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Borel sets in non-separable Banach spaces\star )

By D. H. FREMLIN
(Received June 7, 1979; Revised November 16, 1979)

1. INTRODUCTION Let E be a Banach space. I shall write \mathscr{B}=\mathscr{B}(E)

for the \sigma-algebra of norm-Borel sets of E and \mathscr{C}=\mathscr{C}(E) for the “cyh.ndrical
\sigma-algebra” of Ei. e. the smallest \sigma-algebra of subsets of E for which every
element of the continuous dual E’ of E is measurable. (By [2], Theorem
2. 3 this is just the Baire \sigma-algebra for the weak topology \mathscr{T}_{s}(E, E’).) Of
course \mathscr{C}\subseteq \mathscr{B} ; if E is separable, \mathscr{C}=\mathscr{B} . The question I wish to address in
this note is: if \mathscr{C}=\mathscr{B} , does it follow that E is separable .p This question was
suggested to me by S. Okada. I shall show here that the answer is “no”.

2. DEFINITIONS (a) If E is a Banach space, the density character of
E, d(E) , is the smallest cardinal of any dense subset of E. Note that if E
is infinite-dimensional, then d(E) is also the smallest algebraic dimension of
any dense linear subspace of E – the “topological dimension” of E.

(b) If X and Y are any sets and \Sigma , T are \sigma-algebras of subsets of
X and Y respectively, I shall write \Sigma^{\wedge}\otimes_{\sigma}T for the \sigma-algebra of subsets of
X\cross Y generated by \{A\cross B:A\in\Sigma, B\in T\} . I shall write \mathscr{P}X for the power
set of X.

(c) If X is any set. then \swarrow 1(X) is the Banach space of all functions
x:Xarrow R such that ||x||=\Sigma_{t\in X}|x(t)|<\infty .

3. Lemma If X is an infinite set such that \mathscr{P}(X\cross X)=\mathscr{P}X^{\wedge}\otimes_{\sigma}\mathscr{P}X,
then \mathscr{B}(\swarrow 1(X))=\mathscr{C}(\swarrow 1(X)) .

PROOF (a) I begin with two set-theoretic remarks. First, if Y is any
set of the same cardinal as X, then \mathscr{P}(X\cross Y)=\mathscr{P}X^{\wedge}\otimes_{\sigma}\mathscr{P}Y. Consequently
we can use induction to see that, for any n\geq 0 , \mathscr{P}(X^{n+1}) is the \sigma-algebra
of subsets of X^{n+1} generated by \mathscr{B}_{n}=\{A_{0}\cross\cdots\cross A_{n} : A_{i}\underline{\subset}X\forall i\leq n\} . Secondly
the diagonal \{(t, t):t\in X\} belongs to \mathscr{P}X\otimes_{\sigma}\mathscr{P}X, and therefore belongs to
the \sigma-algebra of subsets of X\cross X generated by some sequence \langle A_{n}\cross B_{n}\rangle_{n\in N} .
Let \mathcal{E} be the countable subalgebra of \mathscr{P}X generated by \{A_{n} : n\in N\}\cup\{B_{n} :

*) The work of this paper was done during a visit to Japan supported by the United
Kingdom Science Research Council and Hokkaido University; the principal ideas
came during a conference supported by Kyoto University and the Matsunaga Foun-
dation. My thanks are also due to M. Talagrand for pointing out an error in the
first draft of this paper.
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n\in N\} ; then \mathcal{E} separates the points of X. So if \mathscr{X} is the (countable) family
of all finite partitions of X into sets belonging to \mathcal{E} , we see that for every
finite I\subseteq X there is a \mathscr{D}\in \mathscr{X} such that each element of \mathscr{D} contains at most
one point in I.

(b) The proof will aim to show that every norm-0pen set belongs to
\mathscr{C} ; I proceed by considering successively more complicated sets. First, balls

centred at 0 belong to \mathscr{C} . To see this, write \int_{D}x=\Sigma_{t\in D}x(t) for D\subseteq X and

x\in\swarrow 1(X) , so that \int_{D}\in(\swarrow 1)’ for each D\underline{\subset}X, and consider, for any \gamma\geq 0 ,

B_{\gamma}=\{x:||x||\leq\gamma\} ,

C_{\gamma}= \bigcap_{{?}\in x\{X:}\Sigma_{D\in \mathscr{L}|\int_{D}x|\leq\gamma\}1

Evidently B_{\gamma}\subseteq C_{\gamma} . On the other hand, if x\in\swarrow 1\backslash B_{\gamma} , so that ||x||>\gamma , there
is a finite set J\subseteq X such that

\Sigma_{t\in J}|x(t)|-\Sigma_{t\in X\backslash J}|x(t)|>\gamma .

Now there is a \mathscr{D}\in \mathscr{X} such that each member of \mathscr{D} contains at most one

element of J, and it is easy to see that \Sigma_{D\in \mathscr{L}}|\int_{D}x|>\gamma , so that x\not\in C_{\gamma} . Thus
C_{\gamma} is actually equal to B_{\gamma} . But since each \mathscr{D}\in \mathscr{X} is finite and \mathscr{X} itself is
countable, C_{\gamma}\in \mathscr{C} , so B_{r}\in \mathscr{C} .

(c) For the next step, take any A\subseteq X, \alpha\in R\backslash \{0\} , and 0<\delta\leq|\alpha| . Write

Q=\{x:\exists t\in A , |x(t)-\alpha|<\delta\}

Then x\in Q iff

(*) \exists\delta_{1}\in Q\cap]0 , \delta [ such that
\forall \mathscr{D}\in \mathscr{X}\exists D\in \mathscr{D} , E\in \mathcal{E} such that

E\subseteq D and | \int_{E\cap A}x-\alpha|\leq\delta_{1} .

(Here Q is the set of rational numbers.) To see this, suppose first that
x\in Q . Take t\in A such that |x(t)-\alpha|<\delta ; take \delta_{1}\in ] |x(t)-\alpha| , \delta[\cap Q . Let
I\subseteq X be a finite set such that t\in I and \int_{X\backslash I}|x|\leq\delta_{1}-|x(t)-\alpha| . Let E_{0}\in \mathcal{E} be

such that E_{0}\cap I=\{t\} . Now let \mathscr{D} be any partition belonging to \mathscr{X} Let D\in \mathscr{D}

be such that t\in D and set E=D\cap E_{0}\in \mathcal{E} . We have E\cap I=\{t\}\subseteq E\cap A , so
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| \int_{E\cap A}x-\alpha|\leq|x(t)-\alpha|+\int_{E\cap A\backslash \{t\}}|x|

\leq|x(t)-\alpha|+|\sim |x|\leq\delta_{1}

X\backslash I

Thus every x\in Q satisfies the condition (^{*}) . On the other hand, suppose
that x\in\swarrow 1 satisfies (^{*}) . Let I\underline{\subset}X be a finite set such that \int_{X\backslash I}|x|<\delta-\delta_{1} .
Let \mathscr{D}\in \mathscr{X} be such that each D\in \mathscr{D} meets I in at most one point. By
hypothesis, there is a D\in \mathscr{D} and an E\in \mathcal{E} such that E\subseteq D and | \int_{E\cap A}x-\alpha|\leq

\delta_{1} , so that

| \int_{E\cap A\cap I}x-\alpha|\leq|\int_{E\cap A}x-\alpha|+\int_{E\cap A\backslash I}|x|

<\delta_{1}+\delta-\delta_{1}=\delta

As \delta\leq|\alpha| , E\cap A\cap I\neq\emptyset ; but E\cap A\cap I\underline{\subset}D\cap I, so E\cap A\cap I must be a single-
ton \{t\} , where t\in A and |x(t)-\alpha|<\delta . Thus x\in Q .

Accordingly we have

Q= \bigcup_{\delta_{1}\in Q\cap 10,\delta\ddagger}\bigcap_{\mathscr{L}\in x}\bigcup_{D\in\varpi,E\in P,E_{-}}-\vee\subset D\{x:|\int_{E\cap A}x-\alpha|\leq\delta_{1}\}

which belongs to \mathscr{C} because Q, \mathscr{X} and \mathcal{E} are countable.
(d) For the third step, let \alpha_{0} , \cdots , \alpha_{n}\in R\backslash \{0\} and suppose that 0<\delta<

\min_{i\leq n}|\alpha_{i}| . If A\subseteq X^{n+1} , write

Q(A)=\{x:\exists\langle t_{i}\rangle_{i\leq n}\in A such that |x(t_{i})-\alpha_{i}|<\delta\forall i\leq n\}

Write \mathscr{A}=\{A : A\subseteq X^{n+1}, Q(A)\in \mathscr{C}\} .

If A= \prod_{i\leq n}A_{i}\in_{r}\mathscr{R}_{n} , then

Q(A)= \bigcap_{i\leq n}\{x:t\in A_{i} , |x(t)-\alpha_{i}|<\delta\}

belongs to \mathscr{C} by (c) above, so \mathscr{B}_{n}\underline{\subset}\mathscr{A} . Next, \mathscr{A} is closed under countable
unions because Q( \bigcup_{m\in N}A_{n})=\bigcup_{m\in N}Q(A_{m}) for any sequence \langle A_{m}\rangle_{m\in N} in
\mathscr{P}(X^{n+1}) . Thirdly, if \langle A_{m}\rangle_{m\in N} is a decreasing sequence in \mathscr{P}(X^{n+1}) ,
Q(\cap m\in NA_{m})=\cap m\in NQ(A_{m}) ; for if x\in\cap m\in NQ(A_{m}) , then the set

J=\{\langle t_{i}\rangle_{i\leq n} : |x(t_{i})-\alpha_{i}|<\delta\forall i\leq n\}

is finite (in fact \# (J) . ( \min_{i\leq n}|\alpha_{i}|-\delta)\leq||x|| ) and meets every A_{m} , so must
meet \cap m\in NA_{m} .

Thus \mathscr{A} includes \mathscr{R}_{n} and is closed under arbitrary countable unions
and monotonic countable intersections. It follows that \mathscr{A} includes the sub-
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algebra of \mathscr{P}(X^{n+1}) generated by \mathscr{R}_{n} and the therefore the \sigma-subalgebra of
\mathscr{P}(X^{n+1}) generated by \mathscr{B}_{n} , which is \mathscr{P}(X^{n+1}) itself, by (a). So we see that
Q(A)\in \mathscr{C} for every A\subseteq X^{n+1} .

(e) Observe next that every non-empty norm-0pen set G\subseteq\swarrow 1(X)\backslash \{0\}

is expressible as a union of sets of the form

(x:|x(t_{i})-\alpha_{i}|<\delta\forall i\leq n , ||x||\leq\gamma\}

where t_{0} , \cdots , t_{n}\in X, \alpha_{0}, \cdots , \alpha_{n}\in Q\backslash \{0\} , \gamma , \delta\in Q , and 0< \delta<\min_{i\leq n}|\alpha_{i}| . As
there are only countably many choices of the parameters \alpha_{0}, \cdots , \alpha_{n}, \gamma, \delta , G

is expressible as a countable union of sets of the form Q\cap B_{\gamma} , where Q is
of the type discussed in (d). Putting (b) and (d) together, we see that G\in \mathscr{C} .
As G is arbitrary, every norm-0pen set belongs to \mathscr{C} (because \{0\}=B_{0}\in \mathscr{C}),

and \mathscr{B}\subseteq \mathscr{C} .
4. THEOREM Let \kappa be an infinite cardinal. Then the following are

equivalent :
(i) There is a Banach space E such that d(E)=\kappa and \mathscr{B}(E)=\mathscr{C}, (E);
(ii) \mathscr{B}(\swarrow 1(\kappa))=\mathscr{C}(\swarrow 1(\kappa)) ;
(iii) \mathscr{P}(\kappa\cross\kappa)=\mathscr{P}\kappa\otimes_{\sigma}\mathscr{P}\wedge\kappa ;
(iv) if E is any Banach space with d(E)\leq\kappa, the map (\alpha, x, y)\mapsto\alpha x+y :

R\cross E\cross Earrow E is measurable for the \sigma-algebras \mathscr{B}(R)\wedge\otimes_{\sigma}\mathscr{B}(E)\wedge\otimes_{\sigma}\mathscr{B}(E) and \mathscr{B}(E) .
PROOF (iii)\Rightarrow(ii) is Lemma 3 above, and (ii)\Rightarrow(i) is obvious. For the

equivalence of (i), (iii) and (iv), we can use Theorem 1 of [5], which shows
that for any Banach space E the map (\alpha, x, y)\ulcornerarrow\alpha x+y is measurable iff
\mathscr{P}(d(E)\cross d(E))=\mathscr{P}(d(E))\wedge\otimes_{\sigma}\mathscr{P}(d(E)) . But of course the map (\alpha, x, y)\mapsto\alpha x+y

is always measurable for \mathscr{B}(R)\wedge\otimes_{\sigma}\mathscr{B}(E)\otimes_{\sigma}\mathscr{B}(E) and \mathscr{C}(E) , so if \mathscr{B}(E)=\mathscr{C}(E)

then \mathscr{P}(d(E)\cross d(E))=\mathscr{P}(d(E))\wedge\otimes_{\sigma}\mathscr{P}(d(E)) .
5. OKADA’S PROBLEM Okada’s question therefore becomes: is there an

uncountable \kappa satisfying the conditions of Theorem 4 p. Now condition (iii)

has been extensively studied; see [3] for a recent survey of the known
results. For our present enquiry the following are the most relevant:

(i) \mathscr{P}(\aleph_{1}\cross\aleph_{1})=\mathscr{P}(\aleph_{1})\wedge\otimes_{\sigma}\mathscr{P}(\aleph_{1}) ;
(ii) if Martin’s Axiom is true, \mathscr{P}(\kappa\cross \kappa)=\mathscr{P}\kappa\otimes_{\sigma}\mathscr{P}\wedge\kappa for every \kappa\leq c ;
(iii) assuming that the continuum hypothesis is false, it is still unde-

cidable whether \mathscr{P}(c\cross c)=\mathscr{P}cO\cross_{\sigma}\mathscr{P}c .
Of these we need only (i) to settle Okada’s question; \mathscr{B}(\swarrow 1(\aleph_{1}))=

\mathscr{C}(\swarrow 1(\aleph_{1})) and \swarrow 1(\aleph_{1}) is not separable. (This was conjectured by G. A.
Edgar.)

6. PROBLEM We can ask a similar question concerning \mathscr{B}_{s} , the algebra
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of Borel sets for the weak topology \mathscr{T}_{s}(E, E’) . G. A. Edgar ([2], Theorem
1. 1) has given an important class of spaces for which \mathscr{B}_{s}=\mathscr{B} ; there is no
restriction on their density character. (For instance, all uniformly convex
spaces have this property.) However, we can ask: are there spaces of large
density character for which \mathscr{B}_{s}=\mathscr{C}?. in particular, is this always possible
with d(E)=c, even if \mathscr{P}(c\cross c)\neq \mathscr{P}c^{\wedge}\otimes_{\sigma}\mathscr{P}cp.

It is perhaps worth repeating here a simple observation due to Okada.
If \mathscr{B}_{s}(E)=\mathscr{C}(E) , then \{0\}\in \mathscr{C}(E) , so that E’ is \mathscr{T}_{s}(E’, E) -separable. If E is
reflexive, it follows at once that E is separable. Of course, with E=\swarrow^{\infty}(N) ,
we have E’\mathscr{T}_{s}(E_{2}’E) -separable but \mathscr{B}(E)\neq \mathscr{B}_{s}(E)\neq \mathscr{C}(E) (see [4]).
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