A note on symmetric codes over $G F(3)$

By Noboru ITo*
(Received September 26, 1979)

Let q be a prime power such that $q \equiv 2(\bmod 3)$ and $q \equiv 1(\bmod 4)$, $G F(q)$ a field of q elements and μ the quadratic character of $G F(q)^{X}$ with $\mu(0)=0$.

Let T be a matrix of degree q defined by $T(a, b)=\mu(b-a)$, where $a, b \in G F(q)$, and

$$
S=\left(\begin{array}{cccc}
0 & 1 \cdots & 1 \\
1 & \cdots & \\
\vdots & T & \\
1 & & \\
1 & &
\end{array}\right)
$$

Let $C(q)$ be the code generated by (I, S) over $G F(3)$, which is introduced by V. Pless in [3] and I denotes the identity matrix of degree $q+1$.

The purpose of this note is to show that the minimum weight of $C(q)$ is not smallet than \sqrt{q}.
$\S 1$. Let $C^{*}(q)$ be the code generated by (I, S) over $G F\left(3^{2}\right)$. Let i be a primitive fourth root of unity in $G F\left(3^{2}\right)$. Then we may choose

$$
\left(\begin{array}{rr}
-I-i S, & i I-S \\
-I+i S, & -i I-S
\end{array}\right)
$$

as generators of $C^{*}(q)$, since $(-S, I)$ is contained in $C(q)$ (See [3]). We notice that $-i(-I-i S)=i I-S$ and $i(-I+i S)=-i I-S$. Let U and L be the subcodes of $C^{*}(q)$ generated by $(-I-i S, i I-S)$ and $(-I+i S,-i I-S)$ respectively. Then any codevector of $C^{*}(q)$ has a form $(x+y,-i(x-y))$, where $(x,-i x) \in U$ and $(y, i y) \in L$.

Lemma 1. Let w denote the weight function. Then we have that

$$
w(x+y,-i(x-y)) \geqq w(x) \text { and } w(y)
$$

Proof. We may label elements of $G F\left(3^{2}\right)$ as follows: $a_{1}=0, a_{2}=1$, $a_{3}=-1, a_{4}=i, a_{5}=i+1, a_{6}=i-1, a_{7}=-i, a_{8}=-i+1$ and $a_{9}=-i-1$. Now
let n_{i} be the number of a_{i} in x and $n_{i j}$ the number of a_{j} in the portion of y which corresponds to n_{i} coordinates of x giving $a_{i}(i, j=1, \cdots, 9)$. Then we have that $w(x)=n_{2}+\cdots+n_{9}, w(y)=n_{12}+\cdots+n_{19}+n_{22}+\cdots+n_{29}+\cdots+$ $n_{92}+\cdots+n_{99}, w(x+y)=n_{12}+\cdots+n_{19}+n_{21}+n_{22}+n_{24}+\cdots+n_{29}+\cdots+n_{91}+\cdots+n_{94}$ $+n_{96}+\cdots+n_{99}$ and $w(x-y)=n_{12}+\cdots+n_{19}+n_{21}+n_{23}+\cdots n_{29}+\cdots+n_{91}+\cdots+n_{98}$. Thus we have that $w(x+y, \quad-i(x-y))=2\left(n_{12}+\cdots+n_{19}\right)+\left(2\left(n_{21}+\cdots+n_{29}\right)\right.$ $-n_{22}-n_{23}+\cdots+2\left(n_{91}+\cdots+n_{99}\right)-n_{95}-n_{99} \geqq w(x)$ and $w(y)$.
$-I-i S$ and $-I+i S$ are equivalent under the field automorphism, and so they have the same minimum weight.
$\S 2$. The minimum weight of $-I_{1}-i T$ is equal to or smaller than by one that of $-I-i S$, where I_{1} is the identity matrix of degree q. Now let G be a generalized quadratic residue code of J. H. van Lint and F. J. McWilliams [2] of $G F(q)$ over $G F\left(3^{2}\right)$. Since $(1, \cdots, 1)$ belongs to both $-I_{1}-i T$ and G, and since $G=(-I-i T)+J$, where J is the all 1 matrix of degree q, we see that $-I_{1}-i T$ is a generator for G. Thus by a theorem of J . H. van Lint and F. J. McWilliams [2, Theorem 2, i] the minimum weight of $-I-i T$ is at least \sqrt{q}.

Remark. The case $q \equiv 3(\bmod 4)$ is treated in [1].

Bibliography

[1] N. ITO: Note on symmetry code over $G F(3)$, to appear in JCT (A).
[2] J. H. van Lint and F. J. MacWilliams: Generalized quadratic residue codes, IEEE Trans. Inf. Th. IT 24 (1978) 730-737.
[3] V. Pless: Symmetry codes over $G F(3)$ and new five-designs, JCT (A) 12 (1972), 119-142.

Department of Mathematics
University of Illinois at Chicago Circle

* This work is partially supported by NSF Grant MCS 7902750

