S=S(R) is the Asano overring of R. Then R[x]=N"
R [a]pn N Q [2] N S[x] by the proof of Theorem 5.4 of [10]. Since Q [«]
and S[z] are both noetherian Asano orders by Example 6.1 of [16], we
obtain Q [z]=N,;e,OFNS(Q [z]) and S[z]=N ;es ST N S(S [z]) by Theorem
3.1 of [8] Here QF=S} are noetherian, local, Asano orders, S(S[z])C
S(Q [z]), and S(S[x]) is a noetherian, simple ring and is an essential over-
ring of R [z] by Lemmas 5.2, 5.3 of and Lemma 2. 3. Let Q) be the

unique maximal ideal of Q%(j&J). We consider the following diagram ;
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[x]CS[SC]CQ [x]CQJ
U U
Q] g Q/// / —Q/
where Q;,=R[z]NQ), @V =S[z]NQ; and Q7 =Q[x]N Q). Then Q=
R [z]e, by Proposition 1.1 of [10]. Thus we have

(*) Rlx] = NserR[x]pim N N jg]R[x]Qj N S<S[x]> .

In the expression (*) of R[xz], we get, as in Theorem 5.4 of amd Pro-
position 2.1, the following :

(1) R [x] satisfies the condition (K 3).

(ii) The integral one-sided v-ideals satisfies the maximum condition.

(i) P;[z], Q;,Gel, j&J) are all prime v-ideals of R [x].
To prove that these only are prime v-ideals of R[x], let P be a prime
v-ideal of R[z]. If PN R+0, then, since (PN R)*[z]=((PNR) [zx])*CP*=P
by Cemma 1.4, PNR is also a prime v-ideal of R so that PN R=P; for
some i1 by Proposition 2.1. Hence PDOP;[x] and thus P=P;[z]. If
PN R=0, then it follows that Q[z] PQ[x]&=Q [z], and so Q[x] PQ[x] S QY
for some j&J. Since {Q7|jJ} are the set of maximal ideals of Q [x].
Hence PCQ, so that P=Q);, as claimed. It remains to prove that S(S [z])=
S(R[z]). To prove this let A be a non-zero ideal of R[x]. We write
A* = (Py [x]™ - Py [2]™s- Q- Qp*. Then S[x] D A*S[2] 2Qf -+~ QS []
=QY'™...Q)"" by [Proposition 2.1. Thus we have S(S[z])2A*S(S[z])2
Q). Q™ S(S [x]) =S(S [z]) and so S(S[x])=A*S(S[z]). It follows that
ATC AIS(S [z]) = ATA*S(S [z]) ©S(S [z]). Hence S(R[z]) SS(S[«]). To
prove the inverse inclusion, let g be any element of S(S[x]). We may assume
that ¢ is a regular element in Q(R [z]) by of [10]. Thete is
a non-zero ideal B’ of S[x] such that ¢B C.S[z] and so ¢BC.S [x], where
B=B'NR[z], Write B*=(b;R [x]+ -+ b, R [z])* for some elements b, of B.
Then there exists a non-zero ideal C of R such that ¢b;CCR[z] so that
gb;,C[z] CR[z]. It follows that ¢(byR[z]+---+b.R[x]) C[x]ER[x] and
thus we have R [x]2(q(b;R[x]+---+b,R[z]) Clx])*=q((bR [x] +---+ b, R
[2])*C [a])*=q(B*C [z])*=q(BC [z])* by Lemma 2 of [12], which implies
g=(BC [z]) 'S S(R [«]). Hence S(R[x])2S5(S[«x]) and S(R [z])=S(S [z]), as
desired.

CoROLLARY 2.5. If R is a Krull order in Q, then Rz, -+, Z,] is
a Krull order in Q(R [z, -+, Za]).
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3. R|x]

In the remainder of this paper, x={z,/Ja= A} denotes an arbitrary set
of indeterminates over R which commutes with any element of R. We
shall study, in this section, the polynomial ring R [x] over Krull order R.

LemMA 3.1. Let R be a Krull order in Q and let P be a prime v-
ideal of R. Then

(1) Rx] satisfies the Ore condition with respect to C(P[x]) and
R [X]ptsa= U R [X]|pra1, where X' ranges over all finite subsets of X.

(2) R[xX]p s a neotherian, local and Asano order in Q(R [x]).

Proor. (1) Let x’ and x” be any finite subsets of x such that x'&x”.
Since R[x']=R[x][x"—x'] and P[x"]=P[x'] [x'—x'], where x" —x' is
the complement set of x’ in x”, it is evident that C(P[x'])SC(P [x"]).
Firstly we shall prove that C(P[x])= U, C(P [x;]), where x; ranges over
all finite subsets of x. If c(x') f(x)eP[x], where x’ is a finite subset of
x, c(x)eC(P[x']) and f(x)=R [x], then there exists a finite subset x”" (Dx/)
of x such that f(x)eR[x'] and c(x') f(x)=P[x"]. Hence f(x)=P [x"] and
so C(P[x'])CC(P[x]). Conversely, let c(x) be any element of C(P [x])
and assume that c(x)=R[x']. If c(x)g(x)= P[x'], where g(x)= R[X],
then g(x)eR[x']NP[x]=P[x’]. This implies that ¢(x)eC(P[x']). Hence
C(P[x])=U,C(P[x;]). Next we shall prove that R[x] satisfies the Ore
condition with respect to C(P[x]). To prove this let c(x) and a(x) be any
element of R[x] with c(x)&C(P[x]). Then there is a finite subset x’ of
x such that a(x), c(x) R [x']. By Proposition 2.1 and Corollary 2.5, there
exist b(x), d(x) in R[x'] and d(x)eC(P[x']) such that a(x)d(x)=c(x) b(x).
Hence R [x] satisfies the right Ore condition with respect to C(P[x]) and
R [X]pt= U, R [X]pt;. The other Ore condition is shown to hold by a
symmetric proof.

(2) Let P' be the unique maximal ideal of Rp and let X' be any finite
subset of x. Since R[x']pe1 is a noetherian, local and Asano order, we
obtain that P[x'] R[x']pre1=R[X]pte1 P[X'] and that it is the Jacobson radical
of R[x']pz1. Let P'=pRp=Rpp for some regular element p in P. Then we
have pR[X']pro1=P[x'] R[x 1ptz1 = R[X ] pre1 p, because R[X']pro1=(Rp[X'])p to1-
Put P’ =P[x]R[x]rw1;. Then we obtain that P’ =pR[x]prn= U, (PR[X" ] ptz1)
= U(R[x"]pte1 ) = R[X]pta1 p = R[X] pz1 P[x], where x” ranges over all finite
subsets of x. Hence P” is an ideal of R [Xx]pn and is invertible. It is evi-
dent that P" N R [x]pra=P[x]. Since R [x]/P[x]=R/P[x] and R [X]pra/P"
is the quotient ring of R [x]/P [x], it follows that R [x]p,i/P” is a simple,
artinian ring. So P” is a maxima ideal of R[x]py;. To prove that P is the
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Jacobson radical of R [X]pp3, let V be any maximal right ideal of R [x]pp.
Assume that V2 P”. Then R [x]py=V+P". Write l=v+p, where veV
and p' €P". There is a finite subset X" of x such that vER [x"]p, 1 and
P €P[x"] R[x"]pte;- Then v is a unit in R [x"]p,; and so it is a unit in
R[x]ptz;. Thus we get V=R][X]pr.1, which is a contradiction. Hence VD P”
and so P" is the Jacobson radical of R [x]pp3;. Let I be any essential right
ideal of R[x]prs. Then there is a finite subset x’ of x such that IN R[x']pwn
is an essential right ideal of R [x']py3. It follows that INR[x]pm12
(P[x'] R[x] pi»1)" for some natural number n. Hence we have ID P’ this
implies that the essential right ideals of R [x]pr; satisfies the maximum con-
dition, because R [x]pp1/P’ is artinian and P” is invertible. Further, since
dim R [x]pr,; is finite, R [x]pr, is right noetherian. Similarly, it is left noe-
therian. Hence R [X]pr; is @ noetherian, local and Asano order in Q(R[x])

by [Proposition 1.3 of [8].

Let I be a right R|[x]-ideal. Then ¢IC]I for some regular element g
in Q(R[x]). There is a finite subset x; of x such that ¢g&Q(R [x}]) and
INQ(R[x)]) is a right R [x}]-ideal, because I=U(INQ(R[x]), where x'
runs over all finite subsets of x. For any finite subset x’ of x with x” Dx},
INQ(R[x"]) is a right R[x"]-ideal. Thus we have I=U(INQ(R[X])).
Here x’ ranges over all finite subsets of x such that each INQ(R[x']) is
a right R[x']-ideal. We define I=U(INQ(R[x])*. Clearly ICI and es-
pecially, for right v-ideals, we have

LEMMA 3.2. Let R be a maximal order in Q and let I be a right
v-ideal of Q(R[x]). Then I=1.

PrROOF. Let ¢ be a unit in Q(R [x]). It is evident that cR [x]=cR [x].
So the lemma immediately follows from Proposition 4.1 of [10].

LEMMA 3.3. Let R be a maximal order in Q and let P be a proper
ideal of R|x]). Then P is a prime v-ideal if and only if P=P [x—X],
where X' is a finite subset of x and P’ is a prime v-ideal of R[X].

Proor. The sufficiency is clear from [Lemma 1.4. Assume that P is
a prime v-ideal. There is a finite subset x' of x such that PN R[x] is
a non-zero. It is a prime ideal of R[x']. If (PN R[xX'])*=R[x'], then P=
R [x] by [Lemma 3.2, which is a contradiction. Hence (PN R[X'])*%R [x']
so that PNR[x'] is a prime v-ideal of R[x'] by Proposition 1.7 of [2].
Thus (PN R [x']) [x—xXx'] is a prime v-ideal of R [x] contained in P. There-
fore P=(PNR[x']) [x—x'], as desired.

LemMA 3.4. Let R be a Krull order in Q. Then the integral wv-
tdeals of R |[x] satisfies the maximum condition.
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Proor. Let Py, ---, P; be any prime v-ideals of R[x] and let n,, ---, n,
be any natural numbers. Then we obtain by the same as in Asano orders
that the integral v-ideals containing (Pp:---Pl)* are the ideals (P"-.-Prs)*
only (0<m;<m;. So it suffices to prove that any integral v-ideal of R [x]
contains an integral v-ideal of such forms. To prove this let A be any
proper integral v-ideal of R [x]. There exists a finite subset X of x such
that (AN R [x'])* is a proper integral v-ideal of R[x']. Write (AN R [x'])*=
(Pp---Pro*, where P, are prime v-ideals of R[x]. By Lemmas [.4 and
B.2, we get AD(ANR[X]* [x—x] = (Pp---P[x—x]* = (P, [x—=x])™ -
(P [x—X'])")*. Each P;[x—x'] is a prime v-ideal of R[x] by Lemma 3. 3.

LemMA 3.5. Let R be a Krull order in Q. Then S(R[x])= U ., S(R[x']),
where X' ranges over all finite subsets of X', it is an essential overring of
R[x] and is a simple ring.

Proor. Let A be any non-zero ideal of R[x'], where X' is a finite
subset of x. Then we have A 1C A '[x—x']=(A [x—X'])! and A [x—x]
is an ideal of R[x]. Hence S(R[x])2 U, S(R[x']). Conversely let ¢ be any
element of S(R[x]). There is an ideal B of R[x] such that ¢gBC R[x]. Since
B71"1=B"1 we may assume that B is a v-ideal. Write B=(P/...PM)¥,
where P; are prime v-ideals of R[x]. There are finite subsets x’, x/ (1<i<¢)
of x and prime v-ideals P/ of R [x]] such that ¢&Q(R[x']), P;=P][x—x]]
by Lemma 3.3 We set x"=x'Ux|{U---Ux/, and P/=P![x" —x/], which is
a prime v-ideal of R[X"]. It follows that g€ Q(R[x"']) and P;=P/[x—x"].
Hence we have B=((P/'[x—x"])"--(P)[x—X"])%)* =((P{/™...P/")[x—x"])*
and so B7t=(P{™.-- P/™)"![x —x"]. Hence ge&(P/™---P/")™[x—x"]N
Q(R[x'])=(P/™..-P/'")~1 which implies that S(R [x])C U, S(R[x']). Hence
S(R[x])=U. S(R[x']). To prove that S(R[x]) is an essential overring of
R [x], let C be any non-zero ideal of R[x]. Then there is a finite subset
x' of x such that 0CNR[x']. By Proposition 2.1 and Corollary 2.5,
(CNRI[X]) S(R[x'])=S(R[x']) and hence CS(R [x])=S(R[x]) and, by sym-
metry, S(R[x]) C=S(R[x]). Hence S(R[x]) is an essential overring of R[x]
and is a simple ring by LCemma 2. 2.

LemmMmA 3.6. Let R be a Krull order in Q and let P be a prime v-
ideal of R[x]. Then R[x]=P'NR|[x]p.

ProoF. Clearly R[x]CP'NR[x]p. Since P'NR[x]p is an R][zx]-
ideal contained in P~', we get, by Lemma 2 of [12], the following :

P=I(\R[x]pC P~'oPo(P7 R[x]»)* = P~1o( P(P~1N R[x]))*

CP-1o(PP'0 PR[x]p)* CP-1o(R[x] N PR [x]p)* = PP =R[x] .
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Hence R [x]=P'NR [x]p.

THEOREM 3.7. Let R be a Krull order in Q. Then

(1) RIx]=NRI[x]sNS(R [x]), where P ranges over all prime v-ideals
of R[x]. RI[x]p is a noetherian, local, Asano order. S(R[x]) is a simple
ring and is an essential overring of R[x].

(2) R|x] satisfies the condition (K 3).

Proor. (1) Let P be a prime v-ideal of R[x]. By Lemma 3.3, there
exist a finite subset X' of x and a prime v-ideal P’ of R [x'] such that P=
P’ [x—x']. Hence, by Corollary 2.5 and Lemma 3.1, R[x] satisfies the
Ore condition with respect to C(P) and R [x]p is a noetherian, local, Asano
order. The Asano overring S(R [x]) is a simple ring and essential overring
of R[x] by Lemma 3.5. It remains to prove that R[x]= N R[x]»NS(R[x]).
But, by using Lemmas and B.6, the proof of this proceeds just like
that of Theorem 3.1 of [8].

(2) Let V(P) be the set of all prime v-ideals of R[x] and, for any
finite subset X' of x, let V(P,) be the set of all prime v-ideals P such that
P=P' [x—x'] for some prime v-ideal P’ of R[x']. If c is a regular element
of R [x], then there is a finite subset x, of x such that c€R[x,]. By Cor-
ollary 2.5, cR[x,]p,# R[x;]p, for only finitely many prime v-ideals P, of R[x/]
and so, by Lemma 3.1, ¢R[x]p#R [x]r for only finitely many P in V(P,).
Hence it suffices to prove that c¢R[x]p=R[x]p for all P in V(P)—V(P,).
To prove this let P be any element in V(P)—V(P,). There are a finite
subset X’ of x and a prime v-ideal P’ of R[x'] such that P=P'[x—Xx'] by
Lemma 3.3, i.e, PeV(P,). Since PeV(P,,) and P& V(P,), we may
assume that x' is a minimal element of the set {x'|x'=x, and PV (P,)}.
Let x be any element in X’ but not in x, and let x”"=x"—{xz}. In case
x'’ =x,, we consider the following;

QLST) CQU<T> [«]
T'=R[x]CT[z] (=R[x]).

In case x'=x, we consider the following ;
=+ g5

Q<5[xo]>c QU(T> CQL(JTHx]
R[x]) cT=R[x"]1cT[x] (=R[x]).

In both cases, there is a prime ideal Q' of Q(T)[x] such that P'=Q'N
R[x] and R[x']»=Q(T)[z]¢r by the proof of Theorem 2.4. Since c is
a unit in Q(R[x,]), it is a unit in R[x']». Hence, since R[x],2R[x]r, we
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have cR [x]p=R [x]p, as desired. By a symmetric proof, we have R[x]pc+#+
R [x]p for only finitely many P in V(P).

4. Polynomial and Formal Power Series Extensions

In this section, D will denote a commutative Krull domain with field
of quotients K. As is well known, D [x] and D [[x]] are both Krull domains
(cf [6, p. 532] and Theorem 2.1 of [5]). Here the formal power series
ring D [[x]] is defined to be the union of the rings D [[x']], where X’ ranges
over all finite subsets of x. We denote the fields of quotients of D [x] and
D [[x]] by K(x) and K((x)), respectively.

Let 3 be a central simple K-algebra with finite dimension over K and
let 4 be a D-order in 3 in the sense of [4]. Then Y(x)=YXxK(x) is a
central simple K(x)-algebra and A [x] (ZAX),D [x]) is a D [x]-order in ¥ (x).
So, from Proposition 4.2 of and [Proposition 1.3, we have.

ProprosiTiON 4.1. Let X be a central simple K-algebra and let A be
a maximal D-order in ¥. Then A[x] is a maximal D [x]-order in Y (x).

In case x is a finite set, this result was obtained by Fossum (cf. Theorem

1.11 of [4]).

LEmMA 4.2, Let X be a central simple K-algebra and let A be a
D-order in Y. Then

(1) The quotient ring Q(A[[x]]) of Allx]] is A[[*]1Qpirm K((x)) and
is a simple artinian ring with finite dimension over K((x)).

(2) QI[x]]) is central as a K((x))-algebra.

(3) Allx]] is a D|[x]]-order in Q(4[[x]]).

Proor. First we note that 4 [[x]] is a prime ring and that each non-
zero element of D [[x]] is regular in 4 [[x]].

(1) By Proposition 1.1 of [4], there exists a finitely generated D-
free module F in Y such that ACF. Then F[[x]] is a finitely generated
D [[x]]-free module and so F[[x]]X)pi11 K((x)) is a finite dimensional K((x))-
space. Thus A [[x]]&Xpu.n K((x)) is also a finite dimensional K((x))-space,
which implies that it is an artinian ring. Further, /4 [[x]]X b1 K((x)) is
an essential extension of 4 [[x]] as D [[x]]-modules (hence, as 4[[x]]-modules).
It follows that A[[x]]X)p.11 K((x)) is a simple artinian ring and is a quotient
ring of A[[x]], since 4[[x]] is a prime ring.

(2) Since A[[x]] is D [[x]]-torsion-free, we may assume that

A[[x]|® prean K (1)) = A [x]] K ((x)

as in [3, p. 1045], and hence it contains 3. let {f;} ¢ be any element of
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A[[x]]Rpin K((x)), where {fi}i2,=4[[x']] for some finite subset X' ={xy, -+, z,}
of x, each f;E4[x'] and f; is either O or a form of degree 7. Suppose that
{fi} ¢ is an element in the center of A[[x]]®K((x)) and that {f}q+0.
Then o({fi} 9 =({fi} 9 ¢ for every o&2. Since {ofi} = {fio} ¢, we get
ofi=f;0 for all i. Write fi=ayal --als+---+ayafe---"s, where nj+--
+n;=1t for j=1,.--,¢ and a;;E4. Then a;;0=0a;; implies that a;; belongs
to the center of 4 and so a;;&D. Hence {f;} ¢g=K((x)). This implies that
Q(A[[x]]) is central as K((x))-algebras.

(3) It only remains to prove that each element of /A [[x]] is integral
over D[[x]]. To prove this let p be a minimal prime ideal of D [[x]]. Then
A[[x]]1XpenD [[x]], S F [[x]]&preen D [[x]]p, where F is a finitely generated
D-free module in Y such that FD/, the latter is finitely generated as D [[x]],-
modules and so is the former. Hence each element of 4 [[x]]&X)pinD [[x]]p
is integral over D [[x]], by Theorem 8.6 of [15]. Hence each element of
A [[x]] is integral over D [[x]] by Theorem 1.14 of [15], because 4 [[x]]S N
A [[x]1Q i1 D [[x]], and D [[x]]= N D [[x]],, where p ranges over all minimal
prime ideals of D [[x]].

ProprosITION 4.3. Let X be a central simple K-algebra and let A be
a maximal D-order in Y. Then A[[x]] is a maximal D [[x]]-order in

A [[x]1 Qe K ((x)).

Proor. By Proposition 4. 2 of and [Lemma 4. 2, it suffices to prove
that 4[[x]] is a maximal order in Q(4[[x]]) as rings. Firstly we shall
prove this in case x={x}. Let A be any non-zero ideal of A[[x]] and ¢
be any element of O,(A). By the same way as Lemma 2' of [17], there
is a regular element c(x)=c,x"+cpy12” 1+ -+ (c,: regular) of A[[z]] such
that c(z)g=A(x)c4[[z]]. We get c(x)'=x"d(x) for some d(x)=2 [[x]]
by the method of [6, p. 7]. Thus g=c(x)"'A(x) =2 "d(x) A(x) and put e(x)=
dx) A(x)=e+eyx+---+e, 2" +---€3 [[z]]. We set A;={a;|a;x*+a;, 2+
.- A} U {0} for non-negative integers i and set A*=U;A;. Assume that

Ay=A,=---=A;,_1=0 and A;#0. Since A; is an ideal of /4, there is a re-
gular element a; in A; by Goldie’s theorem and is an element a(x)€A
such that a(x)=a;x*+a; 21+ ---. Then we get that ga(x)=x"e(x) a(x)
A and e(x)a(x)=x*A. Hence ¢,=e;=---=¢,_,=0, because (z"A),=---

=(x"A)pyi-1=0 and a; is regular. Hence ¢g=zx"e(x)e2 [[x]], and write
g=q+qx+-+qg,x*+---, where ¢;&2. For any non-zero element &, of
A*, there exists b(x)=byx*+ by, 2 +--- in A. Then ¢,b,€ A*, because
gbh(x)€ A and so ¢, O,(A*) =A. Assume that ¢+, ¢;-; €4 and put
g;(x)=¢q(x)—(q@+qx+-++q;12’7Y). Then since g;(x) ACq(x) A—(g+aqzx
+- g x) ACA, it follows that g;&4 by the same way as the above.
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Hence g A [[z]] by an induction. Thus O,(A)=4{[z]] and, by symmetry,
O,(A)=A4[[z]]. Hence A[[z]] is a maximal order in Q(A[[x]]). In particular
if x is finite, then 4 [[x]] is a maximal order in Q(4[[x]]). Assume that x
is infinite and let B be any non-zero ideal of A[[x]]. If g is any element
of Oy(B), then there exists a finite subset X' of x such that BN A[[x]] is
non-zero and ¢=Q(A[[x']]). It follows that ¢(BNA[[X'])SBNQ(A[[xX']]) =
BN QUIXINNAlx']]=BNA[[x']]. Hence g€O,(BNA[[x']])=4[[x']] and
thus O,(B)=4][[x]]. By symmetric proof, we get O,(B)=/1[[x]] and therefore
A[[x]] 1s a maximal order in Q(A[[x]]).

ReMARK. (1) In case x={x} and D is a regular local ring, the pro-
position was proved by Ramras [14].

(2) Let Y be a central simple K-algebra and let 4 be a D-order in
Y. If 4is a Krull order in %, then 4 [x] and 4[[x]] are both Krull orders
by Proposition 4.2 of and Propositions 4.1 and 4. 3.

(3) Let R be a noetherian prime Goldie ring with quotient ring Q.
By [17], R[[«]] is also a noetherian prime Goldie ring with quotient ring
Q(R[[x]]). The same proof as Proposition 4.3 gives that if R is a maximal
order in Q, then R[[x]] is a maximal order in Q(R [[]]).
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