Note on automorphisms in separable extension of non commutative ring

By Kozo Sugano (Received April 19, 1979)

Preliminaries

All definitions and terminologies in this paper are the same as those in the same author's papers [8], [11] and [13]. So Λ shall be a ring with an identity 1, Γ a subring of Λ which contains 1, C the center of Λ , C'the center of Γ and $\Delta = V_{\Lambda}(\Gamma) = \{x \in \Lambda | xr = rx \text{ for all } r \in \Gamma\}$. Λ is an Hseparable extension of Γ if $\Lambda \bigotimes_{\Gamma} \Lambda$ is a $\Lambda - \Lambda$ -direct summand of some finite direct sum of copies of Λ . In this case Λ is a separable extension of Γ , i. e., map π of $\Lambda \bigotimes_{\Gamma} \Lambda$ to Λ such that $\pi(x \bigotimes y) = xy$, for $x, y \in \Lambda$, splits as $\Lambda - \Lambda$ -map. As for the fundamental properties of H-separable extension, see [4], [5] and [12]. In [11] and [13] the author showed that in case Γ is a simple artinean ring, Λ is an H-separable extension of Γ if and only if Λ is an inner Galois extension of Γ . It is well known that in this case every automorphism of Λ which fixes all elements of Γ is an inner automorphism. In this paper we will generalize this theorem to the case of ordinal Hseparable extensions (Theorem 2). We will also show that every G-Galois extension such that all elements of G are inner automorphisms is an Hseparable extension (Theorem 3). For a two-sided Λ -module M, we denote C-submodule $\{m \in M \mid xm = mx \text{ for all } x \in A\}$ by M^A . Then, A is H-separable over Γ if and only if $\Delta(x)_{\alpha}M^{\alpha} \cong M^{\Gamma}$ by $(d(x)_{m} \rightarrow dm)$ (see Theorem 1.2 [8]) for every two sided Λ -module M. We will use this theorem very often throughout this paper. For a ring Λ we denote the Jacobson radical of Λ by $J(\Lambda)$. We will also study in § 3 in what case $J(\Lambda) = \Lambda J(\Gamma) = J(\Gamma) \Lambda$ and $J(\Gamma) = J(\Lambda) \cap \Gamma$ holds when Λ is H-separable over Γ .

1. Automorphisms in H-separable extensions.

The first result is a supplement of Theorem 2 [5].

Theorem 1. Let Λ be an H-separable extension of Γ . Then every ring endomorphism of Λ which fixes all elements of Γ is an automorphism and fixes all elements of $V_{\Lambda}(V_{\Lambda}(\Gamma))$.

PROOF. Let σ be an arbitrary ring endomorphism of Λ with $\sigma(r)=r$ for all $r \in \Gamma$. Then, $\sigma \in \text{Hom}(_{\Gamma}\Lambda_{\Gamma},_{\Gamma}\Lambda_{\Gamma}) \cong \Delta \otimes_{C}\Delta^{0}$ (see (1.5) [12]). Hence there exists $\sum d_{i} \otimes e_{i}^{0} \in \Delta \otimes_{C}\Delta^{0}$ such that $\sigma(x) = \sum d_{i} x e_{i}$ for all $x \in \Lambda$. Then for any $r \in V_{\Lambda}(\Delta)$, $\sigma(r) = r \sum d_{i} e_{i} = r$, since $\sigma(1) = \sum d_{i} e_{i} = 1$. Thus σ fixes all elements of $V_{\Lambda}(\Delta)$. Then σ fixes all elements of C, since $C \subset V_{\Lambda}(\Delta)$. Then by Theorem 2 (b) [5], σ is an automorphism.

Theorem 2. Let Λ be an H-separable extension of Γ , and let $\bar{\Lambda} = \Lambda/J(\Lambda)$, $\bar{\Gamma} = \Gamma/J(\Lambda) \cap \Gamma$ and $\bar{\Delta} = V_{\bar{\Lambda}}(\bar{\Gamma})$. Then if Λ is artinean, and if Δ is mapped onto $\bar{\Delta}$ by the natural map, every automorphism of Λ which fixes all elements of Γ is an inner automorphism.

In order to prove this theorem we need the following

PROPOSITION 1. Let Λ be a separable extension of Γ , and α be an ideal of Λ which is contained in $J(\Lambda)$. Let σ be an automorphism of Λ which fixes all elements of Γ . Then if σ induces the identity automorphism of Λ , $\bar{\sigma}(\bar{x}) = \bar{\sigma}(x)$ for all $x \in \Lambda$, σ is an inner automorphism, where $\bar{\Lambda} = \Lambda/\alpha$ and $\bar{x} = x + \alpha$ in $\bar{\Lambda}$, for $x \in \Lambda$.

PROOF. Let $\delta(x) = \sigma(x) - x$ for $x \in \Lambda$. Then δ is a Γ -derivation of Λ to a $\Lambda - \Lambda$ -module \mathfrak{a} , where the right Λ -module structure of \mathfrak{a} is defined by $a \cdot x = a\sigma(x)$, for $a \in \mathfrak{a}$ and $x \in \Lambda$. Then by Satz 4.2 [2], δ is an inner derivation, and there exists $a \in \mathfrak{a}$ such that $\sigma(x) - x = xa - a\sigma(x)$ ($= \delta(x)$), for all $x \in \Lambda$. Hence $(1+a)\sigma(x) = x(1+a)$. But since $a \in J(\Lambda)$, 1+a is a unit. Therefore σ is an inner automorphism.

PROPOSITION 2. Let Λ be a two sided simple ring (not necessarily artinean) and an H-separable extension of some subring Γ . Then every automorphism of Λ which fixes all elements of Γ is an inner automorphism.

PROOF. Let σ an automorphism of Λ with $\sigma(x)=x$ for all $x\in \Lambda$. Let Λ_{σ} be a $\Lambda-\Lambda$ -bimodule defined by the following way; $\Lambda_{\sigma}=\Lambda$ as left Λ -module, but right Λ -module structure of Λ_{σ} is defined by $x \cdot y = x \sigma(y)$, for $x, y \in \Lambda$. Let $J_{\sigma} = \{a \in \Lambda | xa = a\sigma(x) \text{ for any } x \in \Lambda\}$. Then clearly $(\Lambda_{\sigma})^{\Lambda} = J_{\sigma} \subseteq \Lambda$ and $(\Lambda_{\sigma})^{\Gamma} = \Lambda$. On the other hand $\Lambda = (\Lambda_{\sigma})^{\Gamma} \cong \Lambda \otimes_{C} (\Lambda_{\sigma})^{\Lambda} = \Lambda \otimes_{C} J_{\sigma}$, since Λ is an Λ -separable extension of Γ . Then, since Γ is a field, $[J_{\sigma}:C]=1$, and $J_{\sigma}=Cu_{\sigma}$ for some $0 \neq u_{\sigma} \in J_{\sigma}$. Then, clearly Λu_{σ} is a two sided ideal of a simple ring Λ . Therefore, $\Lambda u_{\sigma} = \Lambda$, and we see that u_{σ} is an unit of Λ . Since $u_{\sigma} \in J_{\sigma}$, we have $\sigma(x) = u_{\sigma}^{-1} xu_{\sigma}$, for all $x \in \Lambda$.

PROOF of THEOREM 2. Let $\bar{\Gamma}' = V_{\bar{\Lambda}}(\bar{\Delta})$ and \bar{C} be the center of $\bar{\Lambda}$. By Proposition 3. 2 [13] and Theorem 1. 3' [8], $\bar{\Lambda}$ is an H-separable extension of both $\bar{\Gamma}$ and $\bar{\Gamma}'$. Since $\sigma(J(\Lambda)) = J(\Lambda)$, σ induces an automorphism $\bar{\sigma}$ of $\bar{\Lambda}$ which fixes all elements of $\bar{\Gamma}$. Then $\bar{\sigma}$ fixes all elements of $\bar{\Gamma}'$ by Theorem

Since $\bar{\Gamma}' \supseteq \bar{C}$, all central idempotents of $\bar{\Lambda}$ are also central idempotents of $\bar{\Gamma}'$. Hence if $\bar{\Lambda} = \bar{\Lambda}_1 \oplus \bar{\Lambda}_2 \oplus \cdots \oplus \bar{\Lambda}_2$ is a decomposition of $\bar{\Lambda}$ into simple rings, and if $\bar{1} = \bar{e}_1 + \bar{e}_2 + \cdots + \bar{e}_n$, $\bar{\Lambda}_i = \bar{\Lambda}\bar{e}_i$ with \bar{e}_i primitive idempotents of the center of \bar{I} , then $\bar{\Gamma}'_1 \oplus \bar{\Gamma}'_2 \oplus \cdots \oplus \bar{\Gamma}'_n = \bar{\Gamma}'$ with $\bar{\Gamma}'_i = \bar{\Gamma}' \bar{e}_i$ as ring, and $\bar{\Gamma}'_i$ is a subring of $\bar{\Lambda}_i$ for each i. Then clearly each $\bar{\Lambda}_i$ is an H-separable extension of $\bar{\Gamma}_i^{\prime}$ and $\bar{\sigma}_i$, the restriction of $\bar{\sigma}$ to $\bar{\Lambda}_i$, is an automorphism of $\bar{\Lambda}_i$ which fixes all elements of $\bar{\Gamma}_i$, because $\bar{\sigma}(\bar{e}_i) = \bar{e}_i$ for each i. Therefore, each $\bar{\sigma}_i$ is an inner automorphism of $\bar{\Lambda}_i$ induced by a unit of $V_{\bar{\Lambda}_i}(\bar{\Gamma}_i')$. Then $\bar{\sigma}$ is an inner automorphism of \bar{A} induced by a unit of $\bar{A} = \sum_{i=1}^{n} V_{\bar{A}_i}(\bar{\Gamma}'_i)$. Let \bar{d} be such a unit of \bar{d} , i. e., $\bar{\sigma}(\bar{x}) = \bar{d}^{-1}\bar{x}\bar{d}$, for all $\bar{x} \in \bar{A}$, and d be a representative of \bar{d} in Λ . By assumption we can choose d from Δ . Since \bar{d} is a unit in $\bar{\Lambda}$, we have dd'=1+m for some $d'\in \mathcal{A}$ and $m\in J(\mathcal{A})$. But 1+m is a unit. Hence d is also a unit in Δ . Let τ be an automorphism of Λ defined by $\tau(x) = d\sigma(x) d^{-1}$ for all $x \in \Lambda$. Then τ fixes all elements of Γ since $d \in A$, and we see that $\bar{\tau}(\bar{x}) = \text{identity on } \bar{\Lambda}$. Then by Prop. 1, τ is an inner automorphism, and σ is also an inner automorphism of Λ .

2. Relation with Galois extensions

Let Λ be a ring and G a finite group of automorphisms of Λ , $\Lambda^G = \{x \in \Lambda | \sigma(x) = x \text{ for all } \sigma \in G\}$. Let $S = \Delta(\Lambda : G)$ be the trivial crossed product of Λ and G, that is, $S = \sum_{\sigma \in G} {}^{\oplus} \Lambda U_{\sigma}$, a free Λ -module with a free basis $\{U_{\sigma}\}_{\sigma \in G}$, where the product is defied by $\lambda U_{\sigma} \gamma U_{\tau} = \lambda \sigma(\gamma) U_{\sigma\tau}$ for λ , $\gamma \in \Lambda$, σ , $\tau \in G$. Then there exists a ring homomorphism

$$j: \Delta(\Lambda: G) \longrightarrow \operatorname{Hom}(\Lambda_{\Gamma}, \Lambda_{\Gamma}) \qquad j(\lambda U_{\sigma})(x) = \lambda \sigma(x)$$

for λ , $x \in \Lambda$, $\sigma \in G$. Now, following T. Kanzaki [6], we say that Λ is a G-Galois extension of Γ , if (1) $\Gamma = \Lambda^G$ (2) Λ is right Γ -finitely generated projective, and (3) map j is an isomorphism.

Lemma 1. Let Λ be a G-Galois extension of Γ . Then, we have

- (1) There exists $c \in C$ with $t_G(c) = 1$ if and only if ${}_{\Gamma}\Gamma_{\Gamma} < \bigoplus_{\Gamma} \Lambda_{\Gamma}$, where $t_G(x) = \sum_{\sigma \in G} \sigma(x)$ for $x \in \Lambda$.
- (2) Suppose furthermore $C \subseteq \Gamma$, then |G| = n is a unit in C if and only if ${}_{\Gamma}\Gamma_{\Gamma} < \bigoplus_{\Gamma} \Lambda_{\Gamma}$.

PROOF. (1). If there exists $c \in C$ with $t_G(c)=1$, we obtain a $\Lambda-\Lambda$ map f of Λ to Λ defined by f(x)=xc for $x \in \Lambda$. Then we have $(t_G \circ f)(r)=$ $t_G(rc)=rt_G(c)=r$ for all $r \in \Gamma$. Therefore ${}_r\Gamma_r < \bigoplus_r \Lambda_r$. Conversely suppose ${}_r\Gamma_r < \bigoplus_r \Lambda_r$. Then since Λ is right Γ -finitely generated projective, $\operatorname{Hom}(\Lambda_r, \Lambda_r)$ is a separable extension of Λ by Theorem 7 [10]. Then $S=\Delta(\Lambda, G)$ is

a separable extension of Λ . Hence there exists $\sum \alpha_i \otimes \beta_i \in (S \otimes_A S)^S$ with $\sum \alpha_i \beta_i = 1$. We can put $\sum \alpha_i \otimes \beta_i = \sum x_{\sigma,\tau} U_{\sigma} \otimes U_{\tau} = \sum x_{\sigma,\sigma^{-1}\tau} U_{\sigma} \otimes U_{\sigma^{-1}\tau}$, where $x_{\sigma,\tau} \in \Lambda$ and σ , $\tau \in G$. $\sum \alpha_i \beta_i = 1$ implies $\sum x_{\sigma,\sigma^{-1}\tau} U_{\tau} = U_1$. Hence we have $\sum x_{\sigma,\sigma^{-1}} = 1$ and $\sum x_{\sigma,\sigma^{-1}\tau} = 0$ $(\tau \neq 1)$. On the other hand, $\sum U_{\rho} \alpha_i \otimes \beta_i = \sum \alpha_i \otimes \beta_i U_{\rho}$, for all $\rho \in G$, implies that $\rho(x_{\sigma,\tau}) = x_{\rho\sigma,\tau\rho^{-1}}$ for all σ , τ , $\rho \in G$, and $\sum x\alpha_i \otimes \beta_i = \sum \alpha_i \otimes \beta_i x$ for all $x \in \Lambda$, implies that $x_{\sigma,\tau} \in J_{\sigma\tau}$ for all σ , $\tau \in G$. Especially we have $\rho(x_{1,1}) = x_{\rho,\rho^{-1}}$ and $x_{1,1} \in J_1 = C$. Hence we have $1 = \sum x_{\sigma,\sigma^{-1}} = \sum \sigma(x_{1,1})$. (2) follows from (1), since $t_G(n^{-1}) = \sum n^{-1}\sigma(1) = n^{-1}n = 1$, and $x_{1,1} \in C \subseteq \Gamma$ implies that $t_G(x_{1,1}) = \sum \sigma(x_{1,1}) = nx_{1,1} = 1$.

Proposition 3. Let Λ be an H-separable and G-Galois extension of Γ . Then we have

- (1) $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$.
- (2) Δ is a rank n projective module, where n=|G|.
- (3) Following three conditions are equivalent
 - (i) n(=|G|) is a unit.
 - (ii) Γ is a Γ - Γ -direct summand of Λ .
 - (iii) \(\Delta \) is a separable C-algebra.

PROOF. (1). By Prop. 1, we see that every element σ of G fixes all element of $\Gamma'(=V_A(\Delta))$. Thus we have $\Gamma'\subseteq \Lambda^G=\Gamma$. The converse inclusion is obvious. (2). By (1.3) (4) [12], $\Delta=(\Lambda_{\sigma})^{\Gamma}\cong\Delta\otimes_{C}(\Lambda_{\sigma})^{A}=\Delta\otimes_{C}J_{\sigma}$. It is already known that Δ is C-finitely generated projective, and C is a C-direct summand of Δ . Hence J_{σ} is rank one projective C-module. On the other hand, $\Delta\cong Hom(_{\Lambda}\Lambda_{\Gamma},_{\Lambda}\Lambda_{\Gamma})\cong\Delta(\Delta:G)^{A}=(\sum^{\oplus}\Lambda U_{\sigma})^{A}=\sum_{\sigma\in G}^{\oplus}J_{\sigma}$. Thus Δ is rank n projective C-module. (3). Since $C\subseteq V_{\Lambda}(\Delta))=\Gamma$ by (1), the equivalence of (i) and (ii) follows from Lemma 1. The equivalence of (ii) and (iii) follows from Prop. 4.7 [3] and Corollary 1.2 [9], since $V_{\Lambda}(V_{\Lambda}(\Gamma))=\Gamma$. But the author will repeat the proof here for the convenience to readers. Suppose (ii), and let P be the $\Gamma-\Gamma$ -map of Λ to Γ with P(1)=1. Then we have a commutative diagram of $\Delta-\Delta$ -maps

where $\eta(d \otimes e)(x) = dxe$, $\pi(d \otimes e) = de$, for d, $e \in \Delta$ and $x \in \Lambda$, $\varphi(f) = f(1)$, for $f \in \text{Hom } (r\Lambda_{\Gamma}, r\Lambda_{\Gamma})$, and $n(d) = dr \ (=rd)$, for $d \in \Delta$, $r \in \Gamma$. η and n are isomorphisms (see (1.5) [12]). Thus π splits as $\Delta - \Delta$ -map. Suppose (iii). Then there exists $\sum d_i \otimes e_i \in (\Delta \otimes_c \Delta)^{\Delta}$ with $\sum d_i e_i = 1$. Hence we obtain map p of Λ to Γ' $(=V_{\Lambda}(\Delta))$ such that $p(x) = \sum d_i x e_i$ for all $x \in \Lambda$. p is a $\Gamma' - \Gamma'$ -map

with p(r)=r for all $r \in \Gamma$. Thus we have (ii).

As an example of H-separable G-Galois extensionst we have

THEOREM 3. Let Λ be a G-Galois extension of Γ . Then if all elements of G are inner automorphisms of Λ , then Λ is an H-separable extension of Γ , and Λ is a free C-module of rank n, where n = |G|.

PROOFS For each $\sigma \in G$, let γ_{σ} be a unit of Δ such that $\sigma(x) = \gamma_{\sigma}^{-1} x \gamma_{\sigma}$ for all $x \in \Lambda$ s. Note that each ΛU_{σ} is a $\Lambda - \Lambda$ -module with formulae $U_{\sigma}\lambda = \sigma(\lambda) \ U_{\sigma}$ for each $\lambda \in \Lambda$, and that j is a $\Lambda - \Lambda$ -isomorphisms. Then for each $\sigma \in G$, define a map f_{σ} of ΛU_{σ} to Λ by $f_{\sigma}(\lambda U_{\sigma}) = \lambda \gamma_{\sigma}^{-1}$ for each $\lambda \in \Lambda$. Then since $f_{\sigma}(U_{\sigma}\lambda) = f_{\sigma}(\sigma(\lambda) U_{\sigma}) = \sigma(\lambda) \gamma_{\sigma}^{-1} = \gamma_{\sigma}^{-1}\lambda = f_{\sigma}(U_{\sigma})\lambda$ for each $\lambda \in \Lambda$, f_{σ} is a $\Lambda - \Lambda$ -isomorphism. Hence we have $\operatorname{Hom}(\Lambda_{\Gamma}, \Lambda_{\Gamma}) = \Lambda \oplus \Lambda \oplus \dots \oplus \Lambda$ (n folds) as $\Lambda - \Lambda$ -module. Then,

$$\Delta \cong \operatorname{Hom} ({}_{A}\Lambda_{r}, {}_{A}\Lambda_{r}) = \left[\operatorname{Hom} (\Lambda_{r}, \Lambda_{r})\right]^{A} \cong \left[\Lambda \oplus \Lambda \oplus \cdots \oplus \Lambda\right]^{A} = C \oplus C \oplus \cdots \oplus C$$

Hence Δ is a free C-module of rank n. On the other hand, since Λ is right Γ -finitely generated projective, we have

$$\Lambda \otimes_{\Gamma} \Lambda \cong \Lambda \otimes_{\Gamma} \operatorname{Hom} ({}_{\Lambda} \Lambda, {}_{\Lambda} \Lambda) \cong \operatorname{Hom} ({}_{\Lambda} \operatorname{Hom} (\Lambda_{\Gamma}, \Lambda_{\Gamma}), {}_{\Lambda} \Lambda)$$
$$\cong \operatorname{Hom} ({}_{\Lambda} (\Lambda \oplus \Lambda \oplus \cdots \oplus \Lambda), {}_{\Lambda} \Lambda) \cong \Lambda \oplus \Lambda \oplus \cdots \oplus \Lambda$$

as $\Lambda - \Lambda$ -module. Thus Λ is an H-separable extension of Γ .

REMARK. In the proof of Theorem 3, we see that the $\Lambda - \Lambda$ -isomorphism of $\Lambda \oplus \Lambda \oplus \dots \oplus \Lambda$ to $\Delta(\Lambda:G)$ is given by; $(\lambda_{\rho}, \lambda_{\sigma}, \dots, \lambda_{\tau}) \to \sum_{\sigma \in G} \lambda_{\sigma} \gamma_{\sigma} U_{\sigma}$. On the other hand, the isomorphism $\operatorname{Hom}({}_{\Lambda}\Lambda_{\Gamma}, {}_{\Lambda}\Lambda_{\Gamma}) \to \Delta$ is given by; $f \to f(1)$ for $f \in \operatorname{Hom}({}_{\Lambda}\Lambda_{\Gamma}, {}_{\Lambda}\Lambda_{\Gamma})$. Therefore, $C \oplus C \oplus \dots \oplus C$ is mapped onto $j(\sum_{\sigma \in G} C \gamma_{\sigma} U_{\sigma}) = \sum_{\sigma \in G} C \gamma_{\sigma}$. Thus we have $V_{\Lambda}(\Gamma) = \sum_{\sigma \in G} C \gamma_{\sigma}$.

REMARK. Λ is a G-Galois extension of Γ if and only if there exist x_i , $y_i \in \Lambda$ $(i=1, 2, \dots, n)$ such that $\sum x_i \sigma(y_i) = \sigma_{1,\sigma}$ by Prop. 2. 4 [6]. Then, under the condition of Theorem 3, it can be directly computed that $1 \otimes 1 = \sum_{\sigma \in G} \gamma_{\sigma}(\sum x_i \otimes \sigma(y_i) \gamma_{\sigma}^{-1})$ in $\Lambda \otimes_{\Gamma} \Lambda$, with $\gamma_{\sigma} \in \Lambda$ and $\sum x_i \otimes \sigma(y_i) \gamma_{\sigma}^{-1} \in (\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$. We call these $\{\gamma_{\sigma}, \sum x_i \otimes \sigma(y_i) \gamma_{\sigma}^{-1}\}_{\sigma \in G}$ an H-system for $\Lambda \mid \Gamma$ (see [5]).

3. On radicals in H-separable extensions.

PROPOSITION 4. Let Λ be an H-separable extension of Γ with ${}_{\Gamma}\Gamma_{\Gamma} < \bigoplus$ ${}_{\Gamma}\Lambda_{\Gamma}$. Then if $\Lambda/J(\Lambda)$ is artinean, we have $J(\Lambda) = \Lambda J(\Gamma) = J(\Gamma) \Lambda$ and $J(\Gamma) = J(\Lambda) \cap \Gamma$.

PROOF. By Theorem 4.1 (2) [13], $J(\Lambda) = \Lambda(J(\Lambda) \cap \Gamma) = (J(\Lambda) \cap \Gamma) \Lambda$. Hence we need only to show that $J(\Gamma) = J(\Lambda) \cap \Gamma$. Since $\Gamma = V_A(\Delta)$, every element of $J(\Lambda) \cap \Gamma$ has its quasi-inverse in Γ . Therefore $J(\Lambda) \cap \Gamma \subseteq J(\Gamma)$. Let $\bar{\Lambda} = \Lambda/J(\Lambda)$ and $\bar{\Gamma} = \Gamma/J(\Lambda) \cap \Gamma$. Then $\bar{\Lambda}$ is an H-separable extension of $\bar{\Gamma}$, and $\bar{r}\bar{\Gamma}_{\bar{l}} < \bigoplus_{\bar{l}} \bar{\Lambda}_{\bar{l}}$, by Prop. 3.4 (1) [13]. Let $\bar{\Lambda} = \bar{\Gamma} \bigoplus M$ as $\bar{\Gamma} - \bar{\Gamma}$ -module and \bar{l} be an arbitrary left ideal of $\bar{\Gamma}$. Then $\bar{\Lambda} = \bar{\Lambda} \bar{l} \oplus L$ as left $\bar{\Lambda}$ -module. Then $\bar{\Lambda} = (\bar{l} \oplus M \bar{l}) \oplus L$ and $\bar{\Gamma} = \bar{l} \oplus (M \bar{l} + L) \cap \bar{\Gamma}$ as left $\bar{\Gamma}$ -module. Thus every left ideal of $\bar{\Gamma}$ is a $\bar{\Gamma}$ -direct summand of $\bar{\Gamma}$, and we see that $\bar{\Gamma}$ is a semisimle ring. Then, $J(\bar{\Gamma}) = 0$, and $J(\Gamma) \subseteq J(\Lambda) \cap \Gamma$. Therefore, we have $J(\Gamma) = J(\Lambda) \cap \Gamma$.

REMARK. In general $J(\Lambda) = \Lambda J(\Gamma) = \Lambda J(\Gamma)$ and $J(\Lambda) \cap \Gamma = J(\Gamma)$ do not hold in H-separable extensions. Let D be a division ring and Λ be the $n \times n$ -full matrix ring over D, and Γ the lower triangular matrix subring of Λ . Let $e_{i,j}$ be the matrix units of Λ . Then it is easily proved that $\sum e_{i,1} \otimes e_{1,i} \in (\Lambda \otimes_C \Lambda)^{\Lambda}$, $\sum e_{i,1} e_{1,i} = 1$. But since $e_{i,1} \in \Gamma$, for each i, $\sum e_{i,1} \otimes e_{1,i} \in (\Gamma \otimes_D \Lambda)^{\Gamma}$. Hence map π of $\Gamma \otimes_D \Lambda$ to Λ defined by $\pi(r \otimes x) = rx(r \in \Gamma, x \in \Lambda)$, splits as $\Gamma - \Lambda$ -map. Then by Prop. 2. 2 [9], Λ is an H-separable extension of Γ . It is also clear that Λ is left Γ -finitely generated projective. But $J(\Lambda) = 0$ and $J(\Gamma) \neq 0$.

Before explaining some examples in which the conditions of Theorem 4 holds, we need some preparations. The next two propositions are supplements of results which have been obtained in [13].

PROPOSITION 5. Let Λ be an H-separable extension of Γ such that ${}_{\Gamma}\Gamma < \bigoplus_{\Gamma} \Lambda$. Then $\operatorname{Hom} ({}_{\Gamma}\Lambda, {}_{\Gamma}\Gamma)$ is a left Λ -progenerator.

PROOF. Since ${}_{r}\Gamma < \bigoplus_{r}\Lambda$, Hom $({}_{r}\Lambda, {}_{r}\Gamma)$ is a left Λ -direct summand of Hom $({}_{r}\Lambda, {}_{r}\Lambda)$. But Hom $({}_{r}\Lambda, {}_{r}\Lambda) = \Delta \bigotimes_{c}\Lambda < \bigoplus_{l}\Lambda \bigoplus_{l}\Lambda \bigoplus_{l}\dots \bigoplus_{l}\Lambda$ as $\Lambda - \Lambda$ -module, since Δ is C-finitely generated projective. Hence Hom $({}_{r}\Lambda, {}_{r}\Gamma)$ is left Λ -finitely generated projective. On the other hand, in Prop. 1.1 (1) [13], we have already shown that Hom $({}_{r}\Lambda, {}_{r}\Gamma)$ is a left Λ -generator.

Proposition 6. Let Λ be an H-separable extension of Γ . Then,

- (1) If Γ is left Γ -cogenerator, then Λ is a left Λ -cogenerator
- (3) If Γ is a left PF-ring, then Λ is a left PF-ring.
- (3) If Γ is left self injective, then Λ is left self-injective
- (4) If Γ is a quasi-Frobenius ring, then Λ is a quasi-Frobenius ring.

PROOF. (3) and (4) are shown in [13]. Hence we need only to show (1). But this follows from Korollar 1 [15], since $\operatorname{Hom}(_{r}\Lambda,_{r}\Gamma)\subseteq \operatorname{Hom}(_{r}\Lambda,_{r}\Lambda)<\bigoplus \Lambda \oplus \Lambda \oplus \dots \oplus \Lambda$ as left Λ -module. Since left PF-ring is a ring which is left self injective and a left cogenerator (see [1]), (2) follows from (1) and (3).

It is well known that if Λ is a left (or right) PF-ring, $\Lambda/J(\Lambda)$ is artinean. Therefore we have

COROLLARY 1. Let Γ be a left (or right) PF-ring, and Λ an H-separable extension of Γ . Then if Γ is a $\Gamma - \Gamma$ -direct summand of Λ , $J(\Lambda) = \Lambda J(\Gamma) = J(\Gamma) \Lambda$ and $J(\Gamma) = J(\Lambda) \cap \Gamma$.

References

- [1] G. AZUMAYA: Completely faithful modules and self-injective rings, Nagoya Math. J., 27 (1966), 697-708.
- [2] S. ELLIGER: Uber Automorphismen und Derivationen von Ringen, J. reine angew. Math., 277 (1975), 155-177.
- [3] K. HIRATA: Some types of separable extensions, Nagoya Math. J. 33 (1968), 107-115.
- [4] K. HIRATA: Separable extensions and centralizers of rings, Nagoya Math. J., 35 (1969), 31-45.
- [5] T. NAKAMOTO and K. SUGANO: Note on H-separable extensions, Hokkaido Math. J., 4 (1975), 295-299.
- [6] T. KANZAKI: On Galois extension of rings, Nagoya Math. J., 27 (1966), 43-49.
- [7] T. KANZAKI: On Galois algebra over a commutative ring, Osaka J. Math., 2 (1965), 309-317.
- [8] K. SUGANO: Note on semisimple extensions and separable extensions, Osaka J. Math., 4 (1967), 265–270.
- [9] K. SUGANO: On centralizers in separable extensions, Osaka J. Math., 7 (1970), 29-40.
- [10] K. SUGANO: Note on separability of endomorphism rings, J. Fac. Sci. Hok-kaido Univ., 21 (1971), 196-208.
- [11] K. SUGANO: On some commutor theorems of rings, Hokkaido Math. J., 1 (1972), 242-249.
- [12] K. SUGANO: Separable extensions of quari-Frobenius rings, Algebra-Berichte, 28 (1975), Uni-Druck Munchen.
- [13] K. SUGANO: On projective H-separable extensions, Hokkaido Math. J., 5 (1976), 44-54.
- [14] K. SUGANO: On automorphisms in separable extensions of rings, Proc. 13th Symposium of ring theory, 1980, Okayama Japan.
- [15] T. ONODERA: Koendlich erzeugte Moduln unt Kogenerator, Hokkaido Math. J., 2 (1973), 69-83.

Department of Mathematics Hokkaido University 060 Sapporo Japan