Some remarks on p-blocks of finite groups

By Tetsuro Okuyama

(Received Oct. 4, 1977; Revised Feb. 21, 1980)

In this paper we are concerned with modular representations of finite groups. Let G be a finite group and p a fixed rational prime. Let K be a complete p-adic field of characteristic 0 and R the ring of p-local integers in K with the principal maximal ideal (π) and the residue class field $R=R/(\pi)$ of characteristic p. We assume throughout the paper that fields K and R are both splitting fields for all subgroups of the given group G. We mention here [2] and [3] as general references for the modular representation theory of finite groups.

1. In this section we shall give some necessary and sufficient condition for G to be *p*-nilpotent. If B is a *p*-block of G, then let Irr(B) denote the set of irreducible K-characters of G in B. For a class function θ of G we put $\theta_B = \sum_{\chi \in Irr(B)} (\theta, \chi) \chi$. Let $B_0(G)$ denote the principal *p*-block of G.

We prove the following.

THEOREM 1. Let H be a subgroup of G which contains a Sylow p-subgroup P of G. If $1_{H^{G}_{B_{0}(G)}}(x)=1$ for any p-element $x\neq 1$ in G, then H controls the fusion of elements of P.

To prove the theorem we use the following elementary lemma which follows from Brauer's Second Main Theorem.

LEMMA. Let θ be a class function of G, x a p-element of G and Ba p-block of G. Then $\theta_B(x) = \sum \theta_{|C_G(x)|}(x)$ where b ranges over the set of p-blocks of $C_G(x)$ with $b^G = B$.

PROOF of THEOREM 1. Let $x \neq 1$ be an element of P, $C = C_G(x)$, $B = B_0(G)$ and $b = B_0(C)$. By Mackey decomposition we have $1_{H^{G_1}C} = \sum (1_{H^y \cap C})^C$ where y ranges over a complete set of representatives of (H, C)-double cosets in G. Thus the above lemma and the result of Brauer (Theorem 65.4 [2]) show that $1_{H^G}B(x) = \sum (1_{H^y \cap C})^C{}_b(x)$. If $x \in H^y \cap C$, then $(1_{H^y \cap C})^C{}_b(x) = (1_{H^y \cap C})^C{}_b(x) = 1$ (1). and if $x \notin H^y \cap C$, then $(1_{H^y \cap C})^C{}_b(x) = 0$ by (6.3) IV in [3]. As $1_{H^G}B(x) = 1$ by our assumption, $x \in H^y \cap C$ if and only if $y \in HC$. Therefore if $x^y \in H$ for some element y, then there exists an element h in H such that $x^y = x^h$ and therefore the theorem is proved.

As an easy corollary of Theorem 1 we have the following.

T. Okuyama

COROLLARY 2. Let P be a Sylow p-subgroup of G. Then G is pnilpotent if and only if $1_{P}^{G}_{B_{0}(G)}(x)=1$ for any p-element $x\neq 1$ of G.

PROOF. If G is p-nilpotent, then it is easy to show that $1_{P}{}^{G}{}_{B_{0}(G)} = 1_{G}$ and therefore $1_{P}{}^{G}{}_{B_{0}(G)}(x) = 1$ for any element x of G. Conversely assume that $1_{P}{}^{G}{}_{B_{0}(G)} = 1$ on p-elements $\neq 1$ of G. Then Theorem 1 shows that two elements of P are conjugate in G if and only if in P. Thus the corollary follows from the well-known result on Transfer Theory.

2. If B is a p-block of G then for an R[G]-module V we define $V_B = Ve$ where e is the centrally primitive idempotent of R[G] corresponding to B (in this paper modules will always be right unital). Let $L_0(G)$ denote the trivial R-free R[G]-module of R-rank 1. If V is an R[G]-module then let $\overline{V} = V/V(\pi)$ which is an $\overline{R}[G]$ -module.

Let P be a Sylow p-subgroup of G. If $P \lhd G$, then $L_0(P)^G$ is completely reducible and every irreducible R[G]-module has a vertex P. In this connection we have the following.

THEOREM 3. Let G be a finite group and B a p-block of G with defect group D. Let $N=N_G(D)$ and b a p-block of N with $b^G=B$. then the following are equivalent.

- (1) $G \rhd D$ Ker B where Ker $B = \bigcap_{\chi \in {}_{g}Irr(B)} ker \chi$.
- (2) For every irreducible R[G]-module L in $B L_N$ is also irreducible.
- (3) $\overline{L_0(D)}^{G_B}$ is completely reducible and every irreducible R[G]-module in B has a vertex D.

PROOF. (1) \rightarrow (3). Since $G \succ D$ Ker B, $\overline{L_0(D)}^{G_B}$ is considered as an R[G/D]-module. Every irreducible R[G]-module in B has kernel containing D and is projective as an R[G/D]-module. Thus the result follows.

 $(3)\rightarrow(2)$. By our assumption $L_0(D)^G{}_B = \sum \bigoplus n_i L_i$ where L_i 's are irreducible $\bar{R}[G]$ -modules in B. By Nakayama Relation (see [3], p 141) $n_i = \dim_{\bar{R}} U_i/|D|$ where U_i is the principal indecomposable $\bar{R}[G]$ -module corresponding to L_i . Then assertion $(1)\rightarrow(3)$ shows that $\overline{L_0(D)^N}_b = \sum \bigoplus m_j M_j$ where $M_{j'}s$ are irreducible $\bar{R}[N]$ -modules in b. By the same reason as the above $m_j = \dim_{\bar{R}} V_j/|D|$ where V_j is the principal indecomposable R[N]-module corresponding to M_j . Then by Green Correspondence with respect to (G, D, N) the numbers of $L_{i'}s$ and $M_{j'}s$ are equal and after suitable rearrangement $n_i = m_i$ and L_i corresponds to M_i . Then by Nakayama Relation $U_{iN} \cong V_i$ and therefore $L_{iN} = M_i$.

 $(2) \rightarrow (1)$. This is proved by the similar argument in [4] (Theorem 4). By our assumption $\cap \operatorname{Ker} L \supseteq D \operatorname{Ker} B$ where L ranges over the set of all irreducible $\overline{R}[G]$ -modules in B. Thus $D \operatorname{Ker} B = \cap \operatorname{Ker} L \lhd G$. REMARK 1. The equivalence of (1) and (2) in case $B=B_0(G)$ is the result of Isaacs and Smith (Theorem 4, [4]).

As a corollary of this theorem we have the following.

COROLLARY 4. Let G be a finite group and P a Sylow p-subgroup of G. Then G has p-length 1 if and only if $\overline{L_0(P)}^{G_{B_0(G)}}$ is completely reducible and every irreducible $\overline{R}[G]$ -module in $B_0(G)$ has a vertex P.

REMARK 2. The condition that every irreducible R[G]-module in $B_0(G)$ in the above can not be dropped as the group S_4 , the symmetric group of degree 4 shows.

3. In this section we shall prove some results related to the result of Brauer (Theorem 2, [1]). In [1] Brauer has proved the following.

THEOREM (Brauer, [1]). Let G be a finite group and P a Sylow psubgroup of G. If B is a p-block of G with defect group $D\subseteq P$, then $\dim_{\overline{R}} \overline{L_0(P)^G}_B = |P:D|v$, where (p, v) = 1.

If $\dim_{\bar{R}} L_0(P)^{G_B}$ is a power of p, then Brauer's Theorem implies that *B* has the unique irreducible $\bar{R}[G]$ -module in it. In particular, *G* is pnilpotent if and only if $\dim_{\bar{R}} \overline{L_0(P)}^{G_{B_0(G)}}$ is a power of p. This is the result of Brauer (Corollary 2, [1]). Furthermore we have the following.

COROLLARY 5. Let G, P, B and D be as in the above. Assume furthermore $P \succ D$. If $\dim_{\overline{R}} \overline{L_0(P)}^G_B$ is a power of p, then $G \succ D$ Ker B and $[G, D] \subseteq [P, D]$ Ker B.

PROOF. Let $N=N_G(D)$. By the theorem of Brauer $\overline{L_0(P)}^G{}_B=L$ is the unique irreducible $\overline{R}[G]$ -module in B and has dimension |P:D|. Since $N\supseteq P$, L_N is irreducible and therefore $G \succ D$ Ker B by Theorem 3. In order to prove the second statement we may assume Ker B=1 and $D \lhd G$. Let V be an arbitrary R-free R[D]-module of R-rank 1 with Ker $V\supseteq[P, D]$. Let H be the inertia group of V in G. By ([3], p 163) $V^G{}_{B|D}=n\sum \bigoplus V^x$ for some positive integer n where x ranges over a complete set of representatives of right H-cosets in G. Since $\overline{V}=\overline{L_0(D)}$, $\dim_{\overline{R}} \overline{V}^G{}_B$ is a power of p and therefore so is |G:H|. As Ker $V\supseteq[P, D]$ it follows that $H\supseteq P$ and we have G=H. Thus $x^{-1}x^y \in \text{Ker } V$ for elements $x \in D$ and $y \in G$ and therefore the result follows.

References

- R. BRAUER: Notes on representations of finite groups I, J. London Math. Soc.
 (2), 13 (1976), 162–166.
- [2] L. DORNHOFF: Group Representation Theory, Marcel Dekker, New York (1972).
- [3] W. FEIT: Representations of Finite Groups, Yale University (1969).
- [4] I. M. ISAACS and S. D. SMITH: Anote on groups of *p*-length 1, J. Alg. 38 (1976), 531-535.

Osaka City University