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Note on intersections of translates of
powers in finite fields

By Ronald J. Evans
(Received July 18, 1979)

Let F be a finite field of odd order q. Fix integers t, n\geq 2 with n|(q-1) .
Let R denote the set of (q-1)/n nonzero n-th powers in F. For a\in F,

let R_{a} denote the translate R+a, and for A\subset F , define R_{A}= \bigcap_{a\in A}R_{a} . In

this note, we consider the following problem suggested by N. Ito. Find the
fields F for which

(1) R_{A}\neq R_{B} whenever A\neq B and min (|A|, |B|)=t .

We will give a number theoretical proof of the following theorem.
THEOREM : Let Q(n, t)=2X^{2}+Y+2X\sqrt{X^{2}+Y},\cdot where

x_{=tn^{l}--}\frac{(n+1)(n^{t}-1)}{2(n-1)}\frac{n(t^{2}-t)}{4}-\frac{(t^{2}+t)}{4}

and

Y= \frac{tn^{t}}{n-1}+\frac{n(t^{2}-t)}{2}-\frac{(t^{2}+t)}{2}

Then (1) holds whenever q>Q(t, n) .
An easily proved consequence is:
COROLLARY: If q>(2t+1)^{2}n^{2l} , then (1) holds.
If we were to let t=1 , then (1) would in fact hold for all fields F.

Equivalently, R is distinct from each of its translates R+a(a\neq 0) . To see
this, assume that R=R+a for some a\neq 0 . Then R is the disjoint union of
sets of the form \{x+a, x+2a, \cdots, x+pa\} , where p is the characteristic of
F. Thus p divides |R|=(q-1)/n , a contradiction.

In studying Hadamard matrices and block design, Ito [1, Lemma 5]

showed in the case n=t=2, q\equiv-1 (mod 4) that (1) holds for q>7 . No
better lower bound for q exists, since R_{\{0,1\}}=R_{10,2\}} when q=7. Now, the only
odd prime powers between 7 and Q(2,2)\cong 14.56 are 9, 11, 13, and inspection
easily shows that (1) holds for these values of q when n=t=2. Thus our
theorem proves Ito’s result in the more general setting q\equiv\pm 1 (mod 4).

For large values of n or t, Q(n, t) is undoubtedly far from the best
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lower bound for q. This is because, in applying the Weil estimate, we ignored
possibly large amounts of cancellation between character sums.

PROOF of THEOREM.
Let q>Q(n, t) . Assume that A\neq B and |B|\geq|A|=t . Since R_{A\cup B}=

R_{A}\cap R_{B} , it suffices to show that |R_{A\cup B}|<|R_{A}| . Since |A\cup B|>|A| , it suffices
to show that |R_{C}|<|R_{A}| for any set C=A\cup\{w\} with w\oplus A .

Let \chi be a character on F of order n . For u\in F, D\subset F, write

P_{D}(u)= \prod_{a\epsilon D}(1+\chi(u-a)+\cdots+\chi n-1(u-a))

Then

n^{t}|R_{A}|= \sum_{u\in F-A}P_{A}(u)=\sum_{u\in F}P_{A}(u)-\sum_{u\in A}P_{A}(u)

Since

0 \leq\sum_{u\epsilon A}P_{A}(u)\leq\sum_{u\epsilon A}n^{t-1}=tn^{t-1} ,

(2) n^{t}|R_{A}| \geq\sum_{ueF}P_{A}(u)-tn^{t-1} ;

and similarly,

(3) n^{t+1}|R_{C}| \leq\sum_{u\epsilon F}P_{C}(u)

Expanding the product P_{A}(u) and summing over u\in F, we see that
\sum_{u\in F}P_{A}(u) equals q plus a sum of character sums of the form

(4)
\sum_{u\epsilon t’}\chi i_{1}(u-a_{1})\cdots\chi^{i_{7}}(u-a_{r}) :

where 2\leq r\leq n-1,1\leq i_{1} , \cdots , i_{r}\leq n-1 , and where a_{1} , \cdots , a_{r} are distinct ele-
ments of A. We isolate out (n-1) (\begin{array}{l}t2\end{array}) of the sums in (4) which equal -1,
namely the sums

\sum_{u\in F}\chi i(u-a)\chi n-i(u-b)

with 1\leq i\leq n-1 , a, b\in A , a\neq b .
Then we use Weil’s estimate [2, Theorem 2 C’ , p. 43] on each of the remain-
ing sums in (4), as follows:

|_{u\in P^{7}} \sum\chi i_{1}(u-a_{1})\cdots\chi i_{r}(u-a_{r})|\leq(r-1)\sqrt{q}

Thus,
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\sum_{u\in F}P_{A}(u)-q+(n-1)
(\begin{array}{l}t2\end{array})

\geq-\sqrt{q}(-(\begin{array}{l}t2\end{array}) (n-1)+ \sum_{r=2}^{t} (\begin{array}{l}tr\end{array}) (r-1)(n-1)^{r})

=-\sqrt{q}F(n, t)’.
where

F(n, t)=1+n^{t}(t-1)-tn^{t-1}-(\begin{array}{l}t2\end{array}) (n-1)

Thus, from (2),

n^{t}|R_{A}|\geq q-(n-1) (\begin{array}{l}t2\end{array})-\sqrt{q}F(n, t)-tn^{t-1} ,

and, similarly, from (3),

n^{t+1}|R_{C}|\leq q-(n-1) (\begin{array}{l}t+12\end{array})+\sqrt{q}F(n, t+1)

Subtraction yields

n^{t+1}(|R_{A}|-|R_{C}|)

\geq q(n-1)-\sqrt{q}(nF(n, t)+F(n, t+1))

+(n-1)\{(\begin{array}{l}t+12\end{array})-n(\begin{array}{l}t2\end{array})\}-tn^{t}t

The last member above is positive for q>Q(n, t) , as desired.
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