Borel sets in non-separable Banach spaces^{*)}

By D. H. FREMLIN

(Received June 7, 1979; Revised November 16, 1979)

1. INTRODUCTION Let E be a Banach space. I shall write $\mathscr{B} = \mathscr{B}(E)$ for the σ -algebra of norm-Borel sets of E and $\mathscr{C} = \mathscr{C}(E)$ for the "cylindrical σ -algebra" of E *i. e.* the smallest σ -algebra of subsets of E for which every element of the continuous dual E' of E is measurable. (By [2], Theorem 2.3 this is just the Baire σ -algebra for the weak topology $\mathscr{T}_s(E, E')$.) Of course $\mathscr{C} \subseteq \mathscr{B}$; if E is separable, $\mathscr{C} = \mathscr{B}$. The question I wish to address in this note is: if $\mathscr{C} = \mathscr{B}$, does it follow that E is separable? This question was suggested to me by S. Okada. I shall show here that the answer is "no".

2. DEFINITIONS (a) If E is a Banach space, the *density character* of E, d(E), is the smallest cardinal of any dense subset of E. Note that if E is infinite-dimensional, then d(E) is also the smallest algebraic dimension of any dense linear subspace of E — the "topological dimension" of E.

(b) If X and Y are any sets and Σ , T are σ -algebras of subsets of X and Y respectively, I shall write $\Sigma \bigotimes_{\sigma} T$ for the σ -algebra of subsets of $X \times Y$ generated by $\{A \times B : A \in \Sigma, B \in T\}$. I shall write $\mathscr{P}X$ for the power set of X.

(c) If X is any set. then $\mathscr{C}^{1}(X)$ is the Banach space of all functions $x: X \to \mathbf{R}$ such that $||x|| = \Sigma_{t \in X} |x(t)| < \infty$.

3. LEMMA If X is an infinite set such that $\mathscr{P}(X \times X) = \mathscr{P}X \bigotimes_{\sigma} \mathscr{P}X$, then $\mathscr{B}(\mathscr{E}^{1}(X)) = \mathscr{C}(\mathscr{E}^{1}(X))$.

PROOF (a) I begin with two set-theoretic remarks. First, if Y is any set of the same cardinal as X, then $\mathscr{P}(X \times Y) = \mathscr{P}X \bigotimes_{\sigma} \mathscr{P}Y$. Consequently we can use induction to see that, for any $n \ge 0$, $\mathscr{P}(X^{n+1})$ is the σ -algebra of subsets of X^{n+1} generated by $\mathscr{R}_n = \{A_0 \times \cdots \times A_n : A_i \subseteq X \forall i \le n\}$. Secondly the diagonal $\{(t, t) : t \in X\}$ belongs to $\mathscr{P}X \bigotimes_{\sigma} \mathscr{P}X$, and therefore belongs to the σ -algebra of subsets of $X \times X$ generated by some sequence $\langle A_n \times B_n \rangle_{n \in \mathbb{N}}$. Let \mathscr{E} be the countable subalgebra of $\mathscr{P}X$ generated by $\{A_n : n \in \mathbb{N}\} \cup \{B_n :$

^{*)} The work of this paper was done during a visit to Japan supported by the United Kingdom Science Research Council and Hokkaido University; the principal ideas came during a conference supported by Kyoto University and the Matsunaga Foundation. My thanks are also due to M. Talagrand for pointing out an error in the first draft of this paper.

 $n \in \mathbb{N}$; then \mathcal{E} separates the points of X. So if \mathscr{X} is the (countable) family of all finite partitions of X into sets belonging to \mathcal{E} , we see that for every finite $I \subseteq X$ there is a $\mathscr{D} \in \mathscr{X}$ such that each element of \mathscr{D} contains at most one point in I.

(b) The proof will aim to show that every norm-open set belongs to \mathscr{C} ; *I* proceed by considering successively more complicated sets. First, balls centred at 0 belong to \mathscr{C} . To see this, write $\int_{D} x = \Sigma_{t \in D} x(t)$ for $D \subseteq X$ and $x \in \mathscr{C}^{1}(X)$, so that $\int_{D} \in (\mathscr{C}^{1})'$ for each $D \subseteq X$, and consider, for any $\gamma \ge 0$, $B_{*} = \{x : ||x|| \le \gamma\}$,

$$C_{r} = \bigcap_{\mathscr{I} \in \mathscr{I}} \left\{ x \colon \Sigma_{D \in \mathscr{I}} \left| \int_{D} x \right| \leq \gamma \right\}.$$

Evidently $B_r \subseteq C_r$. On the other hand, if $x \in \mathscr{C} \setminus B_r$, so that $||x|| > \gamma$, there is a finite set $J \subseteq X$ such that

$$\Sigma_{t\in J} |x(t)| - \Sigma_{t\in X\setminus J} |x(t)| > \gamma$$
.

Now there is a $\mathscr{D} \in \mathscr{X}$ such that each member of \mathscr{D} contains at most one element of J, and it is easy to see that $\sum_{D \in \mathscr{X}} \left| \int_{D} x \right| > \gamma$, so that $x \notin C_r$. Thus C_r is actually equal to B_r . But since each $\mathscr{D} \in \mathscr{X}$ is finite and \mathscr{X} itself is countable, $C_r \in \mathscr{C}$, so $B_r \in \mathscr{C}$.

(c) For the next step, take any $A \subseteq X$, $\alpha \in \mathbb{R} \setminus \{0\}$, and $0 < \delta \leq |\alpha|$. Write

$$Q = \left\{ x : \exists t \in A, \left| x(t) - \alpha \right| < \delta \right\}.$$

Then $x \in Q$ iff

(*)
$$\exists \delta_1 \in Q \cap]0, \delta[$$
 such that
 $\forall \mathscr{D} \in \mathscr{X} \exists D \in \mathscr{D}, E \in \mathscr{E}$ such that
 $E \subseteq D$ and $\left| \int_{E \cap A} x - \alpha \right| \leq \delta_1.$

(Here Q is the set of rational numbers.) To see this, suppose first that $x \in Q$. Take $t \in A$ such that $|x(t) - \alpha| < \delta$; take $\delta_1 \in]|x(t) - \alpha|$, $\delta[\cap Q]$. Let $I \subseteq X$ be a finite set such that $t \in I$ and $\int_{X \setminus I} |x| \leq \delta_1 - |x(t) - \alpha|$. Let $E_0 \in \mathcal{E}$ be such that $E_0 \cap I = \{t\}$. Now let \mathcal{D} be any partition belonging to \mathcal{X} . Let $D \in \mathcal{D}$ be such that $t \in D$ and set $E = D \cap E_0 \in \mathcal{E}$. We have $E \cap I = \{t\} \subseteq E \cap A$, so

Borel sets in non-separable Banach spaces

$$\left| \int_{E \cap A} x - \alpha \right| \leq |x(t) - \alpha| + \int_{E \cap A \setminus \{t\}} |x|$$
$$\leq |x(t) - \alpha| + \int_{X \setminus I} |x| \leq \delta_1.$$

Thus every $x \in Q$ satisfies the condition (*). On the other hand, suppose that $x \in \mathscr{C}^1$ satisfies (*). Let $I \subseteq X$ be a finite set such that $\int_{X \setminus I} |x| < \delta - \delta_1$. Let $\mathscr{D} \in \mathscr{X}$ be such that each $D \in \mathscr{D}$ meets I in at most one point. By hypothesis, there is a $D \in \mathscr{D}$ and an $E \in \mathscr{E}$ such that $E \subseteq D$ and $\left| \int_{E \cap A} x - \alpha \right| \leq \delta_1$, so that

$$\left| \int_{E \cap A \cap I} x - \alpha \right| \leq \left| \int_{E \cap A} x - \alpha \right| + \int_{E \cap A \setminus I} |x|$$

$$< \delta_1 + \delta - \delta_1 = \delta .$$

As $\delta \leq |\alpha|$, $E \cap A \cap I \neq \emptyset$; but $E \cap A \cap I \subseteq D \cap I$, so $E \cap A \cap I$ must be a singleton $\{t\}$, where $t \in A$ and $|x(t) - \alpha| < \delta$. Thus $x \in Q$.

Accordingly we have

$$Q = \bigcup_{\delta_1 \in \mathbf{Q} \cap \mathbf{10}, \delta \mathbf{I}} \cap_{\mathscr{I} \in \mathscr{X}} \bigcup_{D \in \mathscr{I}, E \in \mathscr{E}, E \subseteq D} \Big\{ x : \Big| \int_{E \cap A} x - \alpha \Big| \leq \delta_1 \Big\}$$

which belongs to $\mathscr C$ because Q, $\mathscr X$ and $\mathscr E$ are countable.

(d) For the third step, let $\alpha_0, \dots, \alpha_n \in \mathbb{R} \setminus \{0\}$ and suppose that $0 < \delta < \min_{i \leq n} |\alpha_i|$. If $A \subseteq X^{n+1}$, write

$$Q(A) = \left\{ x : \exists \langle t_i \rangle_{i \leq n} \in A \text{ such that } |x(t_i) - \alpha_i| < \delta \forall i \leq n \right\}.$$

Write $\mathscr{A} = \{A : A \subseteq X^{n+1}, Q(A) \in \mathscr{C}\}.$

If
$$A = \prod_{i \leq n} A_i \in \mathscr{R}_n$$
, then
 $Q(A) = \bigcap_{i \leq n} \left\{ x \colon t \in A_i, \ \left| x(t) - \alpha_i \right| < \delta \right\}$

belongs to \mathscr{C} by (c) above, so $\mathscr{R}_n \subseteq \mathscr{A}$. Next, \mathscr{A} is closed under countable unions because $Q(\bigcup_{m \in \mathbb{N}} A_n) = \bigcup_{m \in \mathbb{N}} Q(A_m)$ for any sequence $\langle A_m \rangle_{m \in \mathbb{N}}$ in $\mathscr{P}(X^{n+1})$. Thirdly, if $\langle A_m \rangle_{m \in \mathbb{N}}$ is a decreasing sequence in $\mathscr{P}(X^{n+1})$, $Q(\cap_{m \in \mathbb{N}} A_m) = \bigcap_{m \in \mathbb{N}} Q(A_m)$; for if $x \in \bigcap_{m \in \mathbb{N}} Q(A_m)$, then the set

$$J = \left\{ \langle t_i \rangle_{i \leq n} : \left| x(t_i) - \alpha_i \right| < \delta \forall i \leq n \right\}$$

is finite (in fact #(J). $(\min_{i \le n} |\alpha_i| - \delta) \le ||x||$) and meets every A_m , so must meet $\bigcap_{m \in N} A_m$.

Thus \mathscr{A} includes \mathscr{R}_n and is closed under arbitrary countable unions and monotonic countable intersections. It follows that \mathscr{A} includes the subalgebra of $\mathscr{P}(X^{n+1})$ generated by \mathscr{R}_n and the therefore the σ -subalgebra of $\mathscr{P}(X^{n+1})$ generated by \mathscr{R}_n , which is $\mathscr{P}(X^{n+1})$ itself, by (a). So we see that $Q(A) \in \mathscr{C}$ for every $A \subseteq X^{n+1}$.

(e) Observe next that every non-empty norm-open set $G \subseteq \mathscr{C}^1(X) \setminus \{0\}$ is expressible as a union of sets of the form

$$\left(x: \left|x(t_{i})-\alpha_{i}\right| < \delta \forall i \leq n, ||x|| \leq \gamma\right)$$

where $t_0, \dots, t_n \in X$, $\alpha_0, \dots, \alpha_n \in Q \setminus \{0\}$, γ , $\delta \in Q$, and $0 < \delta < \min_{i \le n} |\alpha_i|$. As there are only countably many choices of the parameters $\alpha_0, \dots, \alpha_n, \gamma, \delta, G$ is expressible as a countable union of sets of the form $Q \cap B_r$, where Q is of the type discussed in (d). Putting (b) and (d) together, we see that $G \in \mathscr{C}$. As G is arbitrary, every norm-open set belongs to \mathscr{C} (because $\{0\} = B_0 \in \mathscr{C}$), and $\mathscr{B} \subseteq \mathscr{C}$.

4. THEOREM Let κ be an infinite cardinal. Then the following are equivalent:

(i) There is a Banach space E such that $d(E) = \kappa$ and $\mathscr{B}(E) = \mathscr{C}(E)$;

(ii)
$$\mathscr{B}(\mathscr{E}^{1}(\kappa)) = \mathscr{C}(\mathscr{E}^{1}(\kappa));$$

(iii) $\mathscr{P}(\kappa \times \kappa) = \mathscr{P}\kappa \widehat{\otimes}_{\sigma} \mathscr{P}\kappa$;

(iv) if E is any Banach space with $d(E) \leq \kappa$, the map $(\alpha, x, y) \mapsto \alpha x + y$: $\mathbf{R} \times E \times E \to E$ is measurable for the σ -algebras $\mathscr{B}(\mathbf{R}) \otimes_{\sigma} \mathscr{B}(E) \otimes_{\sigma} \mathscr{B}(E)$ and $\mathscr{B}(E)$.

PROOF (iii) \Rightarrow (ii) is Lemma 3 above, and (ii) \Rightarrow (i) is obvious. For the equivalence of (i), (iii) and (iv), we can use Theorem 1 of [5], which shows that for any Banach space E the map $(\alpha, x, y) \mapsto \alpha x + y$ is measurable iff $\mathscr{P}(d(E) \times d(E)) = \mathscr{P}(d(E)) \bigotimes_{\sigma} \mathscr{P}(d(E))$. But of course the map $(\alpha, x, y) \mapsto \alpha x + y$ is always measurable for $\mathscr{B}(R) \bigotimes_{\sigma} \mathscr{B}(E) \bigotimes_{\sigma} \mathscr{B}(E)$ and $\mathscr{C}(E)$, so if $\mathscr{B}(E) = \mathscr{C}(E)$ then $\mathscr{P}(d(E) \times d(E)) = \mathscr{P}(d(E)) \bigotimes_{\sigma} \mathscr{P}(d(E))$.

5. OKADA'S PROBLEM Okada's question therefore becomes : is there an uncountable κ satisfying the conditions of Theorem 4? Now condition (iii) has been extensively studied; see [3] for a recent survey of the known results. For our present enquiry the following are the most relevant :

(i) $\mathscr{P}(\mathfrak{K}_1 \times \mathfrak{K}_1) = \mathscr{P}(\mathfrak{K}_1) \bigotimes_{\sigma} \mathscr{P}(\mathfrak{K}_1);$

(ii) if Martin's Axiom is true, $\mathscr{P}(\kappa \times \kappa) = \mathscr{P}\kappa \bigotimes_{\sigma} \mathscr{P}\kappa$ for every $\kappa \leq \mathbf{c}$;

(iii) assuming that the continuum hypothesis is false, it is still undecidable whether $\mathscr{P}(\mathbf{c} \times \mathbf{c}) = \mathscr{P}\mathbf{c} \otimes_{\sigma} \mathscr{P}\mathbf{c}$.

Of these we need only (i) to settle Okada's question; $\mathscr{B}(\mathscr{C}^{1}(\mathfrak{F}_{1})) = \mathscr{C}(\mathscr{C}^{1}(\mathfrak{F}_{1}))$ and $\mathscr{C}^{1}(\mathfrak{F}_{1})$ is not separable. (This was conjectured by G. A. Edgar.)

6. PROBLEM We can ask a similar question concerning \mathcal{B}_s , the algebra

182

of Borel sets for the weak topology $\mathscr{T}_s(E, E')$. G. A. Edgar ([2], Theorem 1.1) has given an important class of spaces for which $\mathscr{B}_s = \mathscr{B}$; there is no restriction on their density character. (For instance, all uniformly convex spaces have this property.) However, we can ask: are there spaces of large density character for which $\mathscr{B}_s = \mathscr{C}$? in particular, is this always possible with $d(E) = \mathbf{c}$, even if $\mathscr{P}(\mathbf{c} \times \mathbf{c}) \neq \mathscr{P}\mathbf{c} \otimes_{\sigma} \mathscr{P}\mathbf{c}$?

It is perhaps worth repeating here a simple observation due to Okada. If $\mathscr{B}_s(E) = \mathscr{C}(E)$, then $\{0\} \in \mathscr{C}(E)$, so that E' is $\mathscr{T}_s(E', E)$ -separable. If E is reflexive, it follows at once that E is separable. Of course, with $E = \mathscr{C}^{\infty}(N)$, we have $E' \, \mathscr{T}_s(E', E)$ -separable but $\mathscr{B}(E) \neq \mathscr{B}_s(E) \neq \mathscr{C}(E)$ (see [4]).

References

- [1] J. BARWISE (ed.): Handbook of Mathematical Logic, North-Holland 1977.
- [2] G. A. EDGAR: "Measurability in a Banach space I", Indiana Univ. Math. J. 26 (1977) 663-677.
- [3] A. MILLER: to appear in Ann. Math. Logic.
- [4] M. TALAGRAND: "Comparaison des boreliens d'un espace de Banach pour les topologies fortes et faibles", Indiana Univ. Math. J. 27 (1978) 1001-1004.
- [5] M. TALAGRAND: "Est-ce que l[∞] est un espace mesurable ?", Bull. des Sciences Mathematiques (2) 103 (1979).

University of Essex, Colchester, England