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Some remarks on p-blocks of finite groups

By Tetsuro OKUYAMA
(Received Oct. 4, 1977; Revised Feb. 21, 1980)

In this paper we are concerned with modular representations of finite
groups. Let G be a finite group and p a fixed rational prime. Let K be
a complete p-adic field of characteristic 0 and R the ring of p-local integers
in K with the principal maximal ideal (\pi) and the residue class field R=R/(\pi)

of characteristic p. We assume throughout the paper that fields K and R
are both splitting fields for all subgroups of the given group G. We men-
tion here [2] and [3] as general references for the modular representation
theory of finite groups.

1. In this section we shall give some necessary and sufficient condition
for G to be p-nilpotent. If B is a p-block of G, then let Irr(B) denote
the set of irreducible K-characters of G in B. For a class function \theta of G
we put \theta_{B}=\sum_{\chi\in Irr(B)}(\theta, \chi)\chi . Let B_{0}(G) denote the principal p-block of G.

We prove the following.
THEOREM 1. Let H be a subgroup of G which contains a Sylow

p subgroup P of G. If 1_{HB_{0}(G)}^{G}(x)=1 for any p-element x\neq 1 in G, then H
controls the fusion of elements of P.

To prove the theorem we use the following elementary lemma which
follows from Brauer’s Second Main Theorem.

Lemma. Let \theta be a class function of G, x a p-element of G and B
a p-block of G. Then \theta_{B}(x)=\sum\theta_{1c_{G^{(x)b}}}(x) where b ranges over the set of
p-blocks of C_{G}(x) with b^{G}=B .

PROOF of THEOREM 1. Let x\neq 1 be an element of P, C=C_{G}(x) , B=
B_{0}(G) and b=B_{0}(C) . By Mackey decomposition we have 1_{H1C}^{G}= \sum(1_{H^{y}\cap C})^{C}

where y ranges over a complete set of representatives of (H, C) -double cosets
in G. Thus the above lemma and the result of Brauer (Theorem 65. 4 [2])
show that 1_{HB}^{G}(x)= \sum(1_{H^{y}\cap C})^{c_{b}}(x) . If x\in H^{y}\cap C, then (1_{H^{y}\cap C})_{b}^{C}(x)=(1_{H^{1}\cap C}/)_{b}^{C}

(1) . and if x\not\in H^{y}\cap C, then (1_{H^{y}\cap C})_{b}^{C}(x)=0 by (6. 3) IV in [3]. As 1_{HB}^{G}(x)=1

by our assumption, x\in H^{y}\cap C if and only if y\in HC. Therefore if x^{y}\in H

for some element y, then there exists an element h in H such that x^{y}=x^{h}

and therefore the theorem is proved.
As an easy corollary of Theorem 1 we have the following.
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COROLLARY 2. Let P be a Sylow p-subgroup of G. Then G is p-
nilpotent if and only if 1_{PB_{0}(G)}^{G}(x)=1 for any p-element x\neq 1 of G.

PROOF. If G is p-nilpotent, then it is easy to show that 1_{PB_{0}(G)}^{G}=1_{G}

and therefore 1_{PB_{0}(G)}^{G}(x)=1 for any element x of G. Conversely assume
that 1_{PB_{0}(G)}^{G}=1 on p-elements \neq 1 of G. Then Theorem 1 shows that two
elements of P are conjugate in G if and only if in P. Thus the corollary
follows from the well-known result on Transfer Theory.

2. If B is a p-block of G then for an R[G] -module V we define V_{B}=

Ve where e is the centrally primitive idempotent of R[G] corresponding to
B (in this paper modules will always be right unital). Let L_{0}(G) denote
the trivial R-free R[G] -module of R-rank 1. If V is an R[G] -module then
let \overline{V}=V/V(\pi) which is an \overline{R}[G] -module.

Let P be a Sylow p-subgroup of G. If PoG, then L_{0}(P)^{G} is com-
pletely reducible and every irreducible R[G] -module has a vertex P. In
this connection we have the following.

THEOREM 3. Let G be a finite group and B a p-block of G with
defect group D. Let N=N_{G}(D) and b a p-block of N with b^{G}=B . then
the following are equivalent.

(1) GPD Ker B where Ker B= \bigcap_{\chi\in_{9}I\gamma\gamma(B)}ker\chi .

(2) For every irreducible R[G] -module L in BL_{N} is also irreducible.
(3) \overline{L_{0}(D})_{B}^{G} is completely reducible and every irreducible R[G] -module

in B has a vertex D.

PROOF. (1)arrow(3) . Since GrD Ker B,\overline{L_{0}(D)}_{B}^{G} is considered as an \overline{R}[G/D]-

module. Every irreducible R[G]\prime module in B has kernel containing D and
is projective as an R[G/D] -module. Thus the result follows.

(3)arrow(2) . By our assumprion L_{0}(D)_{B}^{G}= \sum\oplus n_{i}L_{i} where L_{i}’s are irre-
ducible \overline{R}[G] -modules in B. By Nakayama Relation (see [3], p141) n_{i}=

\dim_{\overline{R}}U_{i}/|D| where U_{i} is the principal indecomposable \overline{R}[G] -module corre-
sponding to L_{i} . Then assertion (1)arrow(3) shows that \overline{L_{0}(D})_{b}^{N}=\sum\oplus m_{j}M_{j}

where M_{j’}s are irreducible \overline{R}[N] -modules in b. By the same reason as
the above m_{j}=\dim_{\overline{R}}V_{j}/|D| where V_{j} is the principal indecomposable R[N]-
module corresponding to M_{j} . Then by Green Correspondence with respect
to (G, D, N) the numbers of L_{i’}s and M_{j’}s are equal and after suitable rear-
argument n_{i}=m_{i} and L_{i} corresponds to M_{i} . Then by Nakayama Relation

U_{iN}\cong V_{i} and therefore L_{iN}=M_{i} .
(2)arrow(1) . This is proved by the similar argument in [4] (Theorem 4).

By our assumption \cap Ker L\supseteq D Ker B where L ranges over the set of all
irreducible \overline{R}[G] -modules in B. Thus D Ker B=\cap KerL\sim G .
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REMARK 1. The equivalence of (1) and (2) in case B=B_{0}(G) is the
result of Isaacs and Smith (Theorem 4, [4]).

As a corollary of this theorem we have the following.

COROLLARY 4. Let G be a finite group and P a Sylow p-subgroup
of G. Then G has p-length 1 if and only if \overline{L_{0}(P})_{B_{0}(G)}^{G} is completely re-
ducible and every irreducible \overline{R}[G] -module in B_{0}(G) has a vertex P.

REMARK 2. The condition that every irreducible \overline{R}[G] -module in
B_{0}(G) in the above can not be dropped as the group S_{4} , the symmetric
group of degree 4 shows.

3. In this section we shall prove some results related to the result of
Brauer (Theorem 2, [1]). In [1] Brauer has proved the following.

THEOREM (Brauer, [1]). Let G be a finite group and P a Sylow p-
subgroup of G. If B is a p-block of G with defect group D\subseteq P, then
\dim_{\overline{R}}\overline{L_{0}(P})_{B}^{G}=|P:D|v , where (p, v)=1 .

If \dim_{\overline{R}}L_{0}(P)_{B}^{G} is a power of p, then Brauer’s Theorem implies that
B has the unique irreducible \overline{R}[G] -module in it. In particular, G is p-
nilpotent if and only if \dim_{\overline{R}}\overline{L_{0}(P})_{B_{0}(G\rangle}^{G} is a power of p. This is the result
of Brauer (Corollary 2, [1]). Furthermore we have the following.

COROLLARY 5. Let G, P, B and D be as in the above. Assume fur-
therefore P\approx D . If \dim_{\overline{R}}\overline{L_{0}(P)}_{B}^{G} is a power of p, then G\pi D Ker B and
[G, D]\underline{\subset}[P, D] Ker B.

PROOF. Let N=N_{G}(D) . By the theorem of Brauer \overline{L_{0}(P})_{B}^{G}=L is the
unique irreducible \overline{R}[G] -module in B and has dimension |P:D| . Since
N\supseteq P, L_{N} is irreducible and therefore G\sim D Ker B by Theorem 3. In order
to prove the second statement we may assume Ker B=1 and DaG. Let
V be an arbitrary R-free R[D] -module of R-rank 1 with Ker V\supseteq[P, D] .
Let H be the inertia group of V in G. By ([3], p163)V_{B1D}^{G}=n\sum\oplus V^{x}

for some positive integer n where x ranges over a complete set of repre-
sentatives of right H-cosets in G. Since \overline{V}=\overline{L_{0}(D}), \dim -

\overline{V}_{B}^{G} is a power of
p and therefore so is |G:H| . As Ker V\supseteq[P, D] it follows that H\supseteq P

and we have G=H. Thus x^{-1}x^{y}\in KerV for elements x\in D and y\in G and
therefore the result follows.
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