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On a parametrix for a weakly hyperbolic operator

By Masato Ima1
(Received November 13, 1979; Revised January 29, 1980)

§ 1. Introduction.

In this paper we consider the Cauchy problem in the domain [0, T] X R"
for the weakly hyperbolic partial differential operator

(1.1) P(t, z, D,, D,) = D}+2a(t, D,) D,+b(¢, D)+ P (¢, z, D, D) ,

where Dt=%~aa—t and Dtr—(—% ~a%, ,%* ain >

Here a(t, D,) and b(t, D,) are respectively the first and the second order

homogeneous partial differential operators depending smoothly on ¢ such

that, for any EER*, a®(t, £)—b(t, ) >0 if t>0. P\(¢, x, D,, D,) is an arbitrary

first order term with smooth coefficients which are constant for large |x|.
Now we impose the following condition for the principal symbol

P,(t, 7, &)=7*+2a(t, &) t+b(¢, &) of P. For any (¢,7,8), (7,80,
(1 2) graa'@,,,e) P2 x0.

Note that if P,%0, grad..» P50 from the homogeneity of P,. Examples
of such P, are D?*—td, D}—td, —4,  etc. Here 4 is the Laplacian. Fur-
thermore x=(«, 2’) and 4, 4, are the corresponding Laplacians.

In the following we shall discuss the Cauchy problem

JP(t, 2z, Dy Dy)u=f in [0, T|XR",

1.3 .
- | D (0, 2) = vy(x), j=0,1, in R",

for given f and v;. The correctness of (1.3) can be shown by the energy
estimate if we reduce P to a simple form by the change of variable of §2
(see [11]). On the other hand Ivrii discussed the correctness of the Cauchy
problem of a weakly hyperbolic operator whose principal symbol has smooth
coefficients depending on (¢, ) and does not have critical points with respect
to (t, z,7,€) ([7]). He called these operators completely regularly hyperbolic.
By the energy estimate, he proved that the Cauchy problem for such an
operator is correct, regardless of its lower order terms. The regularity
property of its solution does not depend on the lower order terms.

In this paper we shall construct a parametrix of the Cauchy problem
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(1.3). However due to difficulty of the estimate of amplitude functions, we
discuss only the case that the coefficients of the principal symbol are con-
stant with respect to x. The construction of a phase function in general
case will be given in § 5 as appendix. From the properties of this parametrix
we can show the propagations of the singularities along null bicharacteristc
strips of P, (see Lemma 3. 3).

In Alinhac constructed a parametrix of the operator

(1.4) D} —¢D?—D?+lower order terms .

For the construction of the parametrix, he used the solutions of the ordinary
differential equation #” —#?u+ Au=0 where A is some constant. Their
asymptotic behaviors at infinty was crucial. On the other hand in we
treated an operator of the following form ;

(1.5) Di—tA(t, x, D,)+lower order terms,

where A(z, x, D,) is an elliptic second order operator with a positive symbol.
In this case for the construction of parametrices, the Airy function, which

is a solution of the ordinary differential equation "’ —tu=0, plays an impor-
tant role. The properties of the Airy function are well known ([2], [10].
They were used in the diffractive boundary value problems for the strictly

hyperbolic operators ([3], [6], [8], [12]). In this paper we also construct

the following parametrices for (1.3) using the Airy function.

THEOREM 1.1. There exist operators Gt(t,s), k=0, 1, with parameters
0<s, t<T such that

(G¥t,5) V) (yeC=([0, TI1X [0, TIXR") for VeCs(RY)
(G*t,9) V) (5)=C=([0, T1x[0, TT; Z'(RY) for Ve& (RY
and
P(t, z, D, D) (G*t,5) V) = R¥(t, 9V,
(1.6) GHt,s) V|, = (s I+ Rs(s) V,
D,Gt,5) V|,_,= (st I+RHs) V,

where 05 is the Kronecker’s delta, R*(t,s) and R:(s) are operators with
C>-kernels of (x,y) depending smoothly on (t,s) and s respectively.

This theorem will be proved in §2 and § 3.

Let
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(10, TIx R*) = {u; Dfult, )€ LX([0, T1; Hoa(RY), k<g},

where ¢ is some positive real number and H,(R") is the Sobolev space.

From [Theorem 1.1 we have the following

THEOREM 1.2. Let fe &[0, T] X R"), vy& Hy 4(R") and v, & Hy, 1 (R
be functions such that for some compact set K in R, supp fC[0, T]x K
and supp voUsupp viC K. Then there exists a unique solution of (1.3)
which satisfies the estimate

2 "Dfu(t’ ')||q+1_k < Clvgllgrs +Cllvallges

(1.7) k<g+1 ,
+C % |0, ez || peses -

k<q-1 k<q

1
2
i ds .

Here q is an arbitrary positive number, ||+||; is the norm of Hy(R") and
C depends only on K and q.

In Theorem 1.2 of we assumed that vy& H,; and the first term
of the right hand side of (1.7) is replaced by ||vollgs;. Such difference of
the estimate arises from the fact that the characteristic roots of (1.5) de-
generate at =0, while, those of (1. 1) do not in general. Finally we remark
that in it is assumed that v,E H,yy, viEHy,y and ||vgllgess [[villgez are
replaced by ||vollgses |171ller: respectively in (1. 7).

Theorem 1.2 will be proved in §4.

§ 2. Phase functions and amplitude functions.

We shall reduce the operator (1. 1) to a more conveient forms. In doing
so we examine the condition (1. 2) more precisely. At a double characteristic
point we see that a?(¢,&)—b(t,6)=0 and r=—a(t,§). Thus we have the
equations

afz/at::ZTat%‘bt:: —-2aat%—bt==a(——a2%—bﬂﬂt,
oP,/or =274+ 2a=0
1 VePy,=2tV.a+V.b=—2adV.a+V.b=V.(—a®+b).
If Ve(—a?+b)x0, the function —a®+b changes the sign at the duoble cha-
racteristic point. This contradicts the hyperbolicity of P and hence V. (—a?+

b)=0. Therefore the condition (1.2) means that o(—a?4 b)/ot=:0.
Now let a(t) be a vector with components (@ (¢), -+, a,(¢)) such that

ai(t)ZS:ai(a) do, where a;(t) is the coefhcient of a(¢, D)= i}ai(t) D,. We
i=1
define the operator U for ¢ =C*([0, T X R*) as follows;
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Ug(t, @) = p(t, z—a(t)),
and denote by U™! its inverse operator. Then we have that

U(D.+af(t, Dy)) U=D,.
Noting that Py(t, 7, &) =(r+al(t, &))2—(a?(t, &) —b(¢, &) we reduce P to the form
(2.1 Di—(at, Do)~ b(t, Dy)+Pilt, 2, D,y Ds),

where Pi(t, x, D;, D,) is some first order term.

Hence in the following we assume that the principal symbol of P satis-
fies the conditions ;

(2.2) Pyt,r,8) =2— A(t, 8),
where Az, &) >0 if >0 and
(2. 3) At,6) %0 if A(,8=0.

Now we solve the eikonal equation P,(t, ¢;, ¢,) =0. In a conic neigh-
borhood of a simple root this equation can be solved easily. Thus we shall
consider only in a conic neighborhood of the double characteristic point.
In general it is difficult to solve at the double root (see §5). But in this
case we find a solution by integration with respect to ¢ since the principal
symbol does not depend on z.

Let A(0,&)=0 for some &&R* Since A;(0,&)x0, by the implicit
function theorem, there exists a conic neighborhood I'C R*\0 of & and in
I', P, is written as follows ;

(2.4 Pltr,e)=—(t+06) 41,9,

where {(£) is a real non-negative function of homogeneous degree 0, {(&)=
0, and A'(#,&) is a positive elliptic symbol of homogeneous degree 2. For
example if Py=7"—¢|¢'|*—|¢"[%, I'={¢; |€"|<c|¢'|} and ((&)=[&"|¥|€'|2

We remark that the characteristic roots ++(t+{) A’ have singularity
on a surface r+{(§)=0. Nevertheless the null-bicharacteristic strips of P,
have no singular points in hyperbolic region, and they are tangent to the
surface t=—{(¢) of the first order of contact there.

Now we state the following

LemMa 2.1. There exists a positive number T and a real positive

C=-function p(t, &) of homogeneous degree % defined in [0, T XI" such that

2 4 . ) .
0. (t, x, ) =<z, $>i—3~p§ (t, &) satisfies the etkonal equation
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(2.5) Pty 0sty 022) =0
Moreover

(2.6) ot &) =0(+2©)
and

(2.7) 0:(0,6) 0

ProoF. Let d(0,&)=+vA'(0,£). Integrating the characteristic root with
respect to ¢ we obtain

2.8 9= @08 ds.

Then ¢, (¢, x, &)=<z, & £, & solves (2.5). Now put p(t, €)=<%}l>§(t, £).

By a change of variable we see that
e \
268)=, Vo dlo-t,8 do=0(t+0)).

This proves the lemma since d' (0, &)=0.
Let x=R” and U some open neighborhood of x. Let us construct the
amplitude functions ¢(¢, z, &) and A(t, x, &) in [0, T] X UXI" such that;

(2. 9) P(t, z, D,, Dx)SC (g(t, xX, E) —zh (L‘, Z, E)) ei(%z—zﬁ(w,e» dz = O(,E’—oo)
+
where C. is the complex contour;
] [t|eGxwi for t—+co,
] e for t—>F .

Moreover

(t X, ) Zg (t Z, )’ Ordg—j:—j’ glt=0#0,

(2. 10) { f 1
h(t, x, &~ Zh it x, 6), ocdh,j:———g——j.

We constructed these amplitude functions in [5]. However, for the
sake of completeness we shall review the process in the following (see § 2
of [5] and also § 3, §4 of [3]).

By taking a(t, z, &, 2) =¢(t, x, &) — 2h(t, x, ) the equation (2. 9) follows from

(2 11) e—i(z—s—zp+<x,e>)P{a(t’ z, S’ z) ei(z_;—zp+<x,e))} — O(IEIM)O)

Now let B(¢t, z,&, 2) be a polynomial in 2 and smooth with respect to
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(¢, 2, 6) for £%0. We shall call B of homogeneous degree m with respect
to (&, 2) if
B(t, z, k&, B 2) = k» B(¢, , &, 2) for £>0.

In the sense of this homogeneity we expand the left hand side of (2.11)
asymptoticaly. By usual calculation we obtain that

.23  2°
e~ i3 —zp+<x,e>)P{a(t, z, {;’ z) ei(s —z,o+<m,e>)}

aao

1 1 2 04
:Pz(t, — X0y, f) ao“l‘{ 22Pt ot "Tkzz:l &, (t: 5)

1
— 5 2ouat+Pu(t, 2, — 20, 8) ayt+ Polt, —2p1, €) a-l}

(2.12) 0y,

+---,

where a_;=¢_;—zh_; and P,(t, z, 7, &) is the principal symbol of P,(¢, z, D,, D,).
Let B(t, z, &, z) be homogeneous of degree m with respect to (£, 2) and

(2.13) B(t, x,& +4p)=0.
Then there exists a polynomial B(t,z,£,2) and B(t, x,&,2) =i(22— p) Bi(t, x,&, 2).

3
Remarking i(2?—p)= %(z(% ——zp)) we obtain by integration by parts that

0B,

2
6‘1’(3 2p0) dz ,

S i(22—p) B, e‘(za—s‘z”)dz = —S
Cx

where the order of 0B,/oz is m—1.

Note that Py(t, —z2p,, §) =220 — A(t, §)=(22—p) p?, since A(t,&)=pp: from
(2.5). Thus from the above argument we can eliminate the second order
term of (2.12). The first order term becomes

2 oa n A Oda 1
;R0 ato —7 kZ:: 3 ax(;c 72Pttao+P1(t’ x, —2p1, &) a

o (1,
~ oz \q pi)-

Substituting *+p for 2z in (2.14), we obtain from (2.13) the transport equa-

tion ;
09 ohy L 09, — 0hy )
‘/p p‘( 4o ) A BEk <6xk AP 0z

1 - 1
+ (Vo putiPilt, 2, £4p 01, ) (oA p ho) + 7 oo =
ahg aa()i — 1

Now let af =¢gy+vph,. Since —6? +Vo a2 — o T o pchy, the

O+

(2. 14)

(2. 15)*
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equatioon (2. 14) is equivalent to

(2.16)* +2~/—p, +Xao+ci F=0,

where

5 g

and
Cc, = i‘«/;pn—i-iPl(t, x, ix/;p,, £ .

Note that the sign = is taken according to *+p, but is independent of the
contour C,. Succesively we obtain similar equations for j>0;

ad:

(2.16)5  £20p o~ + Xa¥;+c.at; =12,

where f=*; is determined by aa*, ey A0
In order to solve the equation (2.16)%5 we must eliminate vp in the
coefficient of 9/d¢. Since ptﬁ;O we may regard p as independent variable.

+ j: .
Thus we have +2Vp p;——=>- Oa- P = +2Vp o 36_, . Making a change of variables

p=0% x=x, we may rewrite (2.16)5 in the form ;

(2. 17)?; ip; aa : +Xa-, +C:t _—-f‘i

For 220, (2.17)% is solved and let 4*; be a solution of (2.17)%. Decom-
pose df; into odd ande ven functions

at(x, & 0) =§_;(x, & d°) +afz_j(x, g, d% .

Note that if we replace ¢ by —¢ in df;, d*;(x, & —o) is a solution of (2.
17);. Thus we obtain ¢(t, x, &) and h(t, z,&) as desired, if we give initial
conditions df (z, & 0)=1, d*;(x, & 0)=0 (j>0) and put g_;(t, x,§)=¢_;(x, §, o),
h—j(t, X, E):ii—j(x’ 59 )

Now let A.(x) be the integral

(2. 18) A;(x)= sai exp <z<——z3i —z:c)) dz.

Then the integral of the left hand side of (2.9) becomes in the form ;

2.19)  {g6 %8 Ao, ) —ih(t, 3, 8) AL(o(t, §))} &0,

where A’ is the derivative of A..



On a parametrix for a weakly hyperbolic operator 197

For the usual Airy function Ai#(x), it holds that
(2.20)  A.(2)=2ze*d Ai(e*d(— 1)) .

Since Ai(x)=zAi"(x), A.(x) solves the ordinary differential equation 3"’ =

— Y.
Furthermore it is well known that the Airy function has the asymptotic
expansion ;

. 2 3 hod 1 3
(2.21) Az(x)~exp<—~3—xf>< ayx‘z“f”> for xeC, |x|] >¢,
v=0

and —r+te<Largxr<n—e¢,

where @0 and ¢ is a small positive number (sse [7], [10]). Thus for
real x>>¢ we may represent A,(x) as follows;

2>,

(2. 22) A (x)=0,(x) exp(ii-é*x
(2.23) @@~ b,z i with by,%0.
v=0

Njes

where

By the termwise differentiation we see that for real x>,
(2.22)  AlL(x)=0.(x)exp (ii%ﬁ) ,

where

(2. 23) O ()~ b, ,xi¥  with b,,%0.

Finally we remark that A,(x)>0 and AL(x)=0 for all z&R.

§ 3. Construction of the parametrices for the Cauchy problem.

It is well known that in a conic neighborhood of the simple root the
parametrices (1. 6) are constructed by the usual method. Therefore we shall
consider only in a conic neighborhood of the double characteristic point
t=0 and &£=¢,.

Let UXI' is the open conic set mentioned in the previous section.
Extend p(¢, &) smoothly to [0, T] X R*\O preserving the homogeneity. Now
we define the operator G.(¢,s) for VeCy(R") such that
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(3. 1) <Gi (¢, s) V) =(2n)” S@ﬁw—y e>< ¢, x, &) A?%&Ql

b 3,0 ag%)<>@£,

S

where p(t)=p(t, &) and p(s)=p(s, §).

Let A and B are operators from &'(R?) to &'(R*. We denote A=B
in UxI' if
3.2) WF (A—BN({UXINX(UXI')=¢,

where WF' is the wave front set of the distribution kernel of the operator.
From (2.9)

(3. 3) P(t, x, D;, D,) G.(¢t,5)=0 in UxI,

where we regard (¢, s) as parameters.

To examine the continuity of G.(t,s) we state some properties of its
symbols. We denote by ST z([0, T]XR;XRE) the set of all a(t, z,€)€
C>([0, T]1 X R: x R?\0) such that for all multi-indices a, 8, y the estimate
(3. 4) | it alt, 8| < C [gmiieidr

a,B,7

is valid for |§|>1 and some constant C .
a,B,r

The following lemma is fundamental.

LEMMA 3.1. Let r(0) be a function in C*(R). Assume that if 6>1,
r(0) €S7%(R) for some positive number m. Then r(olt)) ESl o ([0, TT X R% X RY).

Proor. When p>1 we have that

“air(p)l =

!
5 0 (o) o)

Tobebr,=T 1)! 712 7ue

a 7!(11! ) 1 .
'Z“ (al)(n+z+:r =7 V‘,L! 7‘1 ‘a}‘a},‘ T(+“)(p)aelp---ae#p

a +a'=a
a1+ +a

><af<azlp---az»p>\

<C X grorrlgl g
v&7
n<|al]

<C 3 pmlglsi|gld

n<|al|

< Clslgm—‘§|al+-§r .

When p<2, by the boundedness of 7*(p) and the above computations the
assertion follows easily.
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Let %(s) be a function in C®(R) such that X(s)=1 for ¢<1, X(s)=0
for 6>2. Set X,(6)=X(s) and X;(6)=1—1X(s). Now apply the above lemma
to the Airy function A.(x). Then we have

LEMmmMA 3. 2.
A(p@) Xle®) | _
3.5  =8102([0, T] X REX R}
-9 (1/AL(p(2))) 2:0(8))) =24 '“<[ I R )
and
(3.6) D.(o(t)) Xa(0(t)) | ES%O 0%([0’ T]x R? XR?)) .

(1B .(0(0))) 1a(o(2))]

Proor. Since @ () 1:(6), 1/8.(0) %:(0) €S (R)CTS,o(R) by (2.23), (2.23),
(3.6) is valid from Cemma 3.1. (3.5) is also valid, since X,(6)E.S},(R) and
vanishes for 6>2.

We divide (3.1) into four parts as follows;

(G.t,5) V) (2)
A.(o(t)) Al (o(2)) >

14

; 2(271'>—"S€£<x ye><g A;(p(S)) —ih AI( (S))
1 (010) . (01) Vi)

=, Z,(Cen69 V) @),

We denote by ST,2([0, T]1 %[0, T] X Rz X R¥) the set of all a(t,s, x,§) €
C>([0, T] X [0, T] x R: x R?\0) such that for all multi-indices a, 8, 71, 7. the
estimate

aﬁ 3"1 arza(t S, x, |< C ’Elm_ﬁlaH"E(h"'?’z)

@,B,71:7

(3. 8)

is valid for |§]>1 and some constant C .
avﬁﬂlvr

Then from and (3.7) we regard (3.1) as the sum of in-
tegral operators with amplitudes contained in %, ([0, 7] X [0, T] X R % R%)

2 s 2 s
and phase functions {zx—v, &>+ <§ oz (t) 6%— 30 o2 (s) 52> respectively.

Hence by the oscillatory integral method (see [4]), we conclude that
(G.lt:9) V) (9 €C=([0, TIx [0, TIXR)  for VeC3(RY

and
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(Golt,9) V) (9)€C=(10, TIx[0, T]; Z'(R"))  for VEE(R).

Our next step is to determine the wave front set of G.(¢,s) and L?

estimates.
Let A%, be a conic set in T*(R}X R}) such that

A= {{(@ ) @) 2440 o) =y pils, 7 7R

With this notation we have

LemMma 3.3, Let a(t,s,x,6)&S871,0.2([0, T] X [0, T] X R X R;).  Define the
operator A.(t,s) for VeCy(R") by

(A.6,9 V) (@ = [exp (i o 0% 5 (40 —0) )
x atta(p(t)) %a(0(s)) V(w) e

3.9

Then we see that
(3. 10) WF' (A, ) Az

ProoF. We shall prove only for the case that the sign is +. If

((jfo, 0) (Yo, 7)) & A5, two cases occur; 037 or 0=y and x,+vp pe(t, 7) Yo+
Vo p:(s,7). Now we must show that

<A+(t, s) (¢eir<y,7/>)’ ¢e—ir<x,0>> = 0(z~*) for >0,

where ¢, $=C7 (R") are supported near x, and ¥, respectively.

At first assume that x,+vp p:(t, ) 5Yo+Vp p:(s, ) for some p=R*. Let
I', I’y be conic neighborhoods of » and @I, Let o,(§eC®(R"\0) be
a function of homogeneous degree 0 and assume that supp o,CI; and

w,(§)=1 on I'. Put A, s, x, 5)=%<p%(t)—p%(s)>. Then we have

<.A+ (t’ S) (¢eir<y,7]>)’ ¢e—ir<x,77>>
— z.nseirxx—y,e—wﬂ)al (t, s, X, TE) wy(f) ¢¢dxdyd§
+T”Sez'"<x‘”’f“”>+” &t s, x,28) (l—w,) € odrdyde ,

where d (1,5, 2,6 =alt, s, 2, §) 1a(p(0) Lalp(s)).

If I', is sufficiently small, then the second term of the right hand side
is rapidly decreasing, since on the support of 1—w,, £¢—»=0. Furthermore
on the support of w, we can define the operator
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< z+4p pet &) y—*/EPe(S,f) D>
|x+4p p:(t, ) —y —Vp pe(s, 2"

since x+4p p:(t, &) —y—Vp pe(s,£)x0. Moreover the coefficients of L are
smooth on the support of ¥,(o(2)) X(o(s)). For Lei€ev:t-p+d = giCa—yi—ptd
and (‘L)Na'ESg(; ?, by integration by parts the Lemma is proved. With a
similar argument we can prove for the case that #3.

From this lemma we conclude that WF((G.(t,s) V) (s)CAF o WF(V).
In fact since the symbols of G, x(t,s) and G, p(t,s) vanish if p(s)>0 or
p(t)%0 and ¢ is sufficiently large, wave front sets of G. g, G.j do not
appear. Hence the propagtions of singularities of G.(¢,s) occur along null-
bicharacteristic strips of P,(¢, 7, ) passing through WF(V).

Now we prove the H,-continuity of the operator G.(t,s). Let a(t, s, x,§)
be an element of ST, 2([0, T]X[0, T] X R X Rf). Let 2(§) be one of the

functions %(pg () — 02 (s)), %p% () or %pg(s) and ¢(z) a function in C7(R").

Then we have

(3. 11)

[0 gt at, 5, 7,8 eve | < Cutt el (-4 1)

for any integer N and some constant Cy. Indeed by integration by parts
we see that

7 e oa) ate s, 5,6 o0 da
- Se*“(" (Dzgpa) (¢, 5, 2, &) e o0 dzx,

where a is any multi-index. The right hand side can be estimated by a
constant times (1+4|&|)*. Thus we obtain (3.11). Form this estimate we
have the following

LEMMA 3.4. We denote by A.(t,s) the operator

(3.12) A.lts) V(d)= Sem-v:eﬁ“e» alt,s, 7, &) Vy) dyds .
Let ¢ be a function in C7(R"). Then we see that
leace9 V| _,<QiVie for VeECHRY.
Proor. We shall show that

(3. 13) (4.5 V, ¢W>[<Cnvl|q||W[]m_q for V, WeC(RY).
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Set b.(t,s, x, &) =e*"® ¢(x) a(t, s, x, ) and denote by b.(zs, 7, &) the Fourier
transform of b, with respect to . Then we have

(A.t,s) V, oW)

I

[Wia) owos10 gatr 5, 2,0) Ve) deda

I

fim
([ 0.6, -6 8 V10 e
J

[8 e - @) L= lermH a1l 016 wlr) dice,

where v(§)= (1—{—]6[) V(&) and w(n)=(1+|p)" 7 . W(—»). From (3.11)

. (6, 5, 1—&, ) (L6974 L+ 9]
< Cu(l+In—e) YA+ &)™ (1 + 505"

for any integer N.

Since (1+[72"7" < (1+€[3=" (L4 |p—g])e™,
méi(t, 5, —& &) (L+ 69751+ 7125 0(8) w(y) dédv‘
< |Cult+ =g |o ]| wip|dsdy

Thus from Hausdorff-Young’s inequality, (3. 13) follows.
Note that in the above proof it is sufficient to assume that the symbol
depends on ¢, s continucusly. This lemma shall be used in the next section.
In order to prove Theorem 1.1 we shall consider the initial conditions

(1.6). We denote by 7%(s) and 7L(s) the operators G.(s,s) and D,G.(s, s)
respectively. Since the phase function of G, (s, s) and D,G. (s, s) is {x—¥, &>,

1
7%(s) and 7. (s) are pseudo-differential operators with symbols of type =3

0=0 in Hrmander’s sense ([4]) with parameter s. Note that the order of
7% (s) is zero by lemma 3.2 and at the point s=0 and £=¢&, its principal
part is goe*/® A7 (0)/ A7 (0), since {(&)=0

0
We shall prove that yi(s) is of order E and its principal part is —1ip;¢,

at t=0, é=¢&, By a direct computation we see that
D,G.(s, ) V= (271')""Sei<“"”’5>{<pt ph(s, , &) —ig.(s, 2, €)) X

A (~ipgls, &= huls 2.8)} V) du,
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where we used the relation AY”(x)=—zA.(x). We find that hp;p-ﬁ%(p)e

Sio(R;’;XR?). Indeed since 0;%,3(0)2 g}“(ﬁ)ESI%,ofrom (2.23), (2.23Y, ap-

plying Lemma 3.1 we conclude that p*j%,i(p)ES;O and hence hp, p%(p)e

S éo. Therefore the principal part is —ig(0, x,&) at s=0, £=&, since 0(0,&,)=0.
We denote by 7 and 1 matrices

_ (r‘i(s), r"—(S)) . (A 0)
7_ > A: ’
L6 709 0, I

where /4% is the pseudo-differential operator with symbol (1+|&/3¥3, Then
the principal part of [y is written in the form

&l 35t Ai(0)/ AZ(0), lEoIée“%"Ai(O)/AZ'(O)>
- Zpt (O; SO) s - Z{ot (0, 50)
at s=0 and £=§,. From (2.7), (2.10), /Tr is an elliptic operator of order

7,0, x, &) (

% for any s<[0, T'], if T is sufficiently small. Let K(s) be its parametrix

of order —

W o

Define the operator G*(t,s), k=0,1, by the form

(3. 15) GH(t,5) V=G (t,5), G_(t, 5)) K(s) (51 f;v) for VeCs(RY.

In UXI" it follows from (3. 3) that

P, z, D,, D,) G*(t,5) =0,
(3.16) G*(s,s)=or1,
D,G*(s, s) = of

where ¢, s are considered as parameters.

Finally we shall construct a global parametrix G*(z,s) which satisfies
(1.6) in R X R\O. Since the lower order terms of P(¢, z, D,, D,) are con-
stant for large |z|, it suffices to construct a finite number of microlocal
parametrices. Thus there exist a finite open covering of R2x R!\0 and a
partition of unity {U;X I}, a;, 8;} jes such that;

i) Uj is an open set and I'; is an open cone such that _LEJJU,-XFJ-:

R R™\0. ’
i) For each j&J there exists an operator G%(¢,s) which satisfies (3 16)
in U;xI;.
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i) a;eC=(U,;xTI) is a function of homogeneous degree 0 in & such
that ; supp a;CU; X I"; and ;Jaj(x, &=1.

iv) B,eC(U;xI) is a functio]n of homogeneous degree 0 in & such
that; supp 8,€U,;XI"; and denoting by o the parameter of the
bicharacteristic strip of P, any bicharacteristic strip which starts
from some point (z, &) in supp «; at =0, does not intersect supp
(1—3;) for 0<o<T.

Now we define the global parametrix as follows;

(3.17) G (e, 5) = 2. 8i(x: Ds) G5t s) a;(z, Da) s

where a;(z, D)), Bj(x, D,) are pseudo-differential operators with symbols
a;(z, &), Bi(x, &) respectively. We see easily that (3.17) satisfies (1. 6), since
[P, B,] G%(t,s) @;=0 by Lemma 3.3 and iv).

§ 4. Estimate of the solution of the Cauchy problem.

We shall give the formula of the solution in order to obtain the unique-
ness of the solution and the estimate (1. 7).
We denote by G’ the operator

@) Gfiba=| (G 9—Ri—it—s Ri9) fls. 2) s,
where f€C*([0, T1; C7(R"). From (1.6) we obtain
[PG,f:f_ Wf}

lD};iG,flt=0:O, fOI‘ j:O,l.

Here W is an operator with a C*-kernel k(¢,s, x, %) such that
Wi, 2) = | [ke, 5, 29) A1, ) dys.

In order to construct the inverse of I—W by the Nrumann series, we
must insert suitable cut off functions. Let v, v,€C7(R") and K a compact
set in R* such that K contains the set U supp f(¢, x) Usupp v,Usupp v; and

0T
any bicharacteristic curve z(s), 0<o< 7, starting from some point of this

set at 6=0. Let a, a,=Cy(R™ be functions such that ¢;=1 on K and
a,=1 on suppa; and W =a, W. Then (I—W’)"1is given by i W'k, Setting
' =(I—W')if we obtain from (4.2) that o

o PG f =ay(I-W)f =ay(I-W')f =f
since oy W=a,a,W. Thus u=G'f" is a solution of the Cauchy problem
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(Pu=f in [0, T]xK,

4.3 .
( ) lD{u[t=0'—‘0, j:(),l-

Now we shall prove the uniqueness of (4.3). Let P* be the adjoint
operator of P then the principal symbol of P* is the same as that of P.
Thus we can also construct a parametrix of P* with smooth parameters
0<t<s<T, and solve the equation (4.3) for given f&C=([0, T]x K) in
[0, T] x K with the initial surface t=T instead of t=0. Note that P* is
strictly hyperbolic in £>0 and the domain of influence of £ is finite because
the bicharacteristic curve does not tangent to the surface t=0. Hence for
the equation (4.3) with initial surface =7 we obtain a smooth solution
which vanishes identically for large |z|. Therefore by the usual dual ar-
gument we conclude the uniqueness of (4.3). Choose K sufficiently large
for given f€C>([0, T]; Cy(R"®). Then from the above facts there exists
a unique solution u=C>=([0, TT; Cy(R™) of (4.3) in [0, T'] X R~.

For v, v, the solution of (1.3) is given by

u= i a, G*(¢t, 0) v, — <§_} a; RE(0) vk—l—itzlj a, Rf(0) vk)
(4. 4) k=0 k=0 k=0
+G I-W)=1f",
where
1 1 1
f =f~P{ %, @Gt 0) v ( 3 @R (0) v+t 3 ay REO) )
Now we shall estimate the operator
S” GU(t, 5) f(s, +) ds = St<G1(t, ) st) fls, +) s~hds
0 0
¢ 1 0 _1
= S <G+ (t,s), G_{¢, S)> s7 K(s) ( )s 2ds .
’ Ss, ¢)
Let t>s and X, 1€C®(R) functions such that X(¢)=1 if

1
0>2 and Z(e)=X(c—1). Put X% =1(p{), L=1—2(e(t)),
Z,=1—"%(o(s)). Decompose G.(t,s)s* as follows;

<1, X(0)=0 if
\=%(o(5)) and

uorav= ool 3000 - B v
oo Aslo®) o Alpl)) :
fecosela Qb0 a1 Vit

= 3 Ganslts ) 5 VGl )V

Then we have
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LEMMA 4.1. Let t>=s. Then G, (¢, s) st, Goalt,s) s? and G, ylt,s) st
become operators of the form (3.12) with symbols in Syi3(Rs X R?) depending

continuously on (t,s). Here A(€) stands for the phase functions —g—(p%(t)—

PH9), 5 010 and 0.
O00) 4, 5 Do) 4,y o Adlold)
Proor. We prove that 3. (o) X Xss A (o ()>s Xz Xy, and A (o(s))

S%XIZIES%;%. Note that from (2.6), (2.7) Cit+0)IE3<p@) <Gyt +0)€|% for
some constants C,, C,. Differentiating with respect to & we obtain that

10, (p(0) /. (o) =[5 (505" 0. (ot0)35 (18 (p19)|

g 3 <“) ol ! X
. R
ditea\ W lysal o v pl el ) ol ea]
a%+~--+a}2,:u2

0% (o(1)) a2t p(0): -3 (21D ) (0(5)) 351 p(5)- 025 p ()]
< Costpi(r) pod(s)]g e,

Since st p i (t) p~1(s) <s¥ p % (s) < Cl'l (H—C) |&]73 < é |€|73, the assertion for

O]
the first function is proved. From the boundedness of (711,:> (0(s)) on the

support of ¥, we see that
|05 0. ()| AL (0(9)| < Cust o7d (0] F < Cstlg| 3o

Since on the support of ¥, s<(s+§)<%[$f‘%, the assertion holds for the
1

second function. By the same argument we can prove for the last one.
Note also that if we replace @,(o(¢)), A.(o(t)) by @.(o(t), AL(po(?) in
the above functions, the symbol class S7}; must be replaced by S, This
proves the lemma.

Now remarking the degree of K(s), we apply and Lemma
4.1 to (4.4). Then we obtain

1 t
Jutt, ), <€) 5 G4 0) wil,, +CSO|| Gty 9) (s, +)|,, s7¥s

g+1

< #ul,,_, +Clivllens +C| | A5 ) sHas

g+1-%

< Cllodless+Clellyg +C | | £ ) 572 ds
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and
| Dewcte, )], < ] kzo D,GH(t, § v, + cs:" DG (e, ) stf(s, +)| s~ s
< Cllodlless+Cllwlleeg +C | | £l )54 ds,
since D,G,(t,s) is of degree 1. Moreover from the equation

PD,u = D,Pu+[P, D, u =D, f+ B,u,

where B, is a second order operator, we see that

|[Deates | Diwe, o], < Do, )+ | Diuto, )|

a+3-1
+CS0||F(S, .) lq_ls‘f ds

<Clx(, 9], +C §0||Df“u<0, |,

1 (¢ . )
et OB fIoests b,

where F=D,f+ B,u. Indeed apply the above argument to (D,«, F) instead
of (u,f). Iterating this procedure for k times, £<g, we see that

% Dttt i < ulo, o, B DE 0,

L]
)IlQ+1—k g+3 -k

(4' 5) k<q+l1 .
+Cx (|Difts, ) st

k<qJO
Now in order to obtain the estimate (1.7) we must estimate higher
derivatives of « at ¢=0 in the right hand side of (4.5). Thus we show
that

(4. 6) | DE* 0, )],y < Cliwdllers +Clivdley +C 3 [DIAO, ),
for £>1. Since for k=1

Du (0, z) = —(2a(0, D) Di+6(0, D)+ P,(0, z, D, D.)) u+£(0, z),
we see that

| Diuto, -)

< Cllollgss +Cllvdlory +CLAO, ).,

g+3-1
< Clivgllgss+Cllwillgry +C|AO, -, -

Now assume that the assertion holds for any & <<k Then it follows that

+C|Def0, +)|

k+1

<Cx[Diu, -

|ptuto, -

Q+3 -+ 1) g+i-(j-1 a+3~(k+D

< Cllvlgrs +Cllvdlens +CL | DiAO, -]
i<k
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since
Drt24,(0, x) = Df(——?,aDtu—-bu-P1u+f)|t=0 .

Apply (4.6) to (4.5) then we obtain (1.6). This completes the proof of
Theorem 1.2,

§ 5. Appendix ; Construction of a phase function of a completely
regularly hyperbolic operator whose principal symbol
depends on time and space variables.

In this chapter we shall give a solution of the eikonal equation p(z, ¢,)=
0, where p(x, &) is a principal symbol of a completely regularly hyperbolic
operator of second order.

Let xER", x=(x, &)=(2s, 1, *++, o) and E=(&y, &) its dual variables.
By a suitable canonical change of (2, &), we may assume that

(5.1) pla &) =8—(n+L(2,8)) Az, ¢).

Here Z(«,€) is homogeneouse degree 0, non-negative and A(x, &) is a
positive elliptic symbol of homogeneous degree 2 (see §2). Suppose that
£(0,&9=0 for some £°%0. Then the characteristic equation p (0, &, £°=0
with respect to & has a double root 0.

Now under these assumption we shall prove the following

THEOREM 5.1. There exist some conic neighborhood I'C Ry X R:\O of
(0, £ and real functions 6(x, &), p(x, &)=C?(RE™ X Ri\O) of homogeneous

2
degree 1 and 3 respectively such that

(5- 2) Plxo+c<x',e’)=o =0, Oz, (O: Slo)i—. 0,
(5. 3) det 6, (0, £9) % 0
and in the domain I'N{(z, &); p=0}, ¢.(x, &)=0(z, &)x %p% (z, &) satisfies
(5.4) P(x ¢uz) =0.
Let X=R™, T*(X)=Rrx R+,
V={=z29; px,§ =0},
M={(x,0,¢); z=—((,&)CV

and
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L={(0,4); %=l cM,

where veS* 1NRL, S '={eR*; |v|=1}. Here we regard v as a pa-
rameter. Note that for any (x, &), x,=—{(2, &), the characteristic equation
p(x, &, &)=0 has a double root &=0. Moreover M is a submanifold of
T*(X) and a symplectic space with respect to the restriction of the symplectic

2-form ¢= i dx,/\d&,. For fixed v, L, is a Lagrangian submanifold of M
k=0

with respect to oy.
Let @'(m) be the integral curve of the Hamiltonian vector field H,
which start from m at t=0. Then the orbits

(5. 5) A, = {q>t<m); meL}cV

is a Lagrangian submanifold of 7*(X).

Indeed for any meL,, H, is trasversal to L, at m since p, 0. Thus
we may take (¢, ') as a local coordinate system of A4, hence dim 4,=n+1.
Let (x(t, m), &(¢, m))=@'(m). Then at m=(z, 0,v)EL,, t=0,

0 n n
((dn=gE di— 3 Codm= — 3, Layd,

dxk:ngdt—l—dxk, k=1, n,

k

cdeo="L g — A de

axo

)
k dSk:~afk—dt:§ka(x, Wdt, k=1, n,

thus dx,\dé+ i}dxk/\dék-—-o so Typ(A)=Ty,(A). For any t, Tytwm(4)=
=0
D@t (m) (T (4,)) and D@ (m): Ty (A,)—> Tt (A,) is a symplectic map. This

proves the assertion.

Let ¢(x, n)eC®(XXR¥) be a real function such that ¢,(x, 7 is non-
degenerate with respect to (x,7). Then 4,={(x, ¢.); (x,9)=C,} is a La-
gragian submanifold of 7*(X), where C, is a submanifold of XX RY defined
by the equation ¢,(x,7)=0. Here we do not assume the homogeneity with
respect to 7.

The idea of the proof of [Theorem 5.1 is that we shall construct a
suitable phase function ¢(z,7,v) containing v as a smooth parameter such
that A,=4,.., and decrease the fiber variable 5 to one dimensional pa-
rameter « from the fact that rank #=#» on L,, where = is the projection
r: A—X. Furthermore noting that the projection z is a simple fold, we
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3
shall deform ¢(z, @, v) to the form 8(z, v)+p(x, u)a—-%— by the Malgrange’s
preparation theorem. Then A,={(z, 6,++vp p,)}, since ¢,=p—a® Thus it

. . 2
is equal to {(x, ¢.iz)}, if @.=0% -3—p3’2. If we extend 6(z,v), p(x,v) homo-

2 . .
gemeously of order 1 and = respectively, we obtain [Theorem 5. 1l.

In order to construct the phase function ¢(z, », v), suppose that §'%|&'0| =
WO=(, ---,1%), )20, and make a change of variables

1
(5. 6) o=Y» =Y+ 5 W+ FY), 2=V " Tn="Yn.
2

Denoting that T*(X)=R!*'X R!*!, we see that

tox &
6.7 a=yE= — ey,
% 51‘{"!/151
EntYnby
since
1 0 0--------—-0
0 14y, Yo Yn
oz =10 0 1-------- 0
oY { . :

Thus at (0,1°) the tangent vector (dx, 68) =(0xy, 62, 08, 68')E T 0,0 (T* (RETY))
is changed as follows

a'
(5. 8) 0y = 06+ 06+ 60 = 0e+u06
x=0
=0
g =

where oy is the corresponding fiber component of (3y, d7) € T, (T*(R2™)).
Note that the vectors (dx, 66)=(0, 62/, —p,, dt, 0) generate the tangent space
T, (4,) and for these vectors dyp=(—p, 0t,1102). Because —p,, 10,
7’1 A,— R is regular at (0, 0,19, where «’ is the projection R:*'X R —
R, Thus there exist some open neighborhoods UCR?*' of (0,19, U'C
S71 of v* and C%-functions Y (7, v)=(Y,(p, 1), ---, Yau(p,v)CC(UX U ; R
such that
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A,= {(Y(n, V), 1}) ; nel, ve U'} .

If w= i‘ Yidni, then do=ag| 4,=0 for fixed v since 4, is a Lagrangian,
k=0

hence there exists a C*-function H(y,v)€C®(UxU) such that dH= .
Now we take

(5 9) 95(@/7 /8 ”) = <y, 77> - H(77’ ”) .
Then dH=w implies that A,=4;..,. Substituting é(x, 7, v) = g (), n, v)

we have that 4,=4,. ., since the diagram

K
C¢(.,.’,,)“—>C¢"s(.’.’,,)

N
N

commutes, where £ is a map R X RM'S(x, 9)—>(y(x), n) ERY X RrH.

The next step is to decrease the number of the fiber variables. From
the above construction we may regard (¢, /) and % as the local coordinates
of /A, respectively and from (5. 8) the mapping 2/+>y is regular at (0,0, ).

g;c, (Y)%x0 so gyrx'(H,f) :%5,—%1;71,”— is non-degenerate, whch

Hence det

implies that det ¢, =det H,, %0 at 5,=0, 5/ =%, y=1°. By the implicit func-
tion theorem, there exists a C*-function # (', 7, v) which satisfies the equation

&y (9, v) =Y — Hy(p,v) =0,
where ¥ =y (£). Let a=5=&, ¢ the C=-function

(5. 10) &, a,v) = ¢<x, a, 7 (2, a, ), v) .

Then A4,=4,..,. In fact setting o/ =7/ (<, a,v) we have that b, (x, a, v)=0
if and only if ¢,(x,a,7,v)=0, and ¢ (X, , v) = @u(x, a, o, V) + @, (T, @, o, )
g:zf =¢.(x, @, 77, V).

Now for fixed v=1%, 2/ =0, we shall examine the behavior of ¢, with
respect to (xg, a). Put N=/A,N {(z, 0,&, 0)}. Since the (x,, &)-components of
the bicharacteristic strip of H, satisfy the equations #,=2§&, &= — Dz, there
a C*-function f(&,) such that N={(x,, 0, &, 0); xo=f(&,)}, where £(0)=f"(0)=0,
S"(0)=0. On the other hand recalling that ¢, (x, 0,7,1)=—H, (1Y), so
H, (a, 7 (0, a,1%,1") =0, we obtain that

ki

0 ’
¢1a <x07 0; «, VO) - % ¢<x0, Oa a, 7 (O; , VO)’ 1J0>
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’

o 0,0, )= 7 0. 5)

= xo——H,,<a, 7 (0, a, V), v") ) |

In view of (5.6), (5.9) and (5. 10), b1, =a=6p. Hence N={(z, 0, ¢,,,0)=
(20, 0, &g, 0) 3 o= H (0 7/ (0, &xs %), »%)} which means that

¢la (O! O, EO) = ¢1,,a (O, 0) 50) = 0’ ¢1aaa (O) O) 50) ; 0.
By the Taylor expansion with respect to a we see that
3
Bu(, & 9) = 03 ) +pu(m:2) et () @ —o(m @ 0) 5

where 0,(0,19)=0, py, (0,720, p(0,1)=0 and (0, 0,19 =.0.

Taking ¢%(z, @, v) @ as a new independant variable, which is also denoted
by a, we have

LEMMA 5.2. There exist open neighborhoods UXU CRL™' xS"™* of
0,19, UXIXU CR* xR, x5! of (0,0, and C®-real functions 6,(x,v),
pu(z, v), p(x,v) ECP(UXU') and a(z, a, ) EC(UXIXU) such that, if ¢ is
defined by

aS

é1(x, @, v) = O, (x, v)+ o1 (x, v) @(x, @, v)+ p(z, v) @z, a, v) — 5

then
(5.11) A=Ay,

Moreover p,(0,1°)=0, o, (0,+)0, ¢(0,*)=0, &z, 0,»)=0 and —g%(x, 0,v)=
o~3(z, 0,1)=0.
Finally we shall prove

ProposITION 5.3. Let ¢y be a C*-function
3
¢2(x, a, )J) = 00+cx0a— %_ ’
where ¢=py, (0,1°) a7%(0, 0, »*), 6,=0,(0, u“);
Then there exist open neighborhoods Ux U CR*1x S 1 of (0,1, UXIX
U CR\Vf X R, XS of (0,0,1) and C®-functions X(z,v), O(x,v)cC>(UXU’)
and Az, a,)eC(UXIXU) such that

(5.12)  X(0,M) =0, det %(x, )20,

(6.13) A0, a, ) = a, —abig——(x, a,v)x0
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and

¢1 <X(x’ V)’ A(x, a, ”)’ p) — ¢2(x’ , JJ) +@(x’ D)
(5. 14) o
=0,+0(x, v)+ cxya— 3 -

Note that both ¢, and ¢, are (n+1)+(n—1) dimensional unfoldings of
3
the right 3-determined function 00—% and 3-transversal ([13]). If we apply

general theory of the stability of unfoldings, we can construct C*-diffeo-
morphisms (X(z,v), N(z,v)), A(x,a,v), which satisfy that ¢,(X(z, v), A(z,a,v),
N(z,v))=¢q(x, @, v)+6(x,v). However it is not clear that X(z,v) is a C>-
diffeomorphism with respect to x for a fixed v (See (5.12)). Thus to prove
Proposition 5.3, using the Malgrange’s preparation theorem we show the
following

LEmMMA 5.4. Let E be a C®-function
(5. 15) E(x, a, v, t) = tdy(x, &, v) +(1 —2) oz, @, v) .

Then there exist a C®-function h(z, a,v,t) defined in an open neighborhood
of (0,0,:% 0)e Ry X R, X S" ' X R, and C*-functions k(zx, v, t), l(x, v, t) defined
in an open neighborhood of (0,1% 0)ER¥' X S*~1 X R, such that

oE oE oE
(5. 16) _8—{("% a, v, t) = —h(x, a,v, t)-a—a— —k(z, v, t)*a?o +1(x,v. t),

where
(5.17) h(0, a2 t) =0 and k(0, v, t) =1(0,1% 0)=0.

Proor. Remarking the facts that p(0, %) =py(0,1)=0 and é&(z, 0, v)=0,
we see that

a,S

(5 18) ¢1(x’ a, D) = 01(.’1?, ”) +Cx0a+f(x’ a, V)—- ? ’

where f satisfies

0? o’ )
(5.19) aaaj; ~(0,0,9) =0, aa{ 0,0, =0, j=1,2,3.
Setting FF'=t(6,—6,+f) we obtain, from (5. 15),
oE ok
(5. 20) ‘a—a = Cx0~a2—|— —a‘; s
oE oF

(5. 21) 9z, =ca-+ I
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Note that 0E/oa has regularity of order 2 at (0,0,:%0) with respect
to a. By the Malgrange’s preparation theorm, we have

oE oE

(5.22) 2 = 4@ v, 1) 5 (v, 8) at ez v, 1)
oF oE

(5. 23) oz = q (z, a, v, t)?;; +si(x, v, t) a+so(z, v, )

Here g, ¢ are C®-functions defined in an open neighborhood of (0, 0,1’ 0)
and 7y, 74, 5, So are C®-functions defined in an open neighborhood of (0,:°, 0).
Moreover from (5. 19), (5.23) implies that s,(0, 1%, 0)=0.

Here we remark that

oE ok
(5. 24) iz =(c_—|—sl)a+q'—a-a* ~+ 55
Let

k(x Y t) — —rl(x’ Y, t)

ct+s(z, v, t) ’
h(x, a, v, t) = —Q(xs «, v, t) ——k(x’ Y, t) q, (x’ Q, Vv, t) and
Z(.’L’, Y, t) - rﬂ(x) Y, t) +k(x, Y, t) So(x, Y, t) ’

then from (5.22), (5.24) we obtain (5.16). Since 9E/ot(0, a, v*, 1) =¢,(0, a, »°)
— (0, a, ) =0, (5. 19) implies that 7,(0, 1, ) =7(0, %, £)=0 and ¢(0, a, 1, £) =0,
which proves the lemma.

ProoF of ProPosITION 5.3. Now we define C®-mapping £; Rr'x
R, XS 1X R— R X R, X .5" 1 X R, as follows
(5. 25) E(z, a, v, 1) = (2, E(z, 0, v, 2), v, ¢) .

Let X, Y be C*®-vector fields on R*"'X R, XS !XR;,, Rit'XR,X S tXR,
respectively such that

0 ) 0
X = k(z, v, t)%o— +h(z, av, )7 -+ 5

(5. 26) 5 5 5
Y =Fk(x,v, t)a—xo +1(x, v, t)w + 5

From (5. 16), (5.25) and (5. 26),
(5.27) DEX)=Y,

where DE is the differential of E.
Let ¢*(x,a,v,t) be the integral curve of X such that ¢'(z,a,v,t)=
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(x, a, v, t), ¢*(x, Y, v, t) the integral curve of Y such that ¢*(x, ¥, v, 1) =(x, ¥, v, 8).

The coefficients of —a-z—; and % of Y do not depend on ¥, and those of
0

—a—%— and *a%— of Y are zero. Therefore ¢!(x,¥,v, 0) is written in the form

(5.28) ¢,y v, 0) =(Xo(z, % 2), ¥, y+60(z, v, 2), v, ) -

Noting that the coefficients of 9/0x, of X and Y are the same we can
write ¢'(x, @, v, 0) in the following form :

(5. 29) o' (z, a, v, 0) = (Xo(x, v, t), 2, Alx, a, v, t), v, t) X
From (5. 27), (5.28) and (5.29) we see
(Xa(z, v, 8), 2, E(zy v, 0)+6(z, v, 1), v, £)

= ¢t <x, E(z,a,v,0),v, O)
(5. 30)
= E(Xo(x, vt),x, Az, a,v,t), v, t>

= <X0(x, v t), 2, E<Xo(x, vt), 2, Az, v, t),v, t>, v, t> .

Let ¢'(x, a,v)=E(z, a, v, t) =td;+(1 —1) ¢y, A¥(x, a,v)=A(x, a, v, 1), O(x, )
=6(z, v, t) and X'(x,v)=(Xo(x, v, t), ). Then ¢’=¢, and from (5. 30)

&o(z, a, v) + 604, v) = ¢ <X‘(x, v), At (z, a, v), v) .

If t>0 is sufficiently small, X* and A‘ are C®-diffeomorphisms of z and
a respectively. By the same argument, substituting ¢%, ¢ for ¢;, ¢, respec-
tively, we can prove Lemma 5.4 for any 0=<¢,<2,=1, and so construct C*-
diffeomorphisms which are joining ¢* and ¢" if #,—¢, is sufficiently small.
Since the interval [0,1] is compact, composing such the finite C%-diffeo-
morphisms we obtain (5, 14).

ProoF of THEOREM 5.1. Let X(z,v)=(X,(x, v), &) be the inverse map-
ping of X(x,v), ¢ the function

3

éd(x, a,v) = 00+@<X'(x, v), v) +cXolz, v) a— %

(13

=0(z,v)+po(x,v)a— 5,

where 0(x, v)=0,+0(X(x, v),v), p(x, v)=cXo(x,v). Then 4, =4, = 4, 16=4,.

. 2
Furthermore if ¢,=p—a?=0, ¢,=0,++p p,, hence setting ¢p.=60=+ ) o? we
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see that 4, = {(z, ¢.)} CV.
I€']), then ¢.(x,&)=0(x,&)% %pg (x, &) solves the equation (5. 4).

note that if x+{(2,v)=0, (x, ¢..) EL,.
p=0 and 0, =v at x,={(«,v), & =», which proves (5. 2). (5. 3).

M. Imai

If 0(x,&)=1810(x,&/181), plx,&)=I¢13p(x, &/
Finally
Since p,,(0,1%)x0, it follows that

pletes the proof.
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