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Q-projective transformations of an almost
quaternion manifold : II

By Shigeyoshi FUJIMURA
(Received May 7, 1979)

Continued to the previous paper ([8]), we shall study infinitesimal Q-
projective transformations on the quaternion K\"ahlerian manifo1d^{3)} and prove
the following theorems:

THEOREM 4. If a complete quaternion K\"ahlerian manifold (M, g, V)
voith positive scalar curvature S admits an infifinitesimal non-ajfine Q-
projective transformation, (M, g, V) is isometric to the quaternion projective
space of constant Q-sectional curvature S/4m(m+2) .

THEOREM 5. In a compact quaternion K\"ahlerian manifold, each vector
fifield which satisfifies (3. 4) is an infifinitesimal Q-projective transformation.

Concerning infinitesimal projective transformations of a Riemannian
manifold or infinitesimal holomorphically projective transformations of a
K\"ahlerian manifold, we have known interesting analogous results, and we
can see them in [9], [10], [11], and etc..

\S 5. Proof of Theorem 4.

From (3. 4), \cdots , (3. 7) and Ricci’s formula, we get

(5. 1) 4 (m+1)\nabla_{j}\eta_{i}=\nabla_{j}(\nabla_{i}\nabla_{h}X^{h}-\nabla_{h}\nabla_{i}X^{h})+\nabla_{j}\nabla_{h}\nabla_{i}X^{h}

-\nabla_{h}\nabla_{j}\nabla_{i}X^{h}+\nabla_{h}\nabla_{j}\nabla_{i}X^{h}

=-S(\nabla_{j}X_{i}+\nabla_{i}X_{j})/4m+2\nabla_{j}\eta_{i}-2\Lambda_{ji}^{kh}\nabla_{k}\eta_{h}

Transvecting (5. 1) by \Lambda_{fg}^{ji} and substituting it into (5. 1), we have

(5. 2) \nabla_{j}\eta_{i}=S\{\Lambda_{ji}^{kh}(\nabla_{k}X_{h}+\nabla_{h}X_{k})

-(2m+3)(\nabla_{j}X_{i}+\nabla_{i}X_{j})\}/32m^{2}(m+2)

where indices f and g run over the range \{1, \cdots, 4m\} . On the other hand,
from (1. 1) and (3. 1), we have

3) We assume that the dimension 4m of M\geqq 8 .
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(5. 3)

-

\Lambda_{ji}^{kh}g_{kh}=3g_{ji} ,

\Lambda_{ji}^{kh}g_{hl}=-\Lambda_{jl}^{kh}g_{hi} ,
\Lambda_{ji}^{kh}g_{hl}\Lambda_{kg}^{fl}=-3I_{j}^{f}g_{gi}+2\Lambda_{jg}^{fh}g_{hi\prime}.

\backslash \Lambda_{ji}^{kh}g_{hl}\Lambda_{gk}^{fl}=\Lambda_{gi}^{fh}g_{jh}

Covariantly derivating (5. 2) and using (3. 4), (3. 5) and (5. 3), we get

(5. 4) \nabla_{k}\nabla_{j}\eta_{i}=-S(2g_{ji}\eta_{k}+g_{kj}\eta_{i}+g_{ki}\eta_{j}

-\Lambda_{jk}^{lh}g_{ih}\eta_{l}-\Lambda_{ik}^{lh}g_{jh}\eta_{l})/16m(m+2)(

\eta_{h} being a gradient 1-form, from (5.4) and Theorem D, we can complete
the proof of Theorem 4.

Combining Theorems 3 and 4, we can obtain

COROLLARY 1. If a compact quaternion K\"ahlerian manifold (M, g, V)

admits an infifinitesimal non-ajfine Q-projective transformation, its scalar
curvature S is positive and (M, g, V) is isometric to the quaternion projective
space of constant Q-sectional curvature S/4m(m+2) .

\S 6. Proof of Theorem 5.

We call a vector field X to be a Q-projective vector field if X satisfies
(3. 4). From (3. 4), \cdots , (3. 6) and (5. 3), we have

(6. 1) 3 m\{\nabla^{h}\nabla_{h}X^{j}+SX^{j}/4(m+2)\}-\Lambda^{kjih}\nabla_{k}\nabla_{i}X_{h}

=-3SX^{j}/2(m+2)+\Lambda^{kjih}R_{lkij}X^{l}

because \Lambda^{kjih}\Lambda_{ki}^{lf}g_{fh}=12mg^{jl} and \Lambda^{kjih}\Lambda_{ik}^{lf}g_{fh}=-3g^{jl} , where \Lambda^{kjih}=g^{kg}g^{if}\Lambda_{gf}^{jh} .
On the other hand, from (3. 3) and Ricci’s formula, we have

(6. 2) R_{kjl}^{h}J_{p,i}\iota-R_{kji}^{l}J_{p,l}^{h}=\gamma_{pq,kj}J_{q,i}^{h}

where \beta_{pq,j} are components of \beta_{pq} and we put

\gamma_{pq,kj}+\gamma_{qp,kj}=0 ,
\gamma_{12,kj}=\nabla_{k}\beta_{12,j}-\nabla_{j}\beta_{12,k}+\beta_{31,j}\beta_{23,k}-\beta_{31,k}\beta_{23,j} ,

\gamma_{31,kj}=\nabla_{k}\beta_{31,j}-\nabla_{j}\beta_{31,k}+\beta_{23,j}\beta_{12,k}-\beta_{23,k}\beta_{12,j:}

\gamma_{23,kj}=\nabla_{k}\beta_{23,j}-\nabla_{j}\beta_{23,k}+\beta_{12,j}\beta_{31,k}-\beta_{12,k}\beta_{31,j}
\{

Transvecting the three equations of (6. 2) with J_{1,hg}, J_{2,hg} and J_{3,hg} respectively,
we get

(6. 3) \{

-R_{kjlh}J_{1,i}^{\iota}J_{1,g}h+R_{kjig}=\gamma_{12,kj}J_{3,ig}+\gamma_{31,kj}J_{2,ig} ,

-R_{kjlh}J_{2,i}^{l}J_{2,g}^{h}+R_{kjig}=\gamma_{23,kj}J_{1,ig}+\gamma_{12,kj}J_{3,iq} ,

-R_{kjlh}J_{3,i}lJ_{3,g}h+R_{kjig}=\gamma_{31,kj}J_{2,ig}+\gamma_{23,kj}J_{1,ig}
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where J_{p,hg}=J_{p,h}jg_{jg} . Transvecting (6. 3)_{1} with J_{2}^{ig}, , (6. 3)_{2} with J_{3}^{ig}, and (6. 3)_{3}

with J_{1},ig respectively, we obtain

(6. 4) \{

R_{kjlh}J_{2},lh=2m\gamma_{31,kj:}

R_{kjlh}J_{3},lh=2m\gamma_{12,kj}’.
R_{kjlh}J_{1},lh=2m\gamma_{23,kj}

where J_{p}^{ig},=J_{p,f}^{g}g^{fi} . And we have
R_{kjih}J_{p},ji=-R_{khji}\mathcal{J}_{p},ji ,

from which, transvecting each equation of (6. 3) with g^{ji} , we obtain

R_{kg}=-m\gamma_{23,kj}J_{1,g}^{j}-\gamma_{31,kj}J_{2,g}^{j}-\gamma_{12,kj}J_{3,g}^{j} .

R_{kg}=-\gamma_{23,kj}J_{1,g}^{j}-m\gamma_{31,kj}J_{2,g}^{j}-\gamma_{12,kj}J_{3,g}^{j} .
R_{kg}=-\gamma_{23,kj}J_{1,g}^{j}-\gamma_{31,kj}J_{2,g}^{j}-m\gamma_{12,kj}J_{3,g}^{j}

Therefore, we have

(6. 5)
1

(\gamma_{23,kj}=R_{ki}J_{1,j}i/(m+2) :

\gamma_{31,kj}=R_{ki}J_{2,j}i/(m+2) ,

\gamma_{12,kj}=R_{ki}J_{3,j}i/(m+2)

(cf., (2. 9) and (2. 13) in [3]). From (6. 4) and (6. 5), we obtain

R_{lkih}J_{p}^{ih},=SJ_{p,kl}/2(m+2) ,

from which, we get

(6. 6) \Lambda^{kjih}R_{lkih}=3SI_{l}^{j}/2(m+2)

Thus, by virtue of (6. 1), (6. 6), Theorem 2 and the following Theorem E,

we can prove Theorem 5:
THEOREM E([4]). In a compact quaternion K\"ahlerian manifold, a

vector fifield X is an infifinitesimal Q-transformation if and only if X satisfifies
3m\{\nabla^{h}\nabla_{h}X^{j}+SX^{j}/4(m+2)\}-\Lambda^{kjih}\nabla_{k}\nabla_{i}X_{h}=0

COROLLARY 2. In a complete quaternion K\"ahlerian manifold with
positive scalar curvature, each Q-projective vector fifield is an infifinitesimal
Q-projective transformation.

COROLLARY 3. If a complete quaternion K\"ahlerian manifold (M, g, V)

with positive scalar curvature S admits a non-ajfine Q-projective vector

fifield, (M, g, V) is isometric to the quaternion projective space of constant
Q-sectional curvature S/4m(m+2) .
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COROLLARY 4. If a compact quaternion K\"ahlerian manifold (M, g, V)
with scalar curvature S admits a non-affine Q-projective vector fifield, S is
positive and (M, g, V) is isometric to the quaternion projective space of con-
stant Q-sectional curvature S/4m(m+2) .
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